

L3:VUQ.VVDA.P1-1.04
James Kamm, Gregory Weirs

SNL
Completed: 12/30/10

CASL-U-2010-0023-000-a

SANDIA REPORT
SAND2010-7060P
Unlimited Release
September 2010

Code Verification Workflow in CASL

William J. Rider, James R. Kamm, and V. Gregory Weirs

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

CASL-U-2010-0023-000-a

2

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
 U.S. Department of Energy
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831

 Telephone: (865) 576-8401
 Facsimile: (865) 576-5728
 E-Mail: reports@adonis.osti.gov
 Online ordering: http://www.osti.gov/bridge

Available to the public from
 U.S. Department of Commerce
 National Technical Information Service
 5285 Port Royal Rd.
 Springfield, VA 22161

 Telephone: (800) 553-6847
 Facsimile: (703) 605-6900
 E-Mail: orders@ntis.fedworld.gov
 Online order: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

CASL-U-2010-0023-000-a

3

SAND2010-7060P
Unlimited Release
September 2010

Code Verification Workflow in CASL

William J. Rider, James R. Kamm, and V. Gregory Weirs
Computational Shock and MultiPhysics, Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 87185-MS0378

Abstract

Code verification is a well-defined process by which the correctness and accuracy of a software
implementation of a numerical algorithm can be evaluated. Solution verification is a related but
distinct process by which the discretization error is estimated in simulations of interest. In this
document a workflow for code verification is presented.

CASL-U-2010-0023-000-a

CASL-U-2010-0023-000-a

1. OVERVIEW

Code verification is a well-defined process by which the correctness and accuracy of a software
implementation of a numerical algorithm can be evaluated. Solution verification is a related but
distinct process by which the discretization error is estimated in simulations of interest. In this
document a workflow for code verification is presented.

Most numerical methods used to obtain approximate numerical solutions of continuum models
have a number of key properties. Among these characteristics is the order-of-accuracy (also
called the convergence rate), which is given by the exponent in the power law relating the
numerical truncation error to the value of the discret parameter. The most common approach to
code verification is to compare the theoretical rate of convergence of the numerical method to
the observed rate produced by an implementation of that method, to gauge the correctness of the
implementation.

The procedure by which to provide this measure of correctness is systematic mesh refinement (or
variation). The results of this approach are combined with error measurement to produce the
observed rate-of-convergence, which is compared with the ideal or theoretical rate-of-
convergence of the underlying algorithm. For code verification, the use of an analytical or exact
solution to a problem plays a fundamental role in the process by providing an unambiguous
fiducial solution.

In summary, the workflow for conducting code verification is the following:
1. Starting with an implementation (i.e., code) that has passed the appropriate level of SQA,
choose the executable to be examined.
2. Provide a complete analysis of the numerical method as implemented including accuracy
and stability properties.
3. Select the analytical solution(s) for problems to be examined, and provide the analytical
solution in a form that allows direct comparison with the numerical solutions and provide the
means for computing the errors in the numerical solution.
4. Produce the code input to model the problem(s).
5. Select the sequence of mesh discretizations to be examined for each solution.
6. Run the code and provide the means of producing appropriate metrics to evaluate the
difference between the numerical and analytical solutions.
7. Use the comparison to determine the sequence of errors corresponding to the various
discretizations.
8. The error sequence allows the determination of the rate-of-convergence for the method,
which is compared to the theoretical rate.
9. Using these results, render an assessment of the method’s implementation correctness.
10. Examine the degree of coverage of features in an implementation by the verification
testing.

CASL-U-2010-0023-000-a

In a modern code development environment, this process should be repeatable and available on-
demand.

The focus of this document is code verification, which is a necessary prerequisite for solution
verification, validation, and uncertainty quantification. These other assessment techniques are
only briefly introduced to distinguish them from code verification.

CASL-U-2010-0023-000-a

2. WHAT IS VERIFICATION?

There are different kinds of Verification:

• Code verification – comparing the results of a coded algorithm (i.e., instantiated in
software) with an analytical or exact (i.e., “closed form”) solution or highly accurate solution
obtained by some other means , for the purpose of assessing the code.
• Calculation or solution verification – using the demonstrated convergence
properties of the code to estimate numerical errors in solving the model, involving the evaluation
of results of the code alone.

It is notable that the credibility of calculation verification is predicated on producing error
estimates from a code that have passed appropriate and relevant code verification.

At its core, verification of scientific simulation software both quantifies numerical errors and
defines a rigorous basis for believing that quantification. Providing an error estimate for
complex problems falls under the purview of solution (or calculation) verification, while
providing the rigorous basis for such estimates is achieved with code verification. The overall
activity of verification is the combination of both code and solution verification.

• Software verification – checking for a correct functioning of the software system on
a particular platform.

Such software testing is a critical element of software development. The testing that is closest to
code development centers on software engineering techniques, such as unit testing and
regression testing, both of which address the correct functioning of software. These types of
testing use generic success metrics that apply to almost all classes of software. In contrast, code
and solution verification are assessment techniques for software that provides approximate
solutions, with metrics specialized to the particular type of algorithm.

There is persistent confusion of verification testing with regression testing: these are completely
different testing procedures with completely different goals. Regression testing is a software
engineering technique that assesses the robustness of software to frequent changes. Regression
tests reduce to a (typically large) collection of relatively simple problems that are executed at a
regular (typically frequent) time interval. Regression testing seeks principally to reduce the
amount of software rework that is created by the introduction of mistakes in software
modifications. This reduction is accomplished by comparing today’s code with yesterday’s code
via execution of the regression test suite. Thus, regression testing targets software stability, not
mathematical correctness.

At this point other popular forms of assessment are described, as is their relationship with code
verification and the workflow that is the topic of this document. Solution verification estimates
numerical errors for a problem of interest based on an assumed relationship between numerical
error and resolution (a measure of the discretization parameter); code verification tests whether
this assumption is satisfied.

