

L3:VRI.PSS.P1.01
Rod Schmidt

SNL
Completed: 10/29/10

CASL-U-2010-0006-000

Introduction to LIME:
A Lightweight Integrating Multi-physics

Environment for Coupling Codes

1

Rod Schmidt
Sandia National Labs

LIME version 0.6
Oct 29, 2010

CASL-U-2010-0006-000

2

Outline

• Some Multi-physics Coupling Issues and Terms

• Background on LIME Development

• Description of LIME

• Use of LIME to create multi-physics applications

CASL-U-2010-0006-000

3

What do we mean by “coupled” physics?

• The solution of one physics equation (set) is dependent upon the
solution of another different physics equation (set).

• Physics coupling can be
– “one-way” or “two-way”
– “linear” or “non-linear”
– “strong” or “weak”

• Physics coupling may occur
– Within a shared spatial domain
– Across an interface
– Through action at a distance

• For our purposes, “multi-scale” coupling and “multi-fidelity”
coupling will simply be considered as particular types of coupled
sytems.

CASL-U-2010-0006-000

4

“Physics coupling” and a “numerical solution
strategy” are distinctly different things.

• “Physics coupling” relates to the actual physics
– “strong” or “weak”
– “one-way” or “two-way”
– “linear” or “non-linear”, etc.

• “Numerical solution strategy” relates to the approach and
approximations made to obtain numerical solutions to the coupled
physics equations.
– “loosely” coupled transient solution method

* Explicit, time-lagged, . .
* Operator split methods, . . .
* Implicit, but solved using Picard iteration (sometimes called weak coupling)

– “tightly” coupled transient solution method
* Implicit
* Fully coupled non-linear solution methods such as Newton, or JFNK
 (sometimes called strong coupling in this context)

• Because similar terms are sometimes used when discussing these
different topics, care must be taken to avoid confusion.

CASL-U-2010-0006-000

5

The need to address complex coupled non-linear
multi-physics problems is not new.

• Scientists and engineers in the NE community (among many
others) have wrestled with these types of problems for years
– Remarkably useful computer codes have been developed and

successfully applied, despite their limitations.
– Many of these codes remain, even today, as “state-of-the-art”

codes that reflect many years of R&D investment.

• However, computational tools, capabilities, and resources have
changed dramatically, and will continue to do so.

• How to “best” solve these types of problems remains an area of
active research, with many facets.

• LIME, initially developed as part of an LDRD, represents the
early stage of one approach whose characteristics were driven
by a particular set of needs and desired capabilities.

CASL-U-2010-0006-000

6

What is LIME?

• an acronym for Lightweight Integrating Multi-physics
Environment for coupling codes.

• a tool for creating multi-physics simulation code(s) that is
particularly useful when computer codes are currently available
to solve different parts of a multi-physics problem.

• intended to provide
– key high-level software,
– a well defined approach (including example templates),
– and interface requirements for participating physics codes

to enable the assembly of these codes into a robust and efficient
multi-physics simulation capability.

• one part of the larger VERA framework being developed in
CASL.

LIME is:

CASL-U-2010-0006-000

7

Important Characteristics of LIME

• Designed to:
 Work with advanced solver frameworks (e.g. as extensions to the

Trilinos/NOX nonlinear solver library)
 Enable separate physics codes (“new” and “old”) to be combined into

a robust and efficient fully-coupled multi-physics simulation capability
 Minimize the requirements barrier for an code application to

participate without limiting the sophistication of the code applications.
 Preserve and leverage any specialized algorithms and/or functionality

an application may provide.
 allow composition of both controlled and open-source components,

enabling protection of export-controlled or proprietary code while still
allowing distribution of the core system and open components.

• Is not limited to:
 Codes written in one particular language
 A particular numerical discretization approach (e.g. Finite Element)
 Physical models expressed as PDE’s.

• Is not “plug and play”:
 Requires revisions/modifications to most stand-alone physics codes
 Requires the creation of customized “model evaluators”

CASL-U-2010-0006-000

8

Why is LIME called “lightweight?”

Because of two design objectives:
(1)
• to keep the main software relatively small in size and complexity

• to require only a few standard libraries to build (all openly available)

• to be easily portable to a wide range of computing platforms.

(2)

• to minimize the constraints placed on the codes and models to be
incorporated

Note: A tradeoff closely linked to these objectives is that to create a
new multi-physics application using LIME, some amount of
customized software must be written.

CASL-U-2010-0006-000

Base LIME
software

9

Key components of a simple generic
application created using LIME

Physics	
 A

Model	

Evaluator	

A

Physics	
 C

Model	

Evaluator	

C

Physics	
 B

Model	

Evaluator	

B

Problem
Manager

Mul:-­‐Physics
Driver

Input	
 File	
 A Input	
 File	
 B Input	
 File	
 C

Trilinos,	
 NOX
Solver	
 Library

PM	
 Input
Files	
 (xml)

Level 1

Level 2

Level 3

CASL-U-2010-0006-000

10

Key Tasks of the Multi-Physics Driver

1. Do all set-up tasks for the problem that is to be run, including creating a
Problem Manager specific to the problem. The set-up phase includes the
following specific tasks:

* If running in parallel, create the mpi communicator based on
 the number of processors requested.
* Read the XML input file
* Create the multi-physics coupling Problem_Manager object with solution strategy

and MPI communicator
* Initialize transfer object creation
* Set up (create) and register the physics package objects for
 each Model Evaluator / Physics Code pair.
* Set up data transfers between Model Evaluators
* Call the Problem_Manager to set up the output

2. Call the Problem Manager to solve the problem

3. Gracefully end the simulation

CASL-U-2010-0006-000

11

1. Create the global state vector X, and define the physics-specific state vectors
(XA, XB , XC , . . .)

2. Perform time integration, including the following for each time step:
• Perform time-step control: Negotiate/calculate based on all the physics.

