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INTRODUCTION
The construction of reduced order models for high 

fidelity models is now considered an important objective 
in support of all engineering activities which require 
repeated execution of the simulation. The reduced model
must be computationally inexpensive to allow its repeated 
execution, and must be computationally accurate in order 
for its predictions to be credible. This summary combines 
a well-known approach for reduction, the proper 
orthogonal decomposition [1], with a range finding 
algorithm from linear algebra to reduce the 
dimensionality of the state space [2]. This results in 
reducing the effective size of the model equations which 
translates in reduced computational cost. Unlike 
conventional POD algorithms, this approach provides an 
upper bound on the error resulting from the reduction. 
This allows the user to define the desired accuracy a 
priori which controls the maximum allowable reduction. 
We demonstrate the utility of this approach using an 
eigenvalue radiation transport model, where the accuracy 
is selected to match machine precision. 

MATHEMATICAL DESCRIPTION
Consider a generalized eigenvalue problem

uuL F             (1)

where n nL and n nF are matrix operators 
that describe the numerically-discretized neutron 
transport loss and production operators, respectively; 
is the largest eigenvalue associated with the eigenvector 

n which denotes the state (i.e. the flux) and 

sometimes called the fundamental forward flux solution. 
The ,L F and are dependent on the p model 

parameters described by a vector pu .
Now, consider a response R that is a linear 

functional of the flux:

TR u                 (2)

with constraints:

T
N N                (3)

where u is a vector whose elements are dependent 

on the input parameters. The N is a vector of weights 

that determine the normalization condition and N is the 
normalization constant. 

Reactor calculations involve the repeated solution of 
Eq. 1, each time with different input parameters. A
relevant application for this is the repeated execution of 
lattice physics calculations to functionalize the few-group 
cross-sections in terms of core neutronics and 
thermal-hydraulics conditions. Our goal is to transform 
Eq. 1 using POD techniques into a reduced order system 
of equations that can be accurately and efficiently solved
for the range of input parameters conditions that are of 
interest to reactor calculations. Earlier work using range 
finding algorithms (recalled later in the discussion) has 
shown that all possible flux perturbations belong to a 
small active subspace of size r [3-4]. This means, using 
POD language, that instead of solving for the flux in the 
original space, one can confine the search for the flux to 
the active subspace only. In doing so, the system of 
equations to be solved is reduced in size from n to r.

Mathematically, the idea may be described as 
follows: assume that the perturbed flux varies along a 
subspace which is spanned by a basis or r

independent vectors: 1 2, , , r . Now consider a 

general perturbation in the input parameters, the 
perturbed eigenvalue problem is given by:

uuL F              (4)

where ‘~’ indicates the perturbed terms. The perturbed 
flux can be rewritten as:

T T T         (5)

where 1 2 , ,, r and 1 2 , ,,r r n

are orthonormal matrices such that T T I
is the identity matrix. 
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To find the active subspace, we employ a 
range-finding algorithm which is recalled here [2]: 
consider a matrix A where one is interested in 
identifying its effective range spanned by the columns of 
an orthonormal matrix n r such that some 
user-defined tolerance is satisfied in an upper bound 

sense, i.e., TI . It can be shown that the 

matrix satisfying this inequality can be determined 
via r+s randomized matrix-vector products of the form

ipA , where r is the rank of the matrix, and s a small 

number representing few additional random samples, 
10s is conservative for most applications. These 

matrix-vector products can be calculated by executing the 
forward model in forward mode with random input 
parameters perturbations. Details on this may be found in 
earlier work [4].

The power of this algorithm is that it finds a hard 
upper-bound on the error. This allows the analyst to 
decide on the maximum allowable error a priori, i.e., 
before the reduced system of equations is solved, and 
employ the algorithm to pick the minimum rank r that 
satisfies this error criterion. This is the core difference 
between this approach and traditional snapshots algorithm 
commonly used in POD techniques [5]. In the snapshot 
approach, the solution at different times employing 
reference parameters values is utilized to form the basis
for the active subspace. There is however no guarantee 
that the error resulting from the reduction can be 
constrained for all possible parameters perturbations.

DETAILS OF IMPLEMENTATION
Now, combining Eq. (4) and Eq. (5) gives

T Tu uPL         (6)

where r nP is a pre-conditioner. For this simple 
demonstration, we choose TP , thus Eq. (6)
becomes:

T T T Tu uL        (7)

Let ˆ, ,  and T T TL F , therefore, the

POD reduced order model becomes:

ˆ ˆ ˆL F                  (8)

where , , ˆ  and ˆr r r r rL F is the eigenvalue 

approximated by the reduced order model.

NUMERICAL EXPERIMENT
The case study is based on a two-group diffusion 

model employing Anistratov’s test problem setups in 1-D 
slab geometry with two fuel assemblies [6]. The state i

s described by the two-group flux solution. The inpu

t parameters are represented by the two-group cros

s sections. The model schematic is shown in Fig. 1. Each 
assembly contains only one kind of fuel pin cells, with 8

 pin cells per assembly, and the associated specification 
are listed in Table I.  

Figure 1. Model Layout

The responses are defined in accordance to Eq. (2):

,  for 61 25, ,T
i iR i         (9)

with reference values for i ie , where ie is the 

standard basis vector with all its elements equal to zero 

except the ith element is equal to one; 256 1 , and the 

first 128 values of denote the fast group fluxes, the 

remaining values denote the thermal group fluxes.
The reduced order model is exercised with 

cross-sections perturbed by 10% of their reference values.
For benchmarking the reduced order model’s predictions, 
the exact perturbed responses are calculated using direct 
forward perturbation which requires a full forward model 
execution. Fig. 2 shows the discrepancy in the eigenvalue, 
and Fig. 3 shows the discrepancy in the flux. The x-axis 
in Fig. 2 and Fig. 3 runs from 1 to 256, which represents 
the size of the active subspace, and the discrepancy in 
both figures is defined by:

2
, exact , approx

, exa1 ct

1 i i

i

N

i

x x
rms

N x
     (10)
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where N=1 and N=256 for the eigenvalue and flux 
figures, respectively.

Table I. Cross Section Data *

1
t

1 1
s,0

1 2
s,0

1 2
t

2 2
s,0

2
f

2
f

MOX 0.2 0.185 0.015 1 1.2 0.9 0.3 1.5

UO2 0.2 0.185 0.015 1 1.0 0.9 0.1 1.5

Water 0.2 0.17 0.03 0 1.1 1.1 0 0

*
1 21 1 2 1 2
0 0,0, , , , ,f f s are all zeros .
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          Figure. 2 ROM-predicted Eigenvalue
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Figure 3. ROM-prediced Flux

CONCLUSIONS
This summary has introduced a reduced order 

modeling approach that combines advantages of POD 
techniques and range finding algorithms. POD techniques 

constrain the state solution to a subspace of size r in order 
to reduce the computational cost required to solve the 
model’s equations. When r is much smaller than n, the 
original dimension of the state space, repeated solution of 
the model’s equations for a range of parameters 
conditions becomes computationally feasible. The range 
finding algorithm provides a rigorous estimate of the 
error resulting from the reduction which can be set by the 
user to meet maximum allowable errors. The bulk of the 
computational cost lies in the construction of the active 
subspace which requires the execution of the forward 
model a number of times proportional to its rank r, which 
can be done off-line as a pre-computation.
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