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Abstract 
 
Code verification is a well-defined process by which the correctness and accuracy of a software 
implementation of a numerical algorithm can be evaluated.  Solution verification is a related but 
distinct process by which the discretization error is estimated in simulations of interest. In this 
document a workflow for code verification is presented. 
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1.  OVERVIEW  
 
 
Code verification is a well-defined process by which the correctness and accuracy of a software 
implementation of a numerical algorithm can be evaluated.  Solution verification is a related but 
distinct process by which the discretization error is estimated in simulations of interest. In this 
document a workflow for code verification is presented. 
 
Most numerical methods used to obtain approximate numerical solutions of continuum models 
have a number of key properties.  Among these characteristics is the order-of-accuracy (also 
called the convergence rate), which is given by the exponent in the power law relating the 
numerical truncation error to the value of the discret parameter.  The most common approach to 
code verification is to compare the theoretical rate of convergence of the numerical method to 
the observed rate produced by an implementation of that method, to gauge the correctness of the 
implementation. 
 
The procedure by which to provide this measure of correctness is systematic mesh refinement (or 
variation).  The results of this approach are combined with error measurement to produce the 
observed rate-of-convergence, which is compared with the ideal or theoretical rate-of-
convergence of the underlying algorithm.  For code verification, the use of an analytical or exact 
solution to a problem plays a fundamental role in the process by providing an unambiguous 
fiducial solution.   
 
In summary, the workflow for conducting code verification is the following: 
1. Starting with an implementation (i.e., code) that has passed the appropriate level of SQA, 
choose the executable to be examined. 
2. Provide a complete analysis of the numerical method as implemented including accuracy 
and stability properties. 
3. Select the analytical solution(s) for problems to be examined, and provide the analytical 
solution in a form that allows direct comparison with the numerical solutions and provide the 
means for computing the errors in the numerical solution. 
4. Produce the code input to model the problem(s). 
5. Select the sequence of mesh discretizations to be examined for each solution. 
6. Run the code and provide the means of producing appropriate metrics to evaluate the 
difference between the numerical and analytical solutions. 
7. Use the comparison to determine the sequence of errors corresponding to the various 
discretizations. 
8. The error sequence allows the determination of the rate-of-convergence for the method, 
which is compared to the theoretical rate. 
9. Using these results, render an assessment of the method’s implementation correctness. 
10. Examine the degree of coverage of features in an implementation by the verification 
testing. 
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In a modern code development environment, this process should be repeatable and available on-
demand. 
 
The focus of this document is code verification, which is a necessary prerequisite for solution 
verification, validation, and uncertainty quantification.  These other assessment techniques are 
only briefly introduced to distinguish them from code verification. 
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2. WHAT IS VERIFICATION? 

 
There are different kinds of Verification: 
 
• Code verification – comparing the results of a coded algorithm (i.e., instantiated in 
software) with an analytical or exact (i.e., “closed form”) solution or highly accurate solution 
obtained by some other means , for the purpose of assessing the code. 
• Calculation or solution verification – using the demonstrated convergence 
properties of the code to estimate numerical errors in solving the model, involving the evaluation 
of results of the code alone. 
 
It is notable that the credibility of calculation verification is predicated on producing error 
estimates from a code that have passed appropriate and relevant code verification. 
 
At its core, verification of scientific simulation software both quantifies numerical errors and 
defines a rigorous basis for believing that quantification.  Providing an error estimate for 
complex problems falls under the purview of solution (or calculation) verification, while 
providing the rigorous basis for such estimates is achieved with code verification. The overall 
activity of verification is the combination of both code and solution verification. 
 
• Software verification – checking for a correct functioning of the software system on 
a particular platform. 
 
Such software testing is a critical element of software development. The testing that is closest to 
code development centers on software engineering techniques, such as unit testing and 
regression testing, both of which address the correct functioning of software. These types of 
testing use generic success metrics that apply to almost all classes of software.  In contrast, code 
and solution verification are assessment techniques for software that provides approximate 
solutions, with metrics specialized to the particular type of algorithm. 
 
There is persistent confusion of verification testing with regression testing: these are completely 
different testing procedures with completely different goals. Regression testing is a software 
engineering technique that assesses the robustness of software to frequent changes. Regression 
tests reduce to a (typically large) collection of relatively simple problems that are executed at a 
regular (typically frequent) time interval. Regression testing seeks principally to reduce the 
amount of software rework that is created by the introduction of mistakes in software 
modifications. This reduction is accomplished by comparing today’s code with yesterday’s code 
via execution of the regression test suite. Thus, regression testing targets software stability, not 
mathematical correctness. 
 
At this point other popular forms of assessment are described, as is their relationship with code 
verification and the workflow that is the topic of this document.  Solution verification estimates 
numerical errors for a problem of interest based on an assumed relationship between numerical 
error and resolution (a measure of the discretization parameter); code verification tests whether 
this assumption is satisfied. 
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Unlike verification, validation tests whether a model is a sufficiently accurate representation of 
the physical processes in a particular problem. In scientific simulations the model refers to the 
governing equations, which include initial conditions, boundary conditions, constitutive 
relations, etc.  To simulate essentially any nontrivial physical configuration, these equations must 
be solved computationally, which depends on numerical algorithms, corresponding software 
implementations, and appropriate use of that software.  Therefore, validation entails comparisons 
of approximate solutions of the governing equations (which are an imperfect representation of 
the relevant physical processes) to experimental data (which also contain inaccuracies). 
Quantitative comparison of experiment (having, e.g., physical and diagnostic uncertainties) with 
simulations (having concomitant modeling, algorithmic, and solution errors) remains a 
challenging undertaking. It is regular experimental practice to provide error bars showing the 
degree of uncertainty in physical data, and solution verification can help provide estimates of the 
numerical error in the simulations. 
 
