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Repeated measurements of the same physical quantity yield values that differ from each other, 

as well as from the true but unknown value of that quantity. This variation in results is due to 

experimental errors, imperfect instruments, and imperfectly known calibration standards. 

Hence, around any reported experimental value, there always exists a range of values that 

may also be plausibly representative of the true value. In turn, this means that all inferences, 

predictions, engineering computations, and other applications of measured data are 

necessarily founded on weighted averages over all the possibly true values, with weights 

indicating the degree of plausibility of each value. These weights and weighted averages are 

what we call probabilities and expectation values. Hence, probabilities encode incomplete 
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information, in that persons possessing different information or knowledge would assign 

different probabilities, and would update the respective probabilities whenever new 

information became available. Thus, since the true value of physical quantities cannot be 

measured exactly, nominally measured values are insufficient, by themselves, for 

applications; the quantitative uncertainties accompanying the measurements are also needed, 

along with the respective nominal values. Combination of data from different sources 

involves a weighted propagation (e.g., using sensitivities) of various uncertainties, requiring 

reasoning from incomplete information for extracting “best” values together with “best” 

uncertainties from often sparse, incomplete, error-afflicted, and occasionally discrepant 

experimental data. A wide range of probability-theory concepts and tools are employed in 

data evaluation and assimilation, from deductive statistics involving mainly frequencies and 

sample tallies to inductive inference for assimilating non-frequency data and a priori 

knowledge. 

Since the combination of data from different sources involves a weighted propagation (e.g., 

using sensitivities) of various, data evaluation is intrinsically intertwined with uncertainty 

analysis, requiring reasoning from incomplete information and using probability theory for 

extracting “best” values together with “best” uncertainties from often sparse, incomplete, 

error-afflicted, and occasionally discrepant experimental data. The probabilistic description of 

possible future computational and experimental outcomes, based on all recognized errors and 

uncertainties, is the aim of “best estimates plus reduced uncertainties” (BERU) predictions. 

BERU-predictions relies on the assimilation of experimental data (“data assimilation”) for 

updating (i.e., “calibrating” or “adjusting”) the parameters characterizing a computational 

model. The procedures for model calibration must encompass the propagation of all relevant 

uncertainties, including:  

(i) data uncertainties (input data, model parameters, initial and boundary 

conditions, forcing functions, etc);  
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(ii) numerical discretization errors;  

(iii) discrepancies within the experimental data and/or discrepancies between 

data and model predictions; and  

(iv) uncertainties in the physics of the modeled processes (e.g., due to 

incomplete knowledge).  

 

The results of BERU-predictions are best-estimated values for parameters and predicted 

responses, as well as best-estimate reduced uncertainties (i.e., “smaller” values for the 

variance-covariance matrices) for the predicted best-estimate parameters and responses, 

provided all elements involved in the calibration process are consistent with each other.  

 

This paper presents a new and rigorous mathematical methodology for predictive estimation 

through data assimilation and simultaneous calibration of model parameters and responses for 

a generic time-dependent physical system, generalizing and setting on a rigorous basis the 

pioneering work originally presented in Refs. 3 and 4, as well as the data assimilation 

methodologies currently used in geophysical sciences (see, e.g., Refs. 5 and 6). This 

methodology also provides quantitative indicators (based on uncertainties and sensitivities) 

for determining the degree of agreement (or disagreement) relevant to the assimilation and 

best-estimate adjustment of computational and experimental parameters and responses. The 

paper is structured as follows: Section II introduces the mathematical and physical basis for 

assigning prior probability distributions under incomplete information. Section III presents 

the mathematical framework for data assimilation and simultaneous calibration of model 

parameters and responses, for a generic time-dependent physical system; of course, time 

independent systems are included as a particular case within this framework. Furthermore, 

this framework also encompasses the basic elements for quantitative model extrapolation (i.e., 

prediction of uncertainty in new environments or conditions of interest, including both 
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untested parts of the parameter space and higher levels of system complexity in the validation 

hierarchy) and estimation of the validation domain. The data assimilation and best-estimate 

model calibration methodology presented in Section III also includes quantitative indicators 

(based on uncertainties and sensitivities) for determining the degree of agreement (or 

disagreement) relevant to the assimilation and best-estimate adjustment of parameters and 

responses, of computations and experiments. An illustrative application of the methodology 

presented in Sections III to a paradigm transient thermal-hydraulics system of benchmark 

quality for reactor safety codes is presented in the accompanying PART II7 of this paper.  