CASL-U-2010-0023-000-a

Unlike verification, validation tests whether a model is a sufficiently accurate representation of
the physical processes in a particular problem. In scientific simulations the model refers to the
governing equations, which include initial conditions, boundary conditions, constitutive
relations, etc. To simulate essentially any nontrivial physical configuration, these equations must
be solved computationally, which depends on numerical algorithms, corresponding software
implementations, and appropriate use of that software. Therefore, validation entails comparisons
of approximate solutions of the governing equations (which are an imperfect representation of
the relevant physical processes) to experimental data (which also contain inaccuracies).
Quantitative comparison of experiment (having, e.g., physical and diagnostic uncertainties) with
simulations (having concomitant modeling, algorithmic, and solution errors) remains a
challenging undertaking. It is regular experimental practice to provide error bars showing the
degree of uncertainty in physical data, and solution verification can help provide estimates of the
numerical error in the simulations.

Every simulation requires a number of inputs to specify the problem to be solved, to choose
among various numerical methods and how they are to be applied, and to provide values for
parameters in specific material models. These values may not be known exactly, or may
represent some average value that depends on the particular situation. The process of identifying
and quantifying the effects of the uncertainty of these simulation inputs on the results of the
simulation is called uncertainty quantification . The most common way of estimating these
effects is to run a (preferably large) number of simulations, in which the values of the inputs are
taken from distributions, to determine the corresponding distribution of the results of interest.
Unlike code verification, solution verification, or validation, uncertainty quantification deals
with the sensitivity of simulation results to how the problem is specified, rather than how well
that problem is solved.

Numerical simulations are increasingly used to increase understanding, to “solve” problems, to
design devices, vehicles and buildings, and inform high-consequence decision makers. The
different assessment techniques address different ways numerical simulations can fail to provide
accurate information. Ultimately, only the combined application of all the techniques can provide
confidence that the accuracy of the numerical simulation process is adequate for a particular
scenario. In practice, code verification is the foundation upon which the other assessment
techniques rest. The premise of solution verification is that the code converges at a known rate as
the resolution is increased; code verification establishes that this is in fact the case. To compare
experimental results to code results, both the experimental and numerical errors must be
accurately quantified so they can be accounted for in the comparison. Validation relies on
solution verification to provide the numerical error, which in turn relies on code verification.
The process of uncertainty quantification accepts the model, in this case the code that produces
numerical simulations, as an input. Inferences drawn about the system that the model represents
are inherently limited by the accuracy of the model. Code verification ensures the model is
correctly implemented and underlies solution verification and validation that quantify the
accuracy of the model.

Code Verification

CASL-U-2010-0023-000-a

Who does verification? Code developers, mathematicians, and algorithm engineers

Complex simulation software cannot be proven to be mathematically correct. Consequently, the
accumulation of quantitative evidence remains the exclusive basis for inferring the mathematical
correctness. The practical view is that this evidence is accumulated over time. This accumulation
occurs throughout the on-going processes of code development as well as during the subsequent
code usage. Thus, the results of verification analyses are affected by the manner in which
software is generated and the proper specification/execution of the verification problem. While
the former is the purview of code developers and algorithm designers, responsibility for the latter
falls upon those who describe the verification problem both in documentation and in actual code
input. For those using a code to conduct analysis, their responsibility is to act mindfully
regarding the quality of the code, and the relevance of the testing to their problems of interest.
At best, they should act as advocates for quality control measures such as rigorous, extensive
verification because it supports any calculations where the code is used.

Verification evidence emerging from code development is generated by software engineering
processes applied during that development, and by the specific testing practices employed by the
development team. Code usage evidence is a more nuanced and diverse body of information that
emerges from a heterogeneous group of users. Testing executed under the umbrella of code
development is not restricted to the verification approaches discussed in this document. Unlike
other testing procedures applied by code developers (including, e.g., unit tests and the restricted
cases applied in regression testing), verification test problems also are relevant to code users.

Verification test suites can be implemented, managed, and applied by code developers just like
regression test suites. The major differences are: (i) the development and execution of
verification test suites takes more resources (people, computers, time); (ii) the time interval of
execution of a verification test suite will be different than for regression testing; and (iii) the
direct methods for comparing today’s regression test suite results versus yesterday’s baseline
should be replaced by greater human involvement in judging the quality of the verification tests
where possible. On the other hand, we believe that subjective judgment is ultimately always
associated with the quality of software at some fundamental level. For example, a verification
study rarely produces results that exactly produce the theoretical convergence rate; in fact, the
observed rates can vary greatly. The judgment of whether the result is close enough to
expectations remains a largely expert matter. Improvement of this state of affairs is a present
topic of research. This increased human element required to assess the execution of verification
tests emphasizes that an important value of verification tests is their use in engaging the user
community around a code.

What is done in verification? Compare code solutions with analytical solutions.

 To conduct a verification analysis, one must have (i) a clear statement of the problem with
sufficient information to run a computer simulation, (ii) an explanation of how the code result
and benchmark solution are to be evaluated, and (iii) a description of the acceptance criteria for a
specific simulation code’s results on a particular problem; in the absence of such criteria, a
process for acceptance is necessary. These concepts are adapted from the notion of a “strong
sense verification benchmark,” proffered by Oberkampf and Trucano [Obe07], and are intended

CASL-U-2010-0023-000-a

to reduce the ambiguity of verification problem statements and bolster the value of verification
analyses.

Here, the problem statement should include not only a mathematical description of the problem
but also a discussion of the processes modeled (i.e., what the problem tests), the initial and
boundary conditions, additional numerical information (e.g., convergence criteria used), the
principal code features tested, and the nature of the test. This latter element is addressed in
[Obe07], with a set of different categories of benchmarks. Kamm et al. [Kam08] provide
examples of such problem statements.

Given the complexity of many problems of interest, however, such problem descriptions may
still not be definitive, i.e., there may remain unspecified choices in problem set-up that the code
analyst must make. Nevertheless, such a description provides a starting points for setting up the
problem as well as a touchstone against which one can compare descriptions of the “identical”
verification problem, run by different analysts with different simulation codes on different
platforms at different times. In the written description and analysis of verification problems, it is
imperative that researchers describe as thoroughly as possible the complete specification and set-
up of the problem (up to including the code input deck in the written report).

Why is verification done? To make sure that a model in a code is implemented correctly.

The outcome of code verification analyses provides hard evidence of mathematical
consistency—or inconsistency—between the mathematical statements of the physics models and
their discrete analogues as implemented with numerical algorithms in the simulation codes. The
necessity of code verification must be emphasized. In the absence of confirmatory verification
evidence, “good agreement” of calculations with experimental data could be accidental, i.e., “the
right answer for the wrong reasons.”