Every simulation requires a number of inputs to specify the problem to be solved, to choose 
among various numerical methods and how they are to be applied, and to provide values for 
parameters in specific material models. These values may not be known exactly, or may 
represent some average value that depends on the particular situation. The process of identifying 
and quantifying the effects of the uncertainty of these simulation inputs on the results of the 
simulation is called uncertainty quantification . The most common way of estimating these 
effects is to run a (preferably large) number of simulations, in which the values of the inputs are 
taken from distributions, to determine the corresponding distribution of the results of interest. 
Unlike code verification, solution verification, or validation, uncertainty quantification deals 
with the sensitivity of simulation results to how the problem is specified, rather than how well 
that problem is solved.   
 
Numerical simulations are increasingly used to increase understanding, to “solve” problems, to 
design devices, vehicles and buildings, and inform high-consequence decision makers. The 
different assessment techniques address different ways numerical simulations can fail to provide 
accurate information. Ultimately, only the combined application of all the techniques can provide 
confidence that the accuracy of the numerical simulation process is adequate for a particular 
scenario. In practice, code verification is the foundation upon which the other assessment 
techniques rest. The premise of solution verification is that the code converges at a known rate as 
the resolution is increased; code verification establishes that this is in fact the case. To compare 
experimental results to code results, both the experimental and numerical errors must be 
accurately quantified so they can be accounted for in the comparison. Validation relies on 
solution verification to provide the numerical error, which in turn relies on code verification.  
The process of uncertainty quantification accepts the model, in this case the code that produces 
numerical simulations, as an input. Inferences drawn about the system that the model represents 
are inherently limited by the accuracy of the model. Code verification ensures the model is 
correctly implemented and underlies solution verification and validation that quantify the 
accuracy of the model. 
 
Code Verification 
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Who does verification? Code developers, mathematicians, and algorithm engineers 
 
Complex simulation software cannot be proven to be mathematically correct. Consequently, the 
accumulation of quantitative evidence remains the exclusive basis for inferring the mathematical 
correctness. The practical view is that this evidence is accumulated over time. This accumulation 
occurs throughout the on-going processes of code development as well as during the subsequent 
code usage.  Thus, the results of verification analyses are affected by the manner in which 
software is generated and the proper specification/execution of the verification problem.  While 
the former is the purview of code developers and algorithm designers, responsibility for the latter 
falls upon those who describe the verification problem both in documentation and in actual code 
input.  For those using a code to conduct analysis, their responsibility is to act mindfully 
regarding the quality of the code, and the relevance of the testing to their problems of interest.  
At best, they should act as advocates for quality control measures such as rigorous, extensive 
verification because it supports any calculations where the code is used. 
 
Verification evidence emerging from code development is generated by software engineering 
processes applied during that development, and by the specific testing practices employed by the 
development team. Code usage evidence is a more nuanced and diverse body of information that 
emerges from a heterogeneous group of users. Testing executed under the umbrella of code 
development is not restricted to the verification approaches discussed in this document. Unlike 
other testing procedures applied by code developers (including, e.g., unit tests and the restricted 
cases applied in regression testing), verification test problems also are relevant to code users. 
 
Verification test suites can be implemented, managed, and applied by code developers just like 
regression test suites. The major differences are: (i) the development and execution of 
verification test suites takes more resources (people, computers, time); (ii) the time interval of 
execution of a verification test suite will be different than for regression testing; and (iii) the 
direct methods for comparing today’s regression test suite results versus yesterday’s baseline 
should be replaced by greater human involvement in judging the quality of the verification tests 
where possible.  On the other hand, we believe that subjective judgment is ultimately always 
associated with the quality of software at some fundamental level.  For example, a verification 
study rarely produces results that exactly produce the theoretical convergence rate; in fact, the 
observed rates can vary greatly.  The judgment of whether the result is close enough to 
expectations remains a largely expert matter.  Improvement of this state of affairs is a present 
topic of research.  This increased human element required to assess the execution of verification 
tests emphasizes that an important value of verification tests is their use in engaging the user 
community around a code.  
 
What is done in verification? Compare code solutions with analytical solutions. 
 
 To conduct a verification analysis, one must have (i) a clear statement of the problem with 
sufficient information to run a computer simulation, (ii) an explanation of how the code result 
and benchmark solution are to be evaluated, and (iii) a description of the acceptance criteria for a 
specific simulation code’s results on a particular problem; in the absence of such criteria, a 
process for acceptance is necessary.  These concepts are adapted from the notion of a “strong 
sense verification benchmark,” proffered by Oberkampf and Trucano [Obe07], and are intended 
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to reduce the ambiguity of verification problem statements and bolster the value of verification 
analyses. 
 
Here, the problem statement should include not only a mathematical description of the problem 
but also a discussion of the processes modeled (i.e., what the problem tests), the initial and 
boundary conditions, additional numerical information (e.g., convergence criteria used), the 
principal code features tested, and the nature of the test.  This latter element is addressed in 
[Obe07], with a set of different categories of benchmarks.  Kamm et al. [Kam08] provide 
examples of such problem statements.  
 