Section IV presents the fundamental indicators for data consistency and rejection criteria. 

Finally, Section V offers concluding remarks, addressing further work needed to alleviate the 

current limitations of the best-estimate predictive methodology presented in this work.   

 

 

 
III. EXPERIMENTAL DATA ASSIMILATION FOR MODEL CALIBRATION AND 

PREDICTIVE ESTIMATION  

 

In general, a physical system and/or the result of an indirect experimental measurement is 

modeled mathematically in terms of:  

(a) A system of linear and/or nonlinear equations that relate the system's independent 

variables and parameters to the system's state (i.e., dependent) variables;  

(b) Inequality and/or equality constraints that delimit the ranges of the system's 

parameters;  

(c) One or several quantities, customarily referred to as system responses (or objective 

functions, or indices of performance), which are computed using the mathematical model; and 
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(d) Experimentally measured responses, with their respective nominal (mean) values 

and uncertainties (covariance matrices). 

 

The time-dependent generic physical system to be analyzed in the sequel is considered to 

comprise Nν
α  model parameters and rNν  distinct responses, respectively, at every time node 

  1, 2, t... , Nν = . Hence, at every time node ν , the (column) vector να  of Jν
α  system 

parameters, and the (column) vector νr of rJν  measured responses can be represented in 

component form as 

 

{ }| 1, ,n n Nν ν ν
αα= =α … { }| 1, , ,  1,... ,i rr i N Nν ν ν ν= = =r … t .  (III.1) 

 

At any time node ν , the system parameters are considered to be variates with mean values 

( )0 ν
α . Furthermore, the correlations between two parameters i

να  and j
μα , at two time nodes 

μ  and ν , have the general form 

 

( ) ( )0

,ij i i j jcνμ ν ν μ μ
α α α α α

0⎡ ⎤ ⎡ ⎤≡ − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
,    (III.2) 

 

The above covariances constitute the elements of symmetric covariance matrices of the form  

 

( ) ( ) ( ) ( )
† †0 0μ νμν μν νμ νμ

α α
⎡ ⎤− − = = =⎢ ⎥⎣ ⎦

C α α α α C C C
†

α α  .  (III.3) 

 

Similarly, the measured responses are characterized by mean values ( )m
νr  at a time node ν , 

and by symmetric covariance matrices between two time nodes μ  and ν  defined as  
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( ) ( ) ( ) ( )
† †

m m m m m
μ νμν μν νμ νμ⎡ ⎤− − = = =⎣ ⎦C r r r r C C C

†

m .  (III.4) 

 

In the most general case, the measured responses may be correlated to the parameters through 

symmetric response-parameter uncertainty matrices of the form  

 

( ) ( ) ( ) ( )
† †0

r m r r

νμμν μν νμ νμ
α α

⎡ ⎤− − = = =⎢ ⎥⎣ ⎦
C r r α α C C C

†

rα α .  (III.5) 

 

Note that the matrices r
μν
αC  are not bona-fide variance-covariance matrices, in that they are 

not necessarily square positive matrices (often, they are rectangular), and the elements on the 

their respective main diagonals (if they happen to be square) are also covariances (or 

correlations) rather that variances.   