A common confusion with regard to code verification is associated with software quality
assurance, which is a vital, but primarily unrelated activity and discipline in its own right. Code
verification typically flourishes in a development culture focused on high quality software
development, but good code verification practices are neither necessary nor sufficient for good
SQA practices—and vice-versa. Each area of expertise should be independently developed and
supported, although the practice of each is mutually self-supporting.

The purpose of scientific simulation software differs from that of much commercial software,
which is often intended to provide exact solutions to problems that actually have exact solutions
(e.g., spreadsheets) or to generate results for problems that have subjectively defined goals (e.g.,
image processing, word processors). Verification is needed for scientific simulation codes
because that software is designed to produce approximate solutions to mathematical problems for
which (i) the exact solution is not known and (ii) knowledge of the error is potentially as
valuable as knowledge of the solution, per se. Due to these distinguishing and critical aspects of
scientific simulation codes, software quality practices from the broader industry (e.g., regression
testing) are necessary but not sufficient for high-consequence scientific simulation codes.

CASL-U-2010-0023-000-a

Verification analysis of scientific simulation codes is an example of the assessment of a complex
system for which the systematic gathering of appropriate evidence is required. While tests may
demonstrate that software is manifestly incorrect, there is no clear-cut procedure with which to
“prove” unambiguously that software behavior is, indeed, correct. Thus, the process by which
relevant verification evidence is generated and interpreted requires knowledge of the entire
simulation and analysis chain. Such knowledge includes understanding of:
• the system being simulated (e.g., the relevant physics, physics models, and these
models’ representations in mathematical equations);
• the nature of the simulation (including the algorithms used to obtain approximate
solutions to the mathematical equations, these algorithms’ limitations, the associated numerical
analysis, and the software implementation of those algorithms); and
• the process by which the code results are analyzed in the verification process
(including, e.g., theory, implementation, and interpretation of convergence analysis).
This body of knowledge is both large and multi-faceted; consequently, the determination of
appropriate of verification problems requires guidance from and consensus among experts in
each of these fields.

Decision makers and code analysts should bear in mind that simulation software represents
intricate numerical algorithms coupled with a complicated hardware/system-software platform.
Said another way, code users and their customers should recognize that simulation software is
not a “physics engine” that generates instantiations of physical reality. Hence, documented,
quantitative verification analysis is a necessary component for developing code confidence and
credibility.

What is hard? The analytical structure of solutions is not always known. The verification studies
are quite tedious.

The difficulties of verification are many and subtle. The first issue for the practitioner to
confront is typically the lack of general, complex and application-relevant analytical solutions.
Generally speaking, analytical solutions are only available for simple problems with simple
geometries, for simple physics, often with idealized (or singular) boundary/initial conditions.
Even with relative simplicity, the analytical structure of exact solutions can be quite complex. In
many cases the evaluation of analytical solutions—in and of itself—is difficult and requires
acute attention to software quality, numerical algorithms, convergence, and other details.

Secondly, the conduct of verification is, frankly, fraught with tedium. The code being verified
must be run repeatedly is a controlled manner. Many details such as mesh, time step, time at
which results are stored, etc., must all be scrupulously attended to. The results must be stored
and compared in a compatible manner. The analytical solution must be available in a manner
consistent with the numerical solution, and the comparison must be computable. The myriad
bookkeeping details that are manifest in the activity require substantial discipline.

The third issue is the interpretation of results from verification studies. The correctness of the
results depends upon the nature of the mathematical theory associated with both the governing
equations and their numerical solution. This theory often differs on the basis of solution
character (i.e., smoothness), time, nonlinearity, approximation detail, computer implementation,

CASL-U-2010-0023-000-a

precision, etc., all of which must be known and accounted for. It is often the case that
mathematical results for numerical methods are asymptotic in nature, and the actual numerical
solutions are not computed in the same asymptotic range. This difference causes some degree of
uncertainty in the results, which may or may not be important.

CASL-U-2010-0023-000-a

3. VERIFICATION TECHNIQUE

The workhorse technique for verification is systematic mesh refinement (or coarsening). A
fundamental expectation for a numerical method is the systematic reduction in solution error as
the characteristic length scale associated with the mesh is reduced. In the asymptotic limit where
the mesh length scale approaches zero, the method should produce a rate of convergence equal to
that defined by numerical analysis (often obtained with the aid of the Taylor series expansion).
To conduct analysis using this technique, a sequence of grids with different intrinsic mesh scales
are used to compute solutions and their associated errors. The combination of errors and mesh
scales can then be used to estimate the rate of convergence for the method in the code. In order
to estimate the convergence rate a minimum of two grids are necessary (giving two error
estimates, one for each grid).

Another tool used in verification are error estimators. These methods are commonly derived in
the finite element method (FEM) in solving elliptic partial differential equations. The best-
known method is the Zienkiewicz-Zhu error estimator [Zie92]. One can use the error estimate
constructively to drive adaptive mesh refinement, or to produce an estimate of the error on a
given mesh. While the error estimation is produced, this approach does not necessarily produce
the sort of evidence basis for code correctness because the rate of convergence defined
theoretically is not verified in the process.

Another technique is the method of manufactured solutions (MMS)[Sal00,Roa02]. MMS
bypasses the necessity of solving a problem with an analytical solution. With MMS, a closed-
form of a solution is posited initially and, using the governing equations, a source term is derived
that can be used by the code to “drive” the computed solution to the defined solution. In this
case, the other verification techniques can be utilized to evaluate errors, which can then be used
to check for error magnitude and scale dependent behavior (i.e., convergence rate).

Another method that FEM practitioners use for testing code correctness is the so-called patch test
[Zie97]. In a real sense, the patch test is a necessary but not sufficient condition for code
correctness. The patch test usually involves a constant or linear solution to a simple,
fundamental problem (such as the stress field in a rectangular domain with classic boundary
conditions). The linearity of the field should be exactly reproduced by linear finite elements. A
constant field fulfills the same criteria, but at a lower order. The patch test does not prove the
order of convergence for a method, but rather shows a completeness of approximation for a
reduced set of solutions.