Given the complexity of many problems of interest, however, such problem descriptions may 
still not be definitive, i.e., there may remain unspecified choices in problem set-up that the code 
analyst must make. Nevertheless, such a description provides a starting points for setting up the 
problem as well as a touchstone against which one can compare descriptions of the “identical” 
verification problem, run by different analysts with different simulation codes on different 
platforms at different times.  In the written description and analysis of verification problems, it is 
imperative that researchers describe as thoroughly as possible the complete specification and set-
up of the problem (up to including the code input deck in the written report).  
 
Why is verification done? To make sure that a model in a code is implemented correctly. 
 
The outcome of code verification analyses provides hard evidence of mathematical 
consistency—or inconsistency—between the mathematical statements of the physics models and 
their discrete analogues as implemented with numerical algorithms in the simulation codes. The 
necessity of code verification must be emphasized.  In the absence of confirmatory verification 
evidence, “good agreement” of calculations with experimental data could be accidental, i.e., “the 
right answer for the wrong reasons.”  
 
A common confusion with regard to code verification is associated with software quality 
assurance, which is a vital, but primarily unrelated activity and discipline in its own right.  Code 
verification typically flourishes in a development culture focused on high quality software 
development, but good code verification practices are neither necessary nor sufficient for good 
SQA practices—and vice-versa.  Each area of expertise should be independently developed and 
supported, although the practice of each is mutually self-supporting. 
 
The purpose of scientific simulation software differs from that of much commercial software, 
which is often intended to provide exact solutions to problems that actually have exact solutions 
(e.g., spreadsheets) or to generate results for problems that have subjectively defined goals (e.g., 
image processing, word processors). Verification is needed for scientific simulation codes 
because that software is designed to produce approximate solutions to mathematical problems for 
which (i) the exact solution is not known and (ii) knowledge of the error is potentially as 
valuable as knowledge of the solution, per se. Due to these distinguishing and critical aspects of 
scientific simulation codes, software quality practices from the broader industry (e.g., regression 
testing) are necessary but not sufficient for high-consequence scientific simulation codes.  
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Verification analysis of scientific simulation codes is an example of the assessment of a complex 
system for which the systematic gathering of appropriate evidence is required.  While tests may 
demonstrate that software is manifestly incorrect, there is no clear-cut procedure with which to 
“prove” unambiguously that software behavior is, indeed, correct.  Thus, the process by which 
relevant verification evidence is generated and interpreted requires knowledge of the entire 
simulation and analysis chain. Such knowledge includes understanding of:   
• the system being simulated (e.g., the relevant physics, physics models, and these 
models’ representations in mathematical equations);  
• the nature of the simulation (including the algorithms used to obtain approximate 
solutions to the mathematical equations, these algorithms’ limitations, the associated numerical 
analysis, and the software implementation of those algorithms); and   
• the process by which the code results are analyzed in the verification process 
(including, e.g., theory, implementation, and interpretation of convergence analysis).   
This body of knowledge is both large and multi-faceted; consequently, the determination of 
appropriate of verification problems requires guidance from and consensus among experts in 
each of these fields. 
 
Decision makers and code analysts should bear in mind that simulation software represents 
intricate numerical algorithms coupled with a complicated hardware/system-software platform.  
Said another way, code users and their customers should recognize that simulation software is 
not a “physics engine” that generates instantiations of physical reality.  Hence, documented, 
quantitative verification analysis is a necessary component for developing code confidence and 
credibility.   
 
What is hard? The analytical structure of solutions is not always known.  The verification studies 
are quite tedious. 
 
The difficulties of verification are many and subtle.  The first issue for the practitioner to 
confront is typically the lack of general, complex and application-relevant analytical solutions.  
Generally speaking, analytical solutions are only available for simple problems with simple 
geometries, for simple physics, often with idealized (or singular) boundary/initial conditions.  
Even with relative simplicity, the analytical structure of exact solutions can be quite complex.  In 
many cases the evaluation of analytical solutions—in and of itself—is difficult and requires 
acute attention to software quality, numerical algorithms, convergence, and other details. 
 
Secondly, the conduct of verification is, frankly, fraught with tedium.  The code being verified 
must be run repeatedly is a controlled manner.  Many details such as mesh, time step, time at 
which results are stored, etc., must all be scrupulously attended to.  The results must be stored 
and compared in a compatible manner.  The analytical solution must be available in a manner 
consistent with the numerical solution, and the comparison must be computable.  The myriad 
bookkeeping details that are manifest in the activity require substantial discipline. 
 
The third issue is the interpretation of results from verification studies.  The correctness of the 
results depends upon the nature of the mathematical theory associated with both the governing 
equations and their numerical solution.  This theory often differs on the basis of solution 
character (i.e., smoothness), time, nonlinearity, approximation detail, computer implementation, 
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precision, etc., all of which must be known and accounted for.  It is often the case that 
mathematical results for numerical methods are asymptotic in nature, and the actual numerical 
solutions are not computed in the same asymptotic range.  This difference causes some degree of 
uncertainty in the results, which may or may not be important. 
 

CASL-U-2010-0023-000-a



 

 

3. VERIFICATION TECHNIQUE 
 
The workhorse technique for verification is systematic mesh refinement (or coarsening).  A 
fundamental expectation for a numerical method is the systematic reduction in solution error as 
the characteristic length scale associated with the mesh is reduced.  In the asymptotic limit where 
the mesh length scale approaches zero, the method should produce a rate of convergence equal to 
that defined by numerical analysis (often obtained with the aid of the Taylor series expansion).  
To conduct analysis using this technique, a sequence of grids with different intrinsic mesh scales 
are used to compute solutions and their associated errors.  The combination of errors and mesh 
scales can then be used to estimate the rate of convergence for the method in the code.  In order 
to estimate the convergence rate a minimum of two grids are necessary (giving two error 
estimates, one for each grid). 
 