 

At any given time node ν , a response ir
ν  can be a function of not only the system parameters 

at time node ν , but also of the system parameters at all previous time nodes μ , 1 μ ν≤ ≤ ; 

this means that ( )ν ν ν=r R p , where ( )1, , , ,ν μp α α α… … ν . In general, the response 

computed using the model depends nonlinearly and implicitly (in an analytically intractable 

form) on the model parameters. Furthermore, the uncertainties in parameters and modeling 

induce uncertainties in the computed responses, and can be computed either by means of 

statistical methods (for relatively simple models with few parameters) or deterministically, by 

using the well-known propagation of moments (errors) method (see, e.g., Ref 16). In this 

method, the computed response is linearized via a functional Taylor-series expansion around 

the nominal values, ( ) ( ) ( ) )0, ,( 1

0
0 0, ,

μ ν
ανp α α… … , of the parameters νp , as follows:  
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( ) ( ) ( ) ( )0
0 0

1

,  1,..., tN
ν μν ν ν ν ν νμ μ μ

μ

ν
=

⎡ ⎤= = + − + =⎢ ⎥⎣ ⎦∑r R p R p S p α α … , (III.6) 

 

where ( )0
ν νR p  denotes the vector of computed responses at a time node ν , at the nominal 

parameter values 0
νp , while ( )0

νμ μS p , 1 μ ν≤ ≤ , represents the ( )rJ Jν μ
α× -dimensional matrix 

containing the first Gateaux-derivatives of the computed responses with respect to the 

parameters, defined as  

 

( )

( ) ( )

( ) ( )

1 0 1 0

1
11 1

0

1

0 0

1

N
N

i
in

n
I IN

I I

N

R R

s s
Rs

s s
R R

ν μ ν μ

μ μ
νμ νμ

ν
νμ μ νμ

μ
νμ νμ

ν μ ν μ

μ μ

α α

α

α α

⎛ ⎞∂ ∂
⎜ ⎟

∂ ∂⎜ ⎟
⎛ ⎞ ⎜ ⎟∂⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂⎜ ⎟ ⎜ ⎟⎝ ⎠

∂ ∂⎜ ⎟
⎜ ⎟∂ ∂⎝ ⎠

p p

S p

p p

…
…

, 1 μ ν≤ ≤ . (III.7) 

 

Since the response ( )0
ν νR p  at time node ν  can depend only on parameters ( )0 μ

α which 

appear up to the current time node ν ,  it follows that νμ =S 0  when μ ν> , and hence non-

zero terms in the expansion shown in Eq. (III.6) can only occur in the range 1 μ ν≤ ≤ . By 

introducing the block matrix  

 

11

1

,
t tN N

⎛ ⎞
⎜
⎜
⎜ ⎟
⎝ ⎠

S 0
S

S S

…

tN

⎟
⎟      (III.8) 

 

and the (block) column vectors  
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( )1, , , , tNμα α α α… … , ( )1, , , , tNμr r r r… … , ( ) ( )0 1, , , , tNμR α R R R… … ,(III.9) 

 

the system shown in Eq. (III.6) can be written in the form  

 

( ) ( )0 0 higher order terms= + − +r R α S α α .  (III.10) 

 

Applying the propagation of errors method (see, e.g., Ref 16) to Eq. (III.10), which involves 

the formal integration of the over the unknown joint distributions of the parameters α , yields 

the following expressions for the expectation value, r , of the response r , and the 

corresponding covariance matrix, ( )0
rcC α , of the computed responses, respectively  

 

( )0=r R α ,       (III.11) 

 

and  

 

( ) ( ) ( ) ( ) ( )† †0 † 0 † 0 0
rc αδ δ δ δ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦C α r r S α α α S α S α C S α0

tN

=

.  (III.12) 

 

The covariance matrix of the computed responses, , has the symmetric structure rcC

 

111

1

t

t t

N
rc rc

rc
N N
rc rc

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

C C
C

C C

…
 . (III.13) ( ) ( )† †

1 1
; ,  1,...,rc rc tN

μν
νμ νη ηρ μρ μν

α
η ρ

ν μ
= =

= =∑∑C S C S C
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As indicated by Eq. (III.11), the expectation value of the computed responses for linearized 

models in which the numerical errors are neglected is given by the value of the response 

computed at the nominal parameter-values. 