Choice of Metrics

Several metrics can be used to conduct code or calculation verification. One seeks to evaluate
the quantitative difference between two sets of numbers, where each set corresponds to some
aspect of the solution. Generally speaking, one should employ the metric that follows naturally
from the function space in which numerical analysis proofs of convergence are conducted.

Practically speaking, for simple scalars (say, the value of some scalar property, e.g., temperature,
at a particular location at a specified time), the absolute value of the difference between two

CASL-U-2010-0023-000-a

values is the obvious choice. This notion generalizes naturally to higher dimensional cases
involving the difference between (discrete) function values from the computational mesh. As
examples, these values could be, e.g., a time series of temperature at a particular location (the
relevant computational mesh being in time) or, say, the pressure field over a specified, fixed
three-dimensional volume at a specified time (the relevant computational mesh being in space).
In such cases, one often uses the familiar “p-norm” of functional and numerical analysis. The p-
norm of the function g is given by

�

 g p ≡ g(x) p dx
a

b

∫⎛
⎝

⎞
⎠

1 p

. (1)

For example, for finite volume methods applied to discontinuous functions, the use of the 1-norm
is recommended, while, say, properties of inherently smooth functions are most appropriately
measured in the energy or 2-norm. It is can be enlightening to evaluate several norms, e.g., 1-, 2-
, and ∞-norms, where, following from the equation above,

�

 g ∞ ≡ max
x ∈[a,b]

g(x) . (2)

In the following, we use the double-bar notation “||” without a subscript to denote any
appropriate norm.

Asymptotic Convergence Analysis

The axiomatic premise of asymptotic convergence analysis is that the computed difference
between the reference and computed solutions can be expanded in a series based on some
measure of the discretization of the underlying equations. Taking the spatial mesh as the obvious
example, the ansatz for the error in a 1-D simulation is taken to be

�

 gref − gcomp = A0 + A1(Δx)α + o (Δx)α() . (3)

In this relation, g ref is the reference solution, g comp is the computed solution, ∆x is some measure
of the mesh-cell size, A0 is the zero-th order error, A1 is the first order error, and the notation
“o((∆x)α)” denotes terms that approach zero faster than (∆x)α as ∆x→0+. For consistent
numerical solutions, A0 should be identically zero; we take this to be the case in the following
discussion. For a consistent solution, the exponent α of ∆x is the convergence rate: α =1
implies first-order convergence,
α =2 implies second order convergence, etc.

Assume that the calculation has been run on a “coarse” mesh (subscript c), characterized by ∆xc,
which we hereafter also denote as ∆x. The error ansatz implies:

�

 gref − gc
comp = A1(Δx)α +. (4)

CASL-U-2010-0023-000-a

We further assume that we have computational results on a “fine” mesh ∆xf (subscript f), where 0
< ∆xf < ∆xc with ∆xc / ∆xf ≡ σ > 1. In this case, the error ansatz implies:

�

 gref − gf
comp = σ −α A1(Δx)α +. (5)

Manipulation of these two equations leads to the following explicit expressions for the quantities
α and A1:

�

α = log gref − gc
comp − log gref − gf

comp[] logσ , (6)

�

A1 = gref − gc
comp (Δx)α . (7)

These two equalities are the workhorse relations that provide a direct approach to convergence
analysis as a means to evaluating the order of accuracy for code verification.

In the case of calculation verification, one does not have an exact solution and, instead, turns to a
finely zoned calculation to serve in place of the exact solution. In this case, the convergence rate
can be expressed as

�

α = log gf
comp − gc

comp − log gf
comp − gm

comp[] logσ , (8)

where the subscript m here denotes values on a “medium” mesh, i.e., one for which
0 < ∆xf < ∆xm < ∆xc with ∆xc / ∆xm ≡ σ > 1.

Verification Subtleties

There are several subtle but important—and, in some cases, open—issues associated with the
estimation of the quantities mentioned above. While the following topics may be considered by
some to be arcane, they should be borne in mind by those devising and conducting verification
analyses, as well as by code analysts.

• Nondimensionalization The above discussion of the error ansatz and the associated
convergence parameters contain no assumptions regarding the dimensions of the associated
variables. Consequently, parameters in the resulting scaling relations (e.g., Eq. 4) may have
inconsistent units. One way to avoid this issue is to nondimensionalize all quantities prior to
conducting such an analysis. For example, one can choose representative quantities G and X
with which to nondimensionalize the computed quantity g and the representative mesh scale ∆x:

	 	

�

′ g ≡ g G and Δ ′ x ≡ Δ x X . (9)

The nondimensional error ansatz is posited to be

CASL-U-2010-0023-000-a

�

 ′ g ref − ′ g c
comp = A1(Δ ′ x)α +, (10)

where all terms in this equation are now dimensionless. In this case, care must be taken to
nondimensionalize consistently throughout the analysis, and to properly dimensionalize results,
e.g., if one were to use this relation to estimate errors at another mesh size.

• Dimension For problems in multiple space dimensions (e.g., 2-D Cartesian (x,y)), the spatial
convergence analysis described above can be assumed to carry over directly, such that, e.g., the
ansatz of Eq. 3 follows identically. That is, one typically does not assume separate convergence
rates in separate coordinates. This is a reasonable assumption in almost all cases; the exception is
time-convergence, since the time-integration scheme for a PDE may be of different order than
the spatial integrator. For a more thorough discussion and examples of combined space-time
convergence, see [Hem05, Tim06a]

• Frame Spatial convergence analysis is idealized to refer to a fixed mesh, i.e., the Eulerian
frame. Approaches have been taken to extend convergence analysis simplistically to the
Lagrangian frame (e.g., [Kam03]). More sophisticated approaches, however, are needed; for
example, since the fundamental Lagrangian equations are discretized with respect to mass and
not space, an error ansatz analogous to Eq. 3 with ∆x replaced by ∆m would be more faithful to
the underlying formulation.

• Non-uniform Meshes The intention behind the expression “∆x” in Eq. 3 is that it is a
meaningful measure of the characteristic length-scale of mesh cells of the discretized equations.
If either adaptive mesh refinement (AMR) or an arbitrary Lagrangian-Eulerian (ALE) approach
is used, however, such a quantity—if one exists—is likely to change during the course of a
calculation. Again, straightforward approaches for non-uniform and AMR meshes have been
examined (e.g., [Li05b]), but these are topics of open research.