Another tool used in verification are error estimators.  These methods are commonly derived in 
the finite element method (FEM) in solving elliptic partial differential equations.  The best-
known method is the Zienkiewicz-Zhu error estimator [Zie92].  One can use the error estimate 
constructively to drive adaptive mesh refinement, or to produce an estimate of the error on a 
given mesh.  While the error estimation is produced, this approach does not necessarily produce 
the sort of evidence basis for code correctness because the rate of convergence defined 
theoretically is not verified in the process. 
 
Another technique is the method of manufactured solutions (MMS)[Sal00,Roa02].  MMS 
bypasses the necessity of solving a problem with an analytical solution.  With MMS, a closed-
form of a solution is posited initially and, using the governing equations, a source term is derived 
that can be used by the code to “drive” the computed solution to the defined solution.  In this 
case, the other verification techniques can be utilized to evaluate errors, which can then be used 
to check for error magnitude and scale dependent behavior (i.e., convergence rate). 
 
Another method that FEM practitioners use for testing code correctness is the so-called patch test 
[Zie97]. In a real sense, the patch test is a necessary but not sufficient condition for code 
correctness.  The patch test usually involves a constant or linear solution to a simple, 
fundamental problem (such as the stress field in a rectangular domain with classic boundary 
conditions).  The linearity of the field should be exactly reproduced by linear finite elements.  A 
constant field fulfills the same criteria, but at a lower order.  The patch test does not prove the 
order of convergence for a method, but rather shows a completeness of approximation for a 
reduced set of solutions. 
 
Choice of Metrics 
 
Several metrics can be used to conduct code or calculation verification.  One seeks to evaluate 
the quantitative difference between two sets of numbers, where each set corresponds to some 
aspect of the solution. Generally speaking, one should employ the metric that follows naturally 
from the function space in which numerical analysis proofs of convergence are conducted.  
 
Practically speaking, for simple scalars (say, the value of some scalar property, e.g., temperature, 
at a particular location at a specified time), the absolute value of the difference between two 
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values is the obvious choice. This notion generalizes naturally to higher dimensional cases 
involving the difference between (discrete) function values from the computational mesh.  As 
examples, these values could be, e.g., a time series of temperature at a particular location (the 
relevant computational mesh being in time) or, say, the pressure field over a specified, fixed 
three-dimensional volume at a specified time (the relevant computational mesh being in space). 
In such cases, one often uses the familiar “p-norm” of functional and numerical analysis. The p-
norm of the function g is given by 
 

� 

 g  p  ≡  g(x) p  dx
a

b

∫⎛ 
⎝ 

⎞ 
⎠ 

1 p

. (1) 

 
For example, for finite volume methods applied to discontinuous functions, the use of the 1-norm 
is recommended, while, say, properties of inherently smooth functions are most appropriately 
measured in the energy or 2-norm.  It is can be enlightening to evaluate several norms, e.g., 1-, 2-
, and ∞-norms, where, following from the equation above, 
 

� 

 g  ∞  ≡  max
x ∈[a,b]

g(x)  . (2) 

 
In the following, we use the double-bar notation “||” without a subscript to denote any 
appropriate norm.  
  
Asymptotic Convergence Analysis 
 
The axiomatic premise of asymptotic convergence analysis is that the computed difference 
between the reference and computed solutions can be expanded in a series based on some 
measure of the discretization of the underlying equations.  Taking the spatial mesh as the obvious 
example, the ansatz for the error in a 1-D simulation is taken to be 
 

  

� 

 gref −  gcomp  =  A0 +  A1(Δx)α + o (Δx)α( )  . (3) 

 
In this relation, g ref is the reference solution, g comp is the computed solution, ∆x is some measure 
of the mesh-cell size, A0 is the zero-th order error, A1 is the first order error, and the notation 
“o((∆x)α)” denotes terms that approach zero faster than  (∆x)α  as  ∆x→0+.  For consistent 
numerical solutions, A0 should be identically zero; we take this to be the case in the following 
discussion.  For a consistent solution, the exponent α  of  ∆x  is the convergence rate:  α =1 
implies first-order convergence,  
α =2 implies second order convergence, etc.  
 
Assume that the calculation has been run on a “coarse” mesh (subscript c), characterized by ∆xc, 
which we hereafter also denote as ∆x.  The error ansatz implies: 
 

    

� 

 gref −  gc
comp  =  A1(Δx)α +. (4) 
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We further assume that we have computational results on a “fine” mesh ∆xf (subscript f), where 0 
< ∆xf < ∆xc with  ∆xc / ∆xf  ≡  σ  > 1. In this case, the error ansatz implies: 
 

    

� 

 gref −  gf
comp  =  σ −α A1(Δx)α +. (5) 

 
Manipulation of these two equations leads to the following explicit expressions for the quantities 
α and A1: 
 

  

� 

α  =  log gref −  gc
comp  −  log gref −  gf

comp[ ]   logσ  , (6) 

  

� 

A1  =   gref −  gc
comp   (Δx)α  . (7) 

 
These two equalities are the workhorse relations that provide a direct approach to convergence 
analysis as a means to evaluating the order of accuracy for code verification. 
 