Applying now the maximum entropy algorithm described in Section II [cf. Eq. (II.18)] to the 

computational and experimental information described above indicates that the most objective 

probability distribution for this information is a multivariate Gaussian of the form  

 

( ) ( )
( )

( )
( ) ( ) † 1

1 2

1exp
2| ,

det 2
j

Q
p d d Q z

π
−

⎡ ⎤−⎢ ⎥⎣ ⎦= ≡
z

z C z z z z C z
C

, −∞ < < ∞ ,  (III.14) 

 

where: 

 

0

m

⎞⎛ −
≡ ⎟⎜

−⎝ ⎠

α α
z

r r
, ( ) ( ) ( )( )10 0 0 0, , , , tNμ
α α α α… …  , (III.15) 

r

r m

α α

α

⎞⎛
≡ ⎟⎜
⎝ ⎠

C C
C

C C
,   

   (III.16) 

11 12

21 22

... ...

... ...
... ... ... ...
... ... ... t tN N

α α

α α
α

α

⎛ ⎞
⎜ ⎟
⎜ ⎟=⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

C C

C C
C

C

11 12

21 22

...

...
... ... ...
... ... ...

x x

x x
x

⎜=⎜

C C

C C
C

11 12

21 22

... ...

... ...
... ... ... ...
... ... ... t t

r r

r r
r

N N
r

α α

α α
α

α

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

C C

C C
C

C

⎟
⎟

...

...

...
t tN N

x

⎛ ⎞
⎜ ⎟

⎜ ⎟
⎜ ⎟
⎝ ⎠C

 

The posterior information contained in Eqs. (III.14) and (III.10) can now be condensed into a 

recommended best-estimate value ( )be ν
z  at a time node ν  for the parameters να  and 

responses νr , together with corresponding best-estimate recommended uncertainties for these 
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quantities. If a loss function is given, decision theory7 indicates how these best-estimate 

quantities are to be computed. If no specific loss function is provided, the recommended best-

estimate updated posterior mean vector ( )be ν
z  and its respective best-estimate posterior 

covariance matrix are usually evaluated by assuming “quadratic loss”. In such a case, the bulk 

of the contribution to the distribution ( )|z Cp  in Eq. (III.14) is extracted by computing it at 

the point in phase space where the respective exponent attains its minimum, subject to the 

relation provided by Eq. (III.10). When, in addition to neglecting the higher-order terms, the 

numerical errors are also neglected in Eq. (III.10), this relation is imposed as a hard 

constraint, which can be conveniently written in the form  

 

( )0 + =z dZ α 0 ,  ( )0
m−d R α r ,    (III.17) 

 

where  is the vector comprising all of the experimentally measured 

responses, 

( 1 , , , , tN
m m m m

μ… …r r r r

( )0
m

)

−d R α r  is a vector of “deviations” reflecting the discrepancies between the 

nominal computations and the nominally measured responses, while Z  denotes the 

partitioned matrix 

 

( );U

11

t tN N

⎛ ⎞−
⎜
⎜
⎜ ⎟−⎝ ⎠

I 0
Z S

0 I

…
⎟
⎟

,

U ,   (III.18) 

 

where  denotes the identity matrix of corresponding dimensions.  , 1, , tNνν ν =I …
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Computing the stationary point of ( )Q z  subject to Eq. (III.17) poses a constrained 

minimization problem which can be solved by introducing Lagrange multipliers, λ , to 

construct the augmented Lagrangian functional ( ),P z λ  defined as  

 

( ) ( ) ( )
0

† 0, 2 min,
be

be
be

m

P Q at
⎞⎛ −⎡ ⎤≡ + + = = ≡ ⎟⎜⎣ ⎦ −⎝ ⎠

α α
z λ z λ Z α z d z z

r r
.  (III.19)  

 

where  denotes the corresponding vector of Lagrange multipliers. In the 

above expression, the superscript “be” denotes “best-estimated values”, and the factor “2” 

was introduced for convenience in front of λ  in order to simplify the subsequent algebraic 

derivations. The point  where the functional 

( 1,..., ,..., tNν=λ λ λ λ

bez

)

( ),P z λ  attains its extremum (minimum) is 

defined implicitly through the conditions 

 

( ) ( ), , , , beP P at∇ = ∇ = =z λz λ 0 z λ 0 z z .    (III.20) 

 