• Request a "predicted" solution state for time step n+1 from each physics code (if
available) through its model evaluator.

* Obtain a converged solution for time step n+1 using
 solution strategy defined by the user input.
 Current options include fixed point iteration and
 JFNK using the Trilinos/NOX nonlinear solver
 library.

o Request residuals from physics codes
o Request physics-based preconditioning
o Update state vector

• Perform output (each physics code)

Key Tasks of the Problem Manager

CASL-U-2010-0006-000

12

1. A customized model evaluator (ME) must be written for each physics code
being coupled into the multi-physics application

2. Each ME inherits the Problem Manager (PM) base class and implements
supported PM interfaces to the underlying physics code

3. Each ME has control of one defined piece of the
overall state vector.

4. Each ME has access to all other state vector
pieces that appear directly or indirectly (e.g.
through property variation affects) in its
equation set or models.

5. Model Evaluators communicate up to the
Problem Manager, between themselves,
and down to a specific Physics Code.

The role of customized “model evaluators”

CASL-U-2010-0006-000

13

Revisions and Modifications that may be
required of a Physics-Code

• Console IO must be redirected (no pause statements or read/write to
standard streams)

• Each code must be wrapped so the multi-physics driver can link to it (i.e.
like a library).

• Each code must be organized into several key parts that can be called
independently.

 Initialization: read inputs, allocate memory . . .
 Solve: compute solution for a given time step and “state”
 Advance: copy converged “state” and prepare for next step
 Output: print to output files

• Additional routines that may be needed:
 Register coupling capabilities
 Pass control variables
 Compute and pass data for coupling
 to other physics
 Compute residuals
 Perform preconditioning

CASL-U-2010-0006-000

LIME has been used to assemble several
different multi-physics applications

• LAAMPS - SPARKS coupling

• Stress corrosion cracking (4 codes)
• Development of a proto-type systems-level SFR safety analysis

code at Sandia National Labs(BRISC)

ANL Preconceptual Design for an Advanced “Burner” Reactor

CASL-U-2010-0006-000

Some example modifications and revisions to RIO
(used for BRISC) that were made to interface with LIME

• Revised high-level code structure. For example, routines called
in “main” went from

• And in “integrate”,

CASL-U-2010-0006-000

• Wrapped as a c++ library

• Created several new routines and some new data structures
(arrays) for various purposes. For example

• Modified each of the solve routines to facilitate storing new
quantities needed

Some example modifications and revisions to RIO (used
for BRISC) that were made to interface with LIME

(continued)

CASL-U-2010-0006-000

17

Some high-level basic steps to creating a new
multi-physics application using LIME (1)

Part 1
• Define the target problem (or class of problems) and identify

the different codes to be coupled
• Fully describe the coupled physics problem of interest in

terms of
– the basic equations being solved by the different physics codes

and associated local state variables
* the type and nature of the coupling
* shared spatial domain, across an interface, . . .
* one-way or two-way
* strong or weak

– The coupling terms and transfer of information required
* Will special transfer operations need to be created?
* Will non-linear ilimination be required?

– The global set of state variables to be evolved by the Multi-
Physics Driver

CASL-U-2010-0006-000

18

Some high-level basic steps to creating a new
multi-physics application using LIME (continued)

Part 2
• Construct a feasible code coupling map-diagram
– Include each “physics code <-> model evaluator” pair
– Define all communication/data transfer needs and

dependencies
* Show special data transfer operations required

– Look for numerical compatibility issues
* Consistent spatial and temporal discretization schemes?
* Can a residual be properly defined?
* Will non-linear elimination be required?
* Are there state-variable scaling issues?
* Are material property models consistent?

CASL-U-2010-0006-000

19

Some high-level basic steps to creating a new
multi-physics application using LIME (continued)

Part 3 (For each physics code)
• Define the Code modifications/additions needed
– For stand-alone
– For coupled setting

• Make changes needed to wrap the code for stand-alone
situation
– Create base model evaluator
– Test against reference code results

• Make changes needed to couple with just one other code
– Modify base model evaluator to address coupling needs
– Test against a series of very simple tests

• Continue adding each coupled code, one at a time . .

CASL-U-2010-0006-000

20

In CASL, LIME sits within the larger VERA
environment

• Examples of software tools that sit outside of LIME but within
VERA.

- Solver libraries (e.g. Trilinos/NOX)

- Meshing tools (e.g. CUBIT)

- UQ toolkit (e.g. Dakota)

- Viz. tools (e.g. paraview, Visit,)

- Parallel decomposition
 tools (e.g. Zoltan)

- Workflow environment tools

CASL-U-2010-0006-000

	CASL-I-2010-0006-000-coversheet.pdf
	CASL-U-2010-0006-000