• Norm Evaluation The expression for the norm in Eq. 1 is appropriate, e.g., for Cartesian
geometries. This term must be appropriately modified for non-Cartesian geometries. For
example, for 1-D spherically symmetric calculations, the integral of the norm is properly
expressed as

�

 g p ≡ g(r) p dV (r)
a

b

∫⎛
⎝

⎞
⎠

1 p

= g(r) p 4πr2dr
a

b

∫⎛
⎝

⎞
⎠

1 p

. (11)

In general, when evaluating the norm one must be mindful of the domain of the integral as well
as any symmetries associated with the problem.

• Norm Evaluation and Exact Solutions The definition for the norm in Eq. 1 suggests a simple
evaluation of this expression. As previously suggested, in 1-D one might evaluate the norm as:

�

 gref − gcomp
1
 ≡ gex(x) − gcomp(x) dx

a

b

∫ ≈ gex(xi) − gcomp(xi) Δxi .
i=1

N

∑ (12)

CASL-U-2010-0023-000-a

Such an expression, while notionally correct, can obscure important aspects of the computational
algorithm. Finite volume discretizations, which are used in many Eulerian and Lagrangian
algorithms, provide computed values gcomp(xi) that are not point values but are actually averages
over the computational cell. Despite the associated inaccuracy, one often uses point-values of the
reference solution and cell-averaged computed values in numerical evaluation of expressions
such as Eq. 12. Verification lore for the Riemann problem of 1-D hydrodynamics and numerical
results with high-resolution numerical schemes for many calculations suggest that the
discrepancy incurred by this assumption is small (say, that it does not affect the leading
significant figure of the calculated convergence rate). Rigorous numerical evidence with such a
numerical scheme for the Cog-8 problem is given by Timmes et al. [Tim06b], who show that the
leading digit of the convergence rate is the same for both point values and cell-averaged values,
consistent with anecdotal notions. It is reasonable to anticipate that such results (i.e., that this
discrepancy is small) may depend on the particular numerical scheme used.

• Norm Evaluation and Interpolation on Different Meshes The expression for the convergence
rate α in the calculation verification (Eq. 8) implies a direct comparison of computed solutions
on two different meshes. The analogous expression (Eq. 6) for code verification requires an
indirect comparison of computed solutions on different meshes. To evaluate the differences of
two calculations, a common mesh is required; this begs the question: should one extrapolate
(“restrict”) fine-mesh values to the coarse mesh, or interpolate (“prolong”) coarse-mesh values
onto the fine mesh? Margolin and Shashkov [Mar08] provide a rationale for the former: “…by
moving each of the simulation results to the coarsest mesh, we average out the smaller scales and
eliminate them as a source of error in studying convergence, thus isolating the discretization
error.” The detailed manner by which one should move solutions between different meshes
remains an open research area. Particular attention should be paid to accurately interpolating
solutions near discontinuities.

CASL-U-2010-0023-000-a

CASL-U-2010-0023-000-a

4. EXAMPLE — ANALYSIS OF A LINEAR ELASTIC TEST PROBLEM
In this section, we discuss an example of code verification analysis. The code in question is the
Los Alamos National Laboratory RAGE code [Git08]. This code has been developed under the
NNSA ASC program, and in accordance with modern SQA procedures. The problem examined
is the well-known Blake problem of solid dynamics, which describes the impulsively generated
propagation of a spherically symmetric stress wave in a linearly elastic solid [Ald02, Bla52,
Hut05, Sha42]. The written report for this analysis [Kam09] contains the analytical form of the
exact solution together with RAGE input deck for this problem. As discussed in that report, a set
of five different discretizations were considered, with a total of 100, 200, 400, 800, 1600
uniformly-spaced radial zones on a mesh over the domain 0 < r < 100 cm. The computed
pressure field is shown, together with the analytic solution, in Fig. 1. Specialized software was
used to evaluate the appropriate metrics to compare numerical and analytical solutions, yielding
a set of quantitative error estimates for the pressure on each mesh. From these values, the rate of
convergence for the pressure was determined and shown to lie between 0.6 and 0.8; these values
were compared with the known convergence rate of unity for the RAGE pure hydrodynamics
algorithm. This was deemed to have passed the verification criterion for this problem.
Additionally, these results led to the speculation that this discrepancy may due to way in which
the impulsive boundary condition driving this problem was implemented, either in the code or
the input deck. This discrepancy highlights one of the difficulties of nontrivial code verification
problems, viz., these problems often capture singular behavior and, therefore, require specialized
initial or boundary conditions. This code verification analysis covers the fundamental 1D
spherically symmetric hydrodynamics algorithm in the code, as well as the linear elastic response
model and the pressure boundary condition.

Figure 1. Computed and analytic values of the pressure field at t=1.0 s for the Blake problem.

The numbers in the upper left-hand corner correspond to the number of uniform radial zones on
0 < r < 100 cm.

CASL-U-2010-0023-000-a

Figure 2. The red symbols and line represent the relative error between exact and analytic
solution (left) and inferred convergence rate (right) for the pressure calculations in Fig. 1.

CASL-U-2010-0023-000-a

5. DETAILED WORKFLOW

Here, we expand on the details of the workflow. The steps described below are by no means
exhaustive, but rather define a standard workflow to be conducted by the code team (developers
and testers). Ideally, the code verification process should be conducted regularly (as well as on
demand) so that incorrect implementations impacting mathematical correctness are detected as
soon as possible. The general consensus in software development is that the cost of bugs is
minimized if they are detected as close as possible to their introduction. To start, the verification
workflow exists within a broader verification-validation-uncertainty quantification process,
which is captured to some extent in Figure 3. This figure depicts the “standard” view of V&V as
an activity. It is notable that the code verification is merely a single line on the left hand side of
the diagram.

This procedure assumes that the code team is using a well-defined software quality assurance
(SQA) process, and the code verification is integrated with this activity. Such SQA includes
source code control, regression testing, and documentation, together with other project
management activities. For consistency and transparency, we recommend performing the code
verification in the same manner and using the same type of tools as other SQA processes.