The solution to the above constrained minimization problem is detailed in the Appendix. The 

final results for the predictive best-estimate parameters, responses, and their corresponding 

reduced uncertainties (covariance matrices) are as follows:  

(i) The best-estimate predicted nominal values for the calibrated (adjusted) parameters:  

( )( ) ( )†0 0be
r dα α

−10⎡ ⎤ ⎡ ⎤= + − ⎣ ⎦ ⎣ ⎦α α C C S α C α d   (III.21) 

In component form, the above expression for the calibrated best-estimate parameter values 

becomes 
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( ) ( ) ( )0 †

1 1 1

, 1, ,
t tN N

be
r d N

μν ν μρνμ νρ μη η
α α

μ ρ η

ν
= = =

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪= + − =⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

∑ ∑ ∑α α C C S K d … t . (III.22) 

 

where d
νηK  denotes the corresponding ( ),ν η -element of the block-matrix , with the 

block-matrix   defined as follows:  

1
d
−C

( 0
dC α )

( ) ( )( ) ( )( )
( ) ( ) ( )

†0 † 0 † † 0

†0 0 0

d

rc r r mα α

δ δ δ δ ⎡ ⎤= − − ⎣ ⎦

⎡ ⎤ ⎡ ⎤= − − +⎣ ⎦ ⎣ ⎦

C α dd r S α α r α S α

C α C S α S α C C
  (III.23) 

 

In component form, the matrix  is expressed as dC

 

( ) ( )

( ) ( )

1 111 11 11

1 1 1

11 111 † 11 11 11 1 †

1

111 † 1 †

1

t t

t t t t t t t t t

t
tt

t
tt t t t

N N
d d rc m rc m

d
N N N N N N N N N
d d rc m rc m

N NN
r r r r

N NN N N N
r r r

ρρ
α α α α

ρ

ρρ ρ ρρ
α α α

ρ

=

=

⎞ ⎞⎛ ⎛ + +
⎟ ⎟⎜ ⎜
=⎟ ⎟⎜ ⎜

⎜ ⎟ ⎜ ⎟+ +⎝ ⎝⎠ ⎠

+ +

−

+ +

∑

∑

… …

…

C C C C C C
C

C C C C C C

C S S C S C C S

C S S C C S S C
1

.
tN

ρ=

1 t

t

N

N
r

ρ
α

⎞⎛
⎟⎜
⎟⎜
⎟⎜
⎟⎜
⎟⎜ ⎡ ⎤
⎟⎜ ⎢ ⎥⎣ ⎦⎝ ⎠

∑

 (III.24) 

(ii) The best-estimate predicted nominal values for the calibrated (adjusted) responses:  

( ) ( )( ) ( )† 10 0be
m m r dα

−
⎡ ⎤ ⎡ ⎤= + − ⎣ ⎦ ⎣ ⎦r α r C C S α C α d    (III.25) 

At a specific time node ν , each component ( )be ν
r of ( )ber α  has the explicit form  

( ) ( ) ( )†

1 1 1

, 1, ,
t tN N

be
m m r d N

μν μρν νμ νρ μη η
α

μ ρ η

ν
= = =

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪= + − =⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

∑ ∑ ∑ …r r C C S K d t . (III.26) 
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(iii) The expressions for the best-estimate predicted covariances be
αC  and , corresponding 

to the best-estimate parameters  and responses 

be
rC

beα ( )ber α , together with the predicted best-

estimate parameter-response covariance matrix be
rαC  are as follows:  

 

( )( ) ( ) ( ) ( )1† 0 0 0be be be
d d dα α α

− †
α⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − = − ⎣ ⎦ ⎣ ⎦ ⎣ ⎦C α α α α C C α C α C α ,  (III.27) 

( )( ) ( )( ) ( ) ( ) ( )† 0 0 0be be be
r m r d d

−1 †
r d⎡ ⎤ ⎡ ⎤ ⎡ ⎤− − = − ⎣ ⎦ ⎣ ⎦ ⎣ ⎦C r r α r r α C C α C α C α , (III.28) 