In the case of calculation verification, one does not have an exact solution and, instead, turns to a 
finely zoned calculation to serve in place of the exact solution.  In this case, the convergence rate 
can be expressed as 
 

  

� 

α  =  log gf
comp −  gc

comp  −  log gf
comp −  gm

comp[ ]   logσ  , (8) 

 
where the subscript m here denotes values on a “medium” mesh, i.e., one for which  
0 < ∆xf < ∆xm < ∆xc  with  ∆xc / ∆xm  ≡  σ  > 1. 
 
 
Verification Subtleties 
 
There are several subtle but important—and, in some cases, open—issues associated with the 
estimation of the quantities mentioned above.  While the following topics may be considered by 
some to be arcane, they should be borne in mind by those devising and conducting verification 
analyses, as well as by code analysts. 
 
• Nondimensionalization  The above discussion of the error ansatz and the associated 
convergence parameters contain no assumptions regarding the dimensions of the associated 
variables.  Consequently, parameters in the resulting scaling relations (e.g., Eq. 4) may have 
inconsistent units.  One way to avoid this issue is to nondimensionalize all quantities prior to 
conducting such an analysis.  For example, one can choose representative quantities G and X 
with which to nondimensionalize the computed quantity g and the representative mesh scale ∆x: 
 

	  	  

� 

′ g  ≡  g G      and      Δ ′ x  ≡  Δ x X  . (9) 

 
The nondimensional error ansatz is posited to be 
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� 

 ′ g ref −  ′ g c
comp  =  A1(Δ ′ x )α +, (10) 

 
where all terms in this equation are now dimensionless.  In this case, care must be taken to 
nondimensionalize consistently throughout the analysis, and to properly dimensionalize results, 
e.g., if one were to use this relation to estimate errors at another mesh size.  
 
• Dimension  For problems in multiple space dimensions (e.g., 2-D Cartesian (x,y)), the spatial 
convergence analysis described above can be assumed to carry over directly, such that, e.g., the 
ansatz of Eq. 3 follows identically.  That is, one typically does not assume separate convergence 
rates in separate coordinates. This is a reasonable assumption in almost all cases; the exception is 
time-convergence, since the time-integration scheme for a PDE may be of different order than 
the spatial integrator.  For a more thorough discussion and examples of combined space-time 
convergence, see [Hem05, Tim06a] 
 
• Frame  Spatial convergence analysis is idealized to refer to a fixed mesh, i.e., the Eulerian 
frame.  Approaches have been taken to extend convergence analysis simplistically to the 
Lagrangian frame (e.g., [Kam03]).  More sophisticated approaches, however, are needed; for 
example, since the fundamental Lagrangian equations are discretized with respect to mass and 
not space, an error ansatz analogous to Eq. 3 with ∆x replaced by ∆m would be more faithful to 
the underlying formulation. 
 
• Non-uniform Meshes  The intention behind the expression “∆x” in Eq. 3 is that it is a 
meaningful measure of the characteristic length-scale of mesh cells of the discretized equations. 
If either adaptive mesh refinement (AMR) or an arbitrary Lagrangian-Eulerian (ALE) approach 
is used, however, such a quantity—if one exists—is likely to change during the course of a 
calculation. Again, straightforward approaches for non-uniform and AMR meshes have been 
examined (e.g., [Li05b]), but these are topics of open research. 
 
• Norm Evaluation  The expression for the norm in Eq. 1 is appropriate, e.g., for Cartesian 
geometries.  This term must be appropriately modified for non-Cartesian geometries.  For 
example, for 1-D spherically symmetric calculations, the integral of the norm is properly 
expressed as 
 

� 

 g  p  ≡  g(r) p  dV (r)
a

b

∫⎛ 
⎝ 

⎞ 
⎠ 

1 p

=  g(r) p  4πr2dr
a

b

∫⎛ 
⎝ 

⎞ 
⎠ 

1 p

. (11) 

 
In general, when evaluating the norm one must be mindful of the domain of the integral as well 
as any symmetries associated with the problem. 
 
• Norm Evaluation and Exact Solutions  The definition for the norm in Eq. 1 suggests a simple 
evaluation of this expression.  As previously suggested, in 1-D one might evaluate the norm as: 
 

  

� 

 gref −  gcomp  
1
 ≡  gex(x) −  gcomp(x)  dx

a

b

∫  ≈  gex(xi) −  gcomp(xi)  Δxi  .
i=1

N

∑ (12) 
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Such an expression, while notionally correct, can obscure important aspects of the computational 
algorithm. Finite volume discretizations, which are used in many Eulerian and Lagrangian 
algorithms, provide computed values gcomp(xi) that are not point values but are actually averages 
over the computational cell. Despite the associated inaccuracy, one often uses point-values of the 
reference solution and cell-averaged computed values in numerical evaluation of expressions 
such as Eq. 12.  Verification lore for the Riemann problem of 1-D hydrodynamics and numerical 
results with high-resolution numerical schemes for many calculations suggest that the 
discrepancy incurred by this assumption is small (say, that it does not affect the leading 
significant figure of the calculated convergence rate).  Rigorous numerical evidence with such a 
numerical scheme for the Cog-8 problem is given by Timmes et al. [Tim06b], who show that the 
leading digit of the convergence rate is the same for both point values and cell-averaged values, 
consistent with anecdotal notions. It is reasonable to anticipate that such results (i.e., that this 
discrepancy is small) may depend on the particular numerical scheme used. 
  