1. Starting	 with	 an	 implementation	 (i.e.,	 code)	 that	 has	 passed	 the	 appropriate	
level	 of	 SQA,	 choose	 the	 executable	 to	 be	 examined.	 	 Code	 verification	 is	 a	
resource-‐intensive	 activity	 involving	 substantial	 effort	 to	 perform.	 	 Code	 verification	
should	 be	 applied	 to	 the	 same	 version	 of	 the	 code	 that	 analysts	 would	 use	 for	 any	
important	 application.	 	 The	 notion	 that	 verification	 and	 validation	 should	 be	 applied	
to	 the	 same	 code	 is	 important	 to	 keep	 in	 mind.	 	 This	 process	 should	 be	 applied	 to	 the	
specific	 version	 of	 the	 code	 used	 throughout	 the	 entire	 V&V	 UQ	 activity.	
	

2. Provide	 a	 complete	 analysis	 of	 the	 numerical	 method	 as	 implemented	
including	 accuracy	 and	 stability	 properties.	 	 	 The	 analysis	 should	 be	 conducted	
using	 any	 one	 of	 a	 variety	 of	 standard	 approaches.	 	 Most	 commonly,	 the	 Von	
Neumann-‐Fourier	 method	 could	 be	 employed.	 	 For	 nonlinear	 systems,	 the	 method	
of	 modified	 equation	 analysis	 can	 be	 used	 to	 define	 the	 expected	 rate	 and	 form	 of	
convergence.	 	 	 The	 form	 and	 nature	 of	 the	 solution	 being	 sought	 can	 also	 influence	
the	 expected	 behavior	 of	 the	 numerical	 solution.	 	 For	 example,	 if	 the	 solution	 is	
discontinuous,	 the	 numerical	 solution	 will	 not	 achieve	 the	 same	 order	 of	 accuracy	 as	
for	 a	 smooth	 solution.	 	 Finite	 element	 methods	 can	 be	 analyzed	 via	 other	 methods	 to	
define	 the	 form	 and	 nature	 of	 the	 convergence	 (including	 the	 appropriate	 norm	 for	
comparison).	

CASL-U-2010-0023-000-a

Figure 3. The overall Verification & Validation Flowchart taken from the ASME guide on V&V

for Solid Mechanics [Sch06]. This document only covers the loop on the upper left labeled
“code verification”.

CASL-U-2010-0023-000-a

3. Select	 the	 analytical	 solution(s)	 for	 problems	 to	 be	 examined,	 and	 provide	 the	
analytical	 solution	 in	 a	 form	 allowing	 direct	 comparison.	 	 Code	 verification	
depends	 upon	 exact	 solutions	 to	 compute	 errors	 in	 numerical	 solutions	 (or	 “closed	
form”	 solutions	 that	 can	 be	 evaluated	 to	 high	 precision).	 	 The	 determination	 of	
analytical	 solutions	 is	 a	 difficult,	 the	 availability	 of	 such	 exact	 solutions	 is	 limited,	
and	 the	 coding	 of	 the	 corresponding	 exact	 solution	 software	 can	 be	 time-‐consuming.	 	
As	 an	 alternative,	 the	 method	 of	 manufactured	 solutions	 (MMS)	 [Knu03,Roy05]	 can	
be	 used,	 in	 principle,	 to	 produce	 general	 solutions	 to	 “arbitrarily”	 complex	 physics.	 	
MMS	 carries	 a	 concomitant	 complexity	 in	 software	 implementation	 that	 must	 be	
managed	 within	 the	 confines	 of	 the	 SQA	 procedures.	 	 	 Finally,	 the	 means	 of	
comparison	 between	 the	 analytical	 and	 numerical	 solutions	 must	 be	 provided	
(generally	 in	 advance).	

4. Produce	 the	 code	 input	 to	 model	 the	 problem(s)	 for	 which	 the	 code	

verification	 will	 be	 performed.	 	 Each	 problem	 is	 run	 using	 the	 code’s	 standard	
modeling	 interface	 as	 for	 any	 physical	 problem	 that	 would	 be	 modeled.	 	 It	 can	 be	 a	
challenging	 task	 to	 generate	 code	 input	 that	 correctly	 specifies	 a	 code	 verification	
problem;	 e.g.,	 special	 routines	 to	 generate	 particular	 initial	 or	 boundary	 conditions	
that	 drive	 the	 problem	 may	 be	 required,	 and	 these	 routines	 must	 be	 correctly	
interfaced	 to	 the	 code.	 	 It	 is	 advisable	 to	 consider	 the	 complexities	 and	 overhead	
associated	 with	 such	 considerations	 prior	 to	 undertaking	 such	 code	 verification	
analyses.	 	
	

5. Select	 the	 sequence	 of	 discretizations	 to	 be	 examined	 so	 each	 solution.	 	
Verification	 necessarily	 involves	 convergence	 testing,	 which	 requires	 that	 the	
problem	 be	 solved	 on	 multiple	 discrete	 representations	 (i.e.,	 grids	 or	 meshings).	 	
This	 is	 consistent	 with	 notions	 associated	 with	 h-‐refinement,	 although	 other	 sorts	 of	
discretization	 modification	 can	 be	 envisioned.	 	 The	 mathematical	 aspects	 of	
verification	 are	 typically	 most	 conveniently	 carried	 out	 if	 the	 discretizations	 are	
factors	 of	 two	 apart.	
	

6. Run	 the	 code	 and	 provide	 of	 means	 of	 producing	 appropriate	 metrics	 to	
compare	 the	 numerical	 and	 analytical	 solution.	 	 The	 solutions	 to	 the	 problem	 are	
computed	 on	 the	 discretizations.	 	 The	 solutions—both	 numerical	 and	 exact—are	
compared	 through	 well-‐defined	 metrics.	 	 Most	 commonly	 and	 as	 discussed	 above,	
these	 metrics	 take	 the	 form	 of	 norms	 (i.e.,	 p-‐norms	 such	 as	 the	 L2	 or	 energy	 norm).	
The	 selection	 of	 metrics	 is	 inherently	 tied	 to	 the	 mathematics	 of	 the	 problem	 and	 its	
numerical	 solution.	 The	 metrics	 can	 be	 computed	 over	 the	 entire	 domain,	 subsets	 of	
the	 domain,	 surfaces	 or	 specific	 points.	 The	 domain	 over	 which	 the	 metrics	 are	
evaluated	 and	 the	 analysis	 is	 conducted	 must	 be	 free	 of	 any	 spurious	 solution	
features	 (due,	 e.g.,	 waves	 erroneously	 reflected	 from	 computational	 boundaries).	 	 	
	