( ) ( )( ) ( ) ( ) ( )† 10 0be be be be
r r r r d d dα α α α

− 0 †⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − − = − ⎣ ⎦ ⎣ ⎦ ⎣ ⎦C C α α r r α C C α C α C α , (III.29) 

where 

( ) ( ) ( )( )†0 † ,rd m m rα
0⎡ ⎤− = − ⎣ ⎦C α r r d C C S α    (III.30) 

( ) ( ) ( )( )†0 0 † 0 ,d rα α α
⎡ ⎤− = − ⎣ ⎦C α α α d C C S α    (III.31)  

      

 

 

 

 

For completeness, the block-matrix components, which correlate two (distinct or not) time-

nodes, of the above calibrated best-estimate covariance matrices are given below: 

  

( ) ( )†

1 1 1 1

t tN N
be

r d r

ρ ηνμ ρπνμ νρ νπ ρη ημ ηπ πμ
α α α α α

η ρ π π= = = =

⎡ ⎤ ⎡
= − − −⎢ ⎥ ⎢

⎣ ⎦ ⎣
∑∑ ∑ ∑C C C C S K C S Cα

⎤
⎥
⎦

r

. (III.32) 

 

( ) ( )†

1 1 1 1

t tN N
be
r m m r d m

ρ ηνμ ρπνμ νρ νπ ρη ημ ηπ πμ
α α

η ρ π π= = = =

⎡ ⎤ ⎡
= − − −⎢ ⎥ ⎢

⎣ ⎦ ⎣
∑∑ ∑ ∑C C C C S K C S C

⎤
⎥
⎦

.  (III.33) 
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( ) ( )†

1 1 1 1

t tN N
be
r r m r d r

ρ ηνμ ρπνμ νρ νπ ρη ημ ηπ
α α α α

η ρ π π= = = =

⎡ ⎤ ⎡
= − − −⎢ ⎥ ⎢

⎣ ⎦ ⎣
∑∑ ∑ ∑C C C C S K C S Cπμ

α
⎤
⎥
⎦

.  (III.34) 

 

Note in Eq. (III.27) that a symmetric positive matrix is subtracted from the initial parameter 

covariance matrix αC ; hence, in this sense, the best-estimate predicted parameter uncertainty 

matrix be
αC  has been reduced by the calibration (adjustment) procedure, through the 

introduction of new information from experiments. Similarly in Eq. (III.28), a symmetric 

positive matrix is subtracted from the initial covariance matrix of the experimental-

responses; hence, the best-estimate predicted response covariance matrix  has been 

improved (reduced) through the introduction of new experimental information. Furthermore, 

Eq. (III.29) indicates that the calibration (adjustment) procedure will introduce correlations 

between the calibrated (adjusted) parameters and responses even if the parameters and 

response were initially uncorrelated, since 

mC

be
rC

0be
rα ≠C  even if 0rα =C  , i.e.,  

 

( ) ( )10 0be
r m rc mα α

−
⎡ ⎤ ⎡= +⎣ ⎦ ⎣C C C α C S α C⎤⎦ , when 0rα =C .  (III.35) 

 

As the above expression indicates, the adjustment (calibration) modifies the correlations 

among the parameters through couplings introduced by the sensitivities of the participating 

responses. In the calibration procedure, the sensitivities play the role of weighting functions 

for propagating the initial parameter-covariances and experimental-response covariances to 

the adjusted best-estimate predicted quantities. Thus, as indicated by Eqs. (III.27) through 

(III.29), the incorporation of additional (experimental) information in the adjustment 

(calibration) process reduces the variances of the adjusted parameters and responses while 

also modifying their correlations. 
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Note that Eq. (III.28) expresses the best-estimate response covariance matrix  in terms of 

the initial covariance matrix  of the experimental-responses. Alternatively, it is of interest 

to derive the expression of the computed best-estimate response covariance matrix, , 

directly from the model (the subscript “rc”, denotes “computed response”, to distinguish it 

from the covariance , which is obtained directly from the calibration/adjustment process). 