• Norm Evaluation and Interpolation on Different Meshes  The expression for the convergence 
rate α in the calculation verification (Eq. 8) implies a direct comparison of computed solutions 
on two different meshes. The analogous expression (Eq. 6) for code verification requires an 
indirect comparison of computed solutions on different meshes. To evaluate the differences of 
two calculations, a common mesh is required; this begs the question: should one extrapolate 
(“restrict”) fine-mesh values to the coarse mesh, or interpolate (“prolong”) coarse-mesh values 
onto the fine mesh?  Margolin and Shashkov [Mar08] provide a rationale for the former: “…by 
moving each of the simulation results to the coarsest mesh, we average out the smaller scales and 
eliminate them as a source of error in studying convergence, thus isolating the discretization 
error.”  The detailed manner by which one should move solutions between different meshes 
remains an open research area.  Particular attention should be paid to accurately interpolating 
solutions near discontinuities.  
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4. EXAMPLE — ANALYSIS OF A LINEAR ELASTIC TEST PROBLEM  
In this section, we discuss an example of code verification analysis.  The code in question is the 
Los Alamos National Laboratory RAGE code [Git08].  This code has been developed under the 
NNSA ASC program, and in accordance with modern SQA procedures.  The problem examined 
is the well-known Blake problem of solid dynamics, which describes the impulsively generated 
propagation of a spherically symmetric stress wave in a linearly elastic solid [Ald02, Bla52, 
Hut05, Sha42].  The written report for this analysis [Kam09] contains the analytical form of the 
exact solution together with RAGE input deck for this problem.  As discussed in that report, a set 
of five different discretizations were considered, with a total of 100, 200, 400, 800, 1600 
uniformly-spaced radial zones on a mesh over the domain 0 < r < 100 cm.  The computed 
pressure field is shown, together with the analytic solution, in Fig. 1. Specialized software was 
used to evaluate the appropriate metrics to compare numerical and analytical solutions, yielding 
a set of quantitative error estimates for the pressure on each mesh.  From these values, the rate of 
convergence for the pressure was determined and shown to lie between 0.6 and 0.8; these values 
were compared with the known convergence rate of unity for the RAGE pure hydrodynamics 
algorithm.  This was deemed to have passed the verification criterion for this problem.  
Additionally, these results led to the speculation that this discrepancy may due to way in which 
the impulsive boundary condition driving this problem was implemented, either in the code or 
the input deck.  This discrepancy highlights one of the difficulties of nontrivial code verification 
problems, viz., these problems often capture singular behavior and, therefore, require specialized 
initial or boundary conditions. This code verification analysis covers the fundamental 1D 
spherically symmetric hydrodynamics algorithm in the code, as well as the linear elastic response 
model and the pressure boundary condition.  
 

 
Figure 1.  Computed and analytic values of the pressure field at t=1.0 s for the Blake problem.  

The numbers in the upper left-hand corner correspond to the number of uniform radial zones on 
0 < r < 100 cm.  
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Figure 2.  The red symbols and line represent the relative error between exact and analytic 
solution (left) and inferred convergence rate (right) for the pressure calculations in Fig. 1.  
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5. DETAILED WORKFLOW 
 

Here, we expand on the details of the workflow.  The steps described below are by no means 
exhaustive, but rather define a standard workflow to be conducted by the code team (developers 
and testers).  Ideally, the code verification process should be conducted regularly (as well as on 
demand) so that incorrect implementations impacting mathematical correctness are detected as 
soon as possible.  The general consensus in software development is that the cost of bugs is 
minimized if they are detected as close as possible to their introduction.  To start, the verification 
workflow exists within a broader verification-validation-uncertainty quantification process, 
which is captured to some extent in Figure 3.  This figure depicts the “standard” view of V&V as 
an activity.  It is notable that the code verification is merely a single line on the left hand side of 
the diagram.   
 
This procedure assumes that the code team is using a well-defined software quality assurance 
(SQA) process, and the code verification is integrated with this activity.   Such SQA includes 
source code control, regression testing, and documentation, together with other project 
management activities.  For consistency and transparency, we recommend performing the code 
verification in the same manner and using the same type of tools as other SQA processes. 
 

1. Starting	  with	  an	  implementation	  (i.e.,	  code)	  that	  has	  passed	  the	  appropriate	  
level	  of	  SQA,	  choose	  the	  executable	  to	  be	  examined.	  	  Code	  verification	  is	  a	  
resource-‐intensive	  activity	  involving	  substantial	  effort	  to	  perform.	  	  Code	  verification	  
should	  be	  applied	  to	  the	  same	  version	  of	  the	  code	  that	  analysts	  would	  use	  for	  any	  
important	  application.	  	  The	  notion	  that	  verification	  and	  validation	  should	  be	  applied	  
to	  the	  same	  code	  is	  important	  to	  keep	  in	  mind.	  	  This	  process	  should	  be	  applied	  to	  the	  
specific	  version	  of	  the	  code	  used	  throughout	  the	  entire	  V&V	  UQ	  activity.	  
	  