7. Use	 the	 comparison	 to	 determine	 the	 sequence	 of	 errors	 in	 the	 discretizations.	 	
Using	 the	 well-‐defined	 metrics	 for	 each	 solution,	 the	 error	 can	 be	 computed	 for	 each	
discrete	 representation.	 	 Ideally,	 there	 will	 be	 a	 set	 of	 metrics	 available,	 providing	 a	
more	 complete	 characterization	 of	 the	 problem	 and	 its	 solution.	

CASL-U-2010-0023-000-a

	
8. The	 error	 sequence	 allows	 the	 determination	 of	 the	 rate-of-convergence	 for	

the	 method,	 which	 is	 compared	 to	 the	 theoretical	 rate.	 	 With	 a	 sequence	 of	
errors	 in	 hand,	 the	 demonstrated	 convergence	 rate	 of	 the	 code	 for	 the	 problem	 is	
estimated.	 	 The	 theoretical	 convergence	 rate	 of	 a	 numerical	 method	 is	 a	 key	
property.	 	 Verification	 relies	 upon	 comparing	 this	 rate	 to	 the	 demonstrated	 rate	 of	
convergence.	 	 Evidence	 supporting	 verification	 is	 provided	 when	 the	 demonstrated	
convergence	 rate	 is	 consistent	 with	 the	 theoretical	 rate	 of	 convergence.	 	 This	 can	 be	
a	 difficult	 inference	 to	 draw,	 because	 the	 theoretical	 rate	 of	 convergence	 is	 a	 limit	
reached	 in	 an	 asymptotic	 sense,	 which	 cannot	 be	 reached	 in	 for	 any	 finite	
discretization.	 	 As	 a	 consequence,	 there	 are	 unavoidable	 deviations	 from	 the	
theoretical	 rate	 of	 convergence,	 to	 which	 judgment	 must	 be	 applied.	
	

9. Using	 the	 results,	 render	 an	 assessment	 of	 the	 method’s	 implementation	
correctness.	 	 Based	 on	 the	 discrete	 solutions,	 errors,	 and	 convergence	 rate,	 a	
decision	 on	 the	 correctness	 of	 a	 model	 can	 be	 rendered.	 	 This	 judgment	 is	 applied	 to	
a	 code	 across	 the	 full	 suite	 of	 verification	 test	 problems.	

a. The	 assessment	 can	 be	 positive,	 that	 is,	 the	 convergence	 rate	 is	 consistent	

with	 the	 method’s	 expected	 accuracy.	
b. The	 assessment	 can	 be	 negative,	 that	 is,	 the	 convergence	 rate	 is	 inconsistent	

with	 the	 method’s	 expected	 accuracy.	
c. The	 assessment	 can	 be	 inconclusive,	 that	 is,	 one	 cannot	 defensibly	

demonstrate	 clearly	 uniform	 consistency	 or	 inconsistency	 with	 the	 method’s	
expected	 accuracy.	 	 For	 example,	 the	 convergence	 rate	 is	 nearly	 the	 correct	
rate,	 but	 the	 differences	 between	 the	 expected	 rate	 and	 the	 observed	 rate	 is	
uncomfortably	 large,	 potentially	 indicating	 a	 problem.	

	
10. Examine	 the	 degree	 of	 coverage	 of	 features	 in	 an	 implementation	 by	 the	

verification	 testing.	 	 Code	 verification	 is	 inherently	 limited	 in	 scope	 by	 being	 based	
on	 the	 availability	 of	 analytical	 solutions.	 	 	 MMS	 can	 often	 help	 to	 mitigate	 this	 issue	
to	 some	 extent.	 	 The	 intent	 of	 code	 verification	 is	 to	 cover	 the	 code’s	 capabilities	 as	
broadly	 as	 possible.	 	 Consequently,	 the	 coverage	 of	 code	 features	 should	 be	
documented	 and	 tracked	 [Ste05].	

Figures 4a,b show the entire process in diagrams that conceptually expand the line for code
verification in Figure 3. We repeat our belief that this process should be repeatable and available
on-demand. As we noted in the introduction to this section, having the code verification is
integrated with the ongoing SQA activity and tools can greatly facilitate this essential property.

CASL-U-2010-0023-000-a

Figure 4(a). The flowchart version of the list of activities is shown for code verification, which

can be interpreted as an expansion of the simple expression of this activity.

CASL-U-2010-0023-000-a

Figure 4(b). The flowchart version of the list of activities is shown for code verification, which

can be interpreted as an expansion of the simple expression of this activity.

CASL-U-2010-0023-000-a

CASL-U-2010-0023-000-a

6. CONCLUSIONS AND RECOMMENDATIONS

In this document, we have described the concept of verification, a well-defined process by which
the correctness of the implementation of a numerical algorithm in scientific software can be
evaluated. We have focused on code verification, an analysis method that quantitatively
compares the theoretical order of accuracy of a method with the empirical order of accuracy,
which is estimated from error measurements based on code output and analytical (“exact’’)
solutions. We have provided a detailed workflow for conducting code verification.

While this approach to verification is well codified and widely used, there remain details of these
analyses that can be difficult to resolve. Most verification cases encountered by the code
developer will be standard; however, difficult cases almost always arise eventually. Unless the
analyst has chosen exceedingly simple problems, each particular verification problem will likely
present its own challenges that will require insight, innovation, and determination on the part of
the analyst to resolve. Despite these obstacles, verification is a necessary part of the “due
diligence” of a scientific code development project and an essential element in producing high
quality code that can be used for high consequence analysis and decision-making.

CASL-U-2010-0023-000-a

CASL-U-2010-0023-000-a

7. REFERENCES

[Ald02] Aldridge, D. F., Elastic Wave Radiation from a Pressurized Spherical Cavity, Sandia

National Laboratories Report SAND2002-1882 (2002).
[Bla52] Blake, F. G., “Spherical Wave Propagation in Solid Media,” J. Acoust. Soc. Am., 24,

pp. 211–215 (1952).
[Bro06] Brock, J. S., Kamm, J. R., Rider, W. J., Brandon, S. T., Woodward, C., Knupp, P., and

Trucano, T. G., Verification Test Suite for Physics Simulation Codes, Los Alamos
National Laboratory report LA-UR-06-8421.