The starting point for computing  is the linearization of the model, similar to that shown in 

Eq. (III.10), but around  instead of , i.e. 

be
rC

mC

be
rcC

be
rC

α

be
rcC

be 0α

 

( ) ( )( )be be be higher order terms= + − +r R α S α α α .   (III.36) 

 

It follows from Eqs. (III.36) that  

 

( )( ) ( )( ) ( ) ( )( ) ( )

( ) ( )

( ) ( )( ) ( ) ( )( ) ( )

† ††

†

† 10 0 0

be be be be be be be
rc

be be be

be be
r d r

α

α α α α α

−

⎡ ⎤ ⎡ ⎤= − − − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡= − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣⎢ ⎥⎣ ⎦

C r R α r R α S α α α α α S α

S α C S α

S α C C C S α C α C S α C S α
†
⎤⎦

 (III.37) 

 

Comparing Eq. (III.37) to Eq. (III.28) reveals that, in general,  since be be
rc r≠C C ( ) ( )0be ≠S α S α . 

Nevertheless, when the model is “perfect” (i.e., free of numerical errors) and exactly linear, 

then the sensitivity matrix is independent of the parameter values , i.e.,  S α

 

( ) ( )0be =S α S α S= , for “perfect” and linear models,   (III.38) 
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As shown in the Appendix, it follows from Eqs (III. 37) and (III. 38) that  

 

( ) ( )
( ) (

† 1 †

1† †

, " "

be
rc r d r

rc rc r rc e r r rc r

be
r perfect

α α α α α

α α α

−

−

⎡ ⎤= − − −⎣ ⎦

⎡ ⎤= − − + − − −⎣ ⎦
=

C S C C C S C C SC S

C C SC C C C S SC C C S

C for linear models.

)α   (III.39) 

 

It is important to note that the computation of the best estimate parameter and response values, 

together with their corresponding best-estimate uncertainties, cf, Eqs. (III.21), (III.25), (III.27), 

(III.28) and (III.29) require the inversion of a single matrix, namely the matrix ( )0
dC α  

defined in Eq. (III.24). This is usually advantageous in practice, since the order of the matrix  

 is given by the number of measured (or computed responses), which is most often 

considerably smaller that the number of model parameters under consideration.  

( 0
dC α )

r

 

On the other hand, when the number of parameter exceeds the number of responses, it is 

possible to derive alternative expressions for the best-estimate calibrated parameters and their 

corresponding best-estimate covariances, by performing all derivations in the “parameter 

space” rather than in “response space”. This entails using Eq. (III.10) to eliminate the 

response (variables)  at the outset, and carrying out the minimization procedure solely for 

the parameters (variables) α . Equivalently, as shown in the Appendix, the Sherman-

Morrison-Woodbury extension can be employed to obtain the alternative expression 

r

  

( )
( )

11 †

11 1 1 † 1 † 1 †; .

d rc r r m

m r

α α

α α α

−−

−− − − − −

− − +

= − + − −

C C C S SC C

A A S C S A S S A A C C S SC
  (III.40) 
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The above expression provides the bridge between the “response-space” and “parameter-

space” formulations. This expression also highlights the fact that the response-space 

formulation requires a single inversion of a square symmetric matrix (namely, the matrix ) 

of the same dimensions as the number of responses. In contradistinction, the “parameter 

space” formulation requires the inversion of three symmetric matrices, two of which have 

dimensions equal to the number of parameters and one of dimensions equal to the number of 

responses. Hence, from a computational standpoint, the “response-space” formulations should 

be used whenever possible. 

dC

 

In view of Eq. (III.24), it is important to note that the inverse matrix, , incorporates 

simultaneously all of the available information about the system parameters and responses, at 

all time nodes [i.e., 

1
d
−C

1,2,..., tNν = ]. Specifically, at any time node ν ,  incorporates 

information not only from time nodes prior in time to 

1
d
−C

ν  (i.e., information regarding the "past" 

and "present" states of the system) but also from time nodes posterior in time to ν  (i.e., 

information about the “future” states of the system). Through the matrix C , at any specified 

time node 

1
d
−

ν , the calibrated best-estimates parameters ( )be ν
α  and responses , 

together with the corresponding calibrated best-estimate covariance matrices (

( )be ber α r

)be νμ )be
rαC , ( νμ

C , 

and ( be
r )

νμ

αC  will also incorporate automatically all of the available information about the 

system parameters and responses at all time nodes [i.e., 1, 2,..., tNν = ].  