2. Provide	  a	  complete	  analysis	  of	  the	  numerical	  method	  as	  implemented	  
including	  accuracy	  and	  stability	  properties.	  	  	  The	  analysis	  should	  be	  conducted	  
using	  any	  one	  of	  a	  variety	  of	  standard	  approaches.	  	  Most	  commonly,	  the	  Von	  
Neumann-‐Fourier	  method	  could	  be	  employed.	  	  For	  nonlinear	  systems,	  the	  method	  
of	  modified	  equation	  analysis	  can	  be	  used	  to	  define	  the	  expected	  rate	  and	  form	  of	  
convergence.	  	  	  The	  form	  and	  nature	  of	  the	  solution	  being	  sought	  can	  also	  influence	  
the	  expected	  behavior	  of	  the	  numerical	  solution.	  	  For	  example,	  if	  the	  solution	  is	  
discontinuous,	  the	  numerical	  solution	  will	  not	  achieve	  the	  same	  order	  of	  accuracy	  as	  
for	  a	  smooth	  solution.	  	  Finite	  element	  methods	  can	  be	  analyzed	  via	  other	  methods	  to	  
define	  the	  form	  and	  nature	  of	  the	  convergence	  (including	  the	  appropriate	  norm	  for	  
comparison).	  
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Figure 3.  The overall Verification & Validation Flowchart taken from the ASME guide on V&V 

for Solid Mechanics [Sch06].  This document only covers the loop on the upper left labeled 
“code verification”. 
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3. Select	  the	  analytical	  solution(s)	  for	  problems	  to	  be	  examined,	  and	  provide	  the	  
analytical	  solution	  in	  a	  form	  allowing	  direct	  comparison.	  	  Code	  verification	  
depends	  upon	  exact	  solutions	  to	  compute	  errors	  in	  numerical	  solutions	  (or	  “closed	  
form”	  solutions	  that	  can	  be	  evaluated	  to	  high	  precision).	  	  The	  determination	  of	  
analytical	  solutions	  is	  a	  difficult,	  the	  availability	  of	  such	  exact	  solutions	  is	  limited,	  
and	  the	  coding	  of	  the	  corresponding	  exact	  solution	  software	  can	  be	  time-‐consuming.	  	  
As	  an	  alternative,	  the	  method	  of	  manufactured	  solutions	  (MMS)	  [Knu03,Roy05]	  can	  
be	  used,	  in	  principle,	  to	  produce	  general	  solutions	  to	  “arbitrarily”	  complex	  physics.	  	  
MMS	  carries	  a	  concomitant	  complexity	  in	  software	  implementation	  that	  must	  be	  
managed	  within	  the	  confines	  of	  the	  SQA	  procedures.	  	  	  Finally,	  the	  means	  of	  
comparison	  between	  the	  analytical	  and	  numerical	  solutions	  must	  be	  provided	  
(generally	  in	  advance).	  

 
4. Produce	  the	  code	  input	  to	  model	  the	  problem(s)	  for	  which	  the	  code	  

verification	  will	  be	  performed.	  	  Each	  problem	  is	  run	  using	  the	  code’s	  standard	  
modeling	  interface	  as	  for	  any	  physical	  problem	  that	  would	  be	  modeled.	  	  It	  can	  be	  a	  
challenging	  task	  to	  generate	  code	  input	  that	  correctly	  specifies	  a	  code	  verification	  
problem;	  e.g.,	  special	  routines	  to	  generate	  particular	  initial	  or	  boundary	  conditions	  
that	  drive	  the	  problem	  may	  be	  required,	  and	  these	  routines	  must	  be	  correctly	  
interfaced	  to	  the	  code.	  	  It	  is	  advisable	  to	  consider	  the	  complexities	  and	  overhead	  
associated	  with	  such	  considerations	  prior	  to	  undertaking	  such	  code	  verification	  
analyses.	  	  
	  

5. Select	  the	  sequence	  of	  discretizations	  to	  be	  examined	  so	  each	  solution.	  	  
Verification	  necessarily	  involves	  convergence	  testing,	  which	  requires	  that	  the	  
problem	  be	  solved	  on	  multiple	  discrete	  representations	  (i.e.,	  grids	  or	  meshings).	  	  
This	  is	  consistent	  with	  notions	  associated	  with	  h-‐refinement,	  although	  other	  sorts	  of	  
discretization	  modification	  can	  be	  envisioned.	  	  The	  mathematical	  aspects	  of	  
verification	  are	  typically	  most	  conveniently	  carried	  out	  if	  the	  discretizations	  are	  
factors	  of	  two	  apart.	  
	  

6. Run	  the	  code	  and	  provide	  of	  means	  of	  producing	  appropriate	  metrics	  to	  
compare	  the	  numerical	  and	  analytical	  solution.	  	  The	  solutions	  to	  the	  problem	  are	  
computed	  on	  the	  discretizations.	  	  The	  solutions—both	  numerical	  and	  exact—are	  
compared	  through	  well-‐defined	  metrics.	  	  Most	  commonly	  and	  as	  discussed	  above,	  
these	  metrics	  take	  the	  form	  of	  norms	  (i.e.,	  p-‐norms	  such	  as	  the	  L2	  or	  energy	  norm).	  
The	  selection	  of	  metrics	  is	  inherently	  tied	  to	  the	  mathematics	  of	  the	  problem	  and	  its	  
numerical	  solution.	  The	  metrics	  can	  be	  computed	  over	  the	  entire	  domain,	  subsets	  of	  
the	  domain,	  surfaces	  or	  specific	  points.	  The	  domain	  over	  which	  the	  metrics	  are	  
evaluated	  and	  the	  analysis	  is	  conducted	  must	  be	  free	  of	  any	  spurious	  solution	  
features	  (due,	  e.g.,	  waves	  erroneously	  reflected	  from	  computational	  boundaries).	  	  	  
	  