[Fic74] Fickett, W., and Rivard, W. C., Test Problems for Hydrocodes, Los Alamos Scientific
Laboratory report LA-5479 (1974).

[Git08] Gittings, M., Weaver, R., Clover, M., Betlach, T., Byrne, N., Coker, R., Dendy, E.,
Hueckstaedt, R., New, K., Oakes, W. R., Ranta, D., and Stefan, R., “The RAGE
radiation-hydrodynamics code,” Comput. Sci. Disc. , 1, p. 015005 ff., (2008).

[Hem05] Hemez, F. M., Non-Linear Error Ansatz Models for Solution Verification in
Computational Physics, Los Alamos National Laboratory report LA-UR-05-8228
(2005).

[Hut05] Hutchens, G. J., An Analysis of the Blake Problem, Los Alamos National Laboratory
Report LA-UR-05-8738 (2005).

[Kam03] Kamm, J., Brock, J., Rousculp, C., and Rider, W., Verification of an ASCI Shavano
Project Hydrodynamics Algorithm, Los Alamos National Laboratory report LA-UR-
03-6999 (2003).

[Kam08] Kamm, J. R., Brock, J. S., Brandon, S. T., Cotrell, D. L., Johnson, B., Knupp, P.,
Rider, W. J., Trucano, T. G., and Weirs, V. G., “Enhanced Verification Test Suite for
Physics Simulation Codes,” Los Alamos National Laboratory report LA-14379,
Lawrence Livermore National Laboratory report LLNL-TR-411291, Sandia National
Laboratories report SAND2008-7813 (2008).

[Kam09] Kamm, J. R, Ankeny, L. A., “Analysis of the Blake Problem with RAGE,” Los
Alamos National Laboratory report, LA-UR-09-01255 (2009).

[Knu03] Knupp, P., and Salari, K., Verification of Computer Codes in Computational Science
and Engineering, Chapman & Hall/CRC, Boca Raton, FL (2003).

[Knu07] Knupp, P., Ober, C., and Bond, R., “Measuring Progress in Order-Verification within
Software Development Projects,” Engrng. Comp. 23, pp. 283–294 (2007).

[Li05b] Li, S., Rider, W. J., and Shashkov, M. J., “Two-Dimensional Convergence Study for
Problems with Exact Solution: Uniform and Adaptive Grids,” Los Alamos National
Laboratory report LA-UR-05-7985 (2005).

[Maj77] Majda, A., and Osher, S., “Propagation of error into regions of smoothness for
accurate difference approximations to hyperbolic equations,” Comm. Pure Appl. Math.
30, pp. 671–705 (1977).

[Mar08] Margolin, L. G., and Shashkov, M. J., “Finite volume methods and the equations of
finite scale: A mimetic approach,” Int. J. Num. Meth. Fluids 56, pp. 991–1002 (2008).

[Obe07] Oberkampf, W. L., and Trucano, T. G., “Verification and Validation Benchmarks,”
Nuclear Design and Engineering 23, pp. 716–743 (2007); also available as Sandia
National Laboratories report SAND2007-0853 (2007).

[Roa02] Roache, P., “Code Verification by the Method of Manufactured Solutions,” J. Fluids
Engrng 124, pp. 4–10 (2002).

CASL-U-2010-0023-000-a

[Roa04] Roache, P., “Building PDE Codes to be Verifiable and Validatable,” Comput. Sci.
Engrng. 6, pp. 30–38 (2004).

[Roy05] Roy, C. J., "Review of Code and Solution Verification Procedures for Computational
Simulation", J. Comput. Phys. 205, pp. 131–156 (2005).

[Sal00] Salari, K., and Knupp, P., “Code Verification by the Method of Manufactured Solutions,”
SAND2000-14444, June 2000.

[Sch06] Schwer, L. E. “An Overview of the PTC 60 / V&V 10 Guide for Verification and
Validation in Computational Solid Mechanics,” Reprint by ASME.

[Sha42] Sharpe, J. A., “The Production of Elastic Waves by Explosion Pressures. I. Theory and
Empirical Field Observations,” Geophysics, 7, pp. 144–154 (1942).

[Ste05] Stewart, J. W., “Measures of Progress in Verification,” SAND2005-4021P, (2005).
[Tim06a] Timmes, F.X., Fryxell, B., and Hrbek, G. M., Spatial-Temporal Convergence

Properties of the Tri-Lab Verification Test Suite in 1D for Code Project A, Los
Alamos National Laboratory report LA-UR-06-6444.

[Tim06b] Timmes, F. X., Fryxell, B., and Hrbek, G. M., Two- and Three-Dimensional Properties
of the Tri-Lab Verification Test Suite for Code Project A, Los Alamos National
Laboratory report LA-UR-06-6697.

[Tru03] Trucano, T. G., Pilch, M., Oberkampf, W. L., “On the Role of Code Comparisons in
Verification and Validation,” Sandia National Laboratories report SAND2003-2752
(2003).

[Tru06] Trucano, T. G., Swiler, L. P., Igusa, T., Oberkampf, W. L., and Pilch, M.,
“Calibration, validation, and sensitivity analysis: What’s what,” Reliab. Engrng. Syst.
Safety 92, pp. 1331–1357 (2006).

[Zie92] Zienkiewicz, O. C., and Zhu, J. Z., “The superconvergent patch recovery and a posteriori
error estimates. Part 2: Error estimates and adaptivity,” Int. J. Num. Meth. Eng., 33,
pp. 1356-1382, (1992).

[Zie97] Zienkiewicz, O. C., and Taylor, R. L., The finite element patch test revisited a computer
test for convergence, validation and error estimates,” Comp. Meth. Appl. Mech. Eng.,
149, pp. 223-254, (1996).

CASL-U-2010-0023-000-a

CASL-U-2010-0023-000-a

	VUQ_VVDA_P1-1.04_v01_Coversheet.pdf
	CASL-U-2010-0023-000-a