7. Use	  the	  comparison	  to	  determine	  the	  sequence	  of	  errors	  in	  the	  discretizations.	  	  
Using	  the	  well-‐defined	  metrics	  for	  each	  solution,	  the	  error	  can	  be	  computed	  for	  each	  
discrete	  representation.	  	  Ideally,	  there	  will	  be	  a	  set	  of	  metrics	  available,	  providing	  a	  
more	  complete	  characterization	  of	  the	  problem	  and	  its	  solution.	  
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8. The	  error	  sequence	  allows	  the	  determination	  of	  the	  rate-of-convergence	  for	  

the	  method,	  which	  is	  compared	  to	  the	  theoretical	  rate.	  	  With	  a	  sequence	  of	  
errors	  in	  hand,	  the	  demonstrated	  convergence	  rate	  of	  the	  code	  for	  the	  problem	  is	  
estimated.	  	  The	  theoretical	  convergence	  rate	  of	  a	  numerical	  method	  is	  a	  key	  
property.	  	  Verification	  relies	  upon	  comparing	  this	  rate	  to	  the	  demonstrated	  rate	  of	  
convergence.	  	  Evidence	  supporting	  verification	  is	  provided	  when	  the	  demonstrated	  
convergence	  rate	  is	  consistent	  with	  the	  theoretical	  rate	  of	  convergence.	  	  This	  can	  be	  
a	  difficult	  inference	  to	  draw,	  because	  the	  theoretical	  rate	  of	  convergence	  is	  a	  limit	  
reached	  in	  an	  asymptotic	  sense,	  which	  cannot	  be	  reached	  in	  for	  any	  finite	  
discretization.	  	  As	  a	  consequence,	  there	  are	  unavoidable	  deviations	  from	  the	  
theoretical	  rate	  of	  convergence,	  to	  which	  judgment	  must	  be	  applied.	  
	  

9. Using	  the	  results,	  render	  an	  assessment	  of	  the	  method’s	  implementation	  
correctness.	  	  Based	  on	  the	  discrete	  solutions,	  errors,	  and	  convergence	  rate,	  a	  
decision	  on	  the	  correctness	  of	  a	  model	  can	  be	  rendered.	  	  This	  judgment	  is	  applied	  to	  
a	  code	  across	  the	  full	  suite	  of	  verification	  test	  problems.	  

 
a. The	  assessment	  can	  be	  positive,	  that	  is,	  the	  convergence	  rate	  is	  consistent	  

with	  the	  method’s	  expected	  accuracy.	  
b. The	  assessment	  can	  be	  negative,	  that	  is,	  the	  convergence	  rate	  is	  inconsistent	  

with	  the	  method’s	  expected	  accuracy.	  
c. The	  assessment	  can	  be	  inconclusive,	  that	  is,	  one	  cannot	  defensibly	  

demonstrate	  clearly	  uniform	  consistency	  or	  inconsistency	  with	  the	  method’s	  
expected	  accuracy.	  	  For	  example,	  the	  convergence	  rate	  is	  nearly	  the	  correct	  
rate,	  but	  the	  differences	  between	  the	  expected	  rate	  and	  the	  observed	  rate	  is	  
uncomfortably	  large,	  potentially	  indicating	  a	  problem.	  

	  
10. Examine	  the	  degree	  of	  coverage	  of	  features	  in	  an	  implementation	  by	  the	  

verification	  testing.	  	  Code	  verification	  is	  inherently	  limited	  in	  scope	  by	  being	  based	  
on	  the	  availability	  of	  analytical	  solutions.	  	  	  MMS	  can	  often	  help	  to	  mitigate	  this	  issue	  
to	  some	  extent.	  	  The	  intent	  of	  code	  verification	  is	  to	  cover	  the	  code’s	  capabilities	  as	  
broadly	  as	  possible.	  	  Consequently,	  the	  coverage	  of	  code	  features	  should	  be	  
documented	  and	  tracked	  [Ste05].	  

 
Figures 4a,b show the entire process in diagrams that conceptually expand the line for code 
verification in Figure 3.  We repeat our belief that this process should be repeatable and available 
on-demand.  As we noted in the introduction to this section, having the code verification is 
integrated with the ongoing SQA activity and tools can greatly facilitate this essential property.   
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Figure 4(a). The flowchart version of the list of activities is shown for code verification, which 

can be interpreted as an expansion of the simple expression of this activity. 
 

CASL-U-2010-0023-000-a



 

 

 
Figure 4(b). The flowchart version of the list of activities is shown for code verification, which 

can be interpreted as an expansion of the simple expression of this activity. 
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6. CONCLUSIONS AND RECOMMENDATIONS 
 
In this document, we have described the concept of verification, a well-defined process by which 
the correctness of the implementation of a numerical algorithm in scientific software can be 
evaluated.  We have focused on code verification, an analysis method that quantitatively 
compares the theoretical order of accuracy of a method with the empirical order of accuracy, 
which is estimated from error measurements based on code output and analytical (“exact’’) 
solutions.  We have provided a detailed workflow for conducting code verification.   
 
While this approach to verification is well codified and widely used, there remain details of these 
analyses that can be difficult to resolve.  Most verification cases encountered by the code 
developer will be standard; however, difficult cases almost always arise eventually.  Unless the 
analyst has chosen exceedingly simple problems, each particular verification problem will likely 
present its own challenges that will require insight, innovation, and determination on the part of 
the analyst to resolve.  Despite these obstacles, verification is a necessary part of the “due 
diligence” of a scientific code development project and an essential element in producing high 
quality code that can be used for high consequence analysis and decision-making. 
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