 

In this respect, the methodology presented in this section is conceptually related to the 

"foresight" aspects encountered in decision analysis. It is also important to note that, in 

practice, the application of the methodology developed in this section involves two distinct 

computational stages. A complete sensitivity data base (i.e., sensitivities nisνμ  at all times nodes 
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, 1, , tNν μ = …

this

) needs to be generated prior to performing the “data assimilation” and “model 

calibration” (or data adjustment) stage, since all of the sensitivities are needed in order to 

perform data assimilation and model calibration. These stages are performed subsequently, 

together with the computation of calibrated best-estimate covariance matrices (the 

“uncertainty analysis” stage), by combining the sensitivities with covariance matrices.  

 

Because of the “foresight” and “off-line” characteristics, the methodology presented in this 

Section can be called the “off-line with foresight” data assimilation and adjustment (model 

calibration) methodology, underscoring that all sensitivities are generated separately, prior to 

performing the uncertainty analysis, and that foresight characteristics are included in the 

procedure. Since the incorporation of foresight effects involves the inversion of the matrix dC , 

 methodology is best suited for problems involving relatively few time nodes. For large-

scale highly nonlinear problems involving many time nodes, the matrix dC  becomes very 

large, requiring large amounts of computer storage; the inversion of C  may become 

prohibitively expensive in such cases. These difficulties can be reduced at the expense of 

using less than the complete information available at any specific time node. For example, 

even in time-dependent problems in which the entire time history is known (e.g., transient 

behavior of reactor systems), one may nevertheless choose to use only information up to the 

current time index, and disregard the information about “future” system states.  

d

 

On the other hand, in dynamical problems such as climate or weather prediction, in which the 

time variable advances continuously and states beyond the current time are not known, 

information about future states cannot be reliably accounted for anyway. Thus, the most 

common way of reducing the dimensionality of the data assimilation and model calibration 

problem is to disregard information about future states and limit the amount of information 
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assimilated about “past states”. Data assimilation and model calibration procedure using such 

a limited amount of information can be performed either off-line or on-line, assimilating the 

new data as the time index advances.  

 

The simplest case of dynamic data assimilation and model calibration is when these 

operations are performed by using information on-line from only two successive time-steps. 

In this particular case, the expressions given by Eqs. (III.22), (III.26), (III.32), (III.33) and 

(III.34) for the best-estimate predicted calibrated quantities reduce (see the Appendix for 

details) to the following explicit formulas:  

(i) The components ( )kbeα

k

, representing the calibrated best-estimates for the system 

parameters at time node , can be written in a particular form of Eq. (III.22), as follows: 

 

( ) ( ) ( )0 †

1 1 1

, 1,2,..., .
k kk kbe k k

r d
k k k

k
μ μρμ ρ μη η

α α
μ ρ η= − = − = −

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪= + − =⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

∑ ∑ ∑α α C C S K d tN

tN

 (III.41) 

 

(ii) The vector ( , representing the best-estimates predicted values for the system 

parameters at a time node k , take on the following particular form of Eq. (III.26): 

)kber

 

( ) ( ) ( )†

1 1 1

, 1,2,..., .
k kk kbe k k

m m r d
k k k

k
μ μρμ ρ μη η

α
μ ρ η= − = − = −

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪= + − =⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

∑ ∑ ∑r r C C S K d  (III.42) 

 

 (iii) The components ( )be νμ

αC , , of the calibrated best-estimate covariance 

matrix, 

( , 1,k kν μ = − )

be
αC , for the calibrated best-estimates system parameters is obtained by particularizing 

Eq. (III.32) to two consecutive time nodes ( )k k1,− , 1,2,..., tk N= , leading to  
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( ) ( )†

1 1 1 1

1, ; 1, ; 1,2,..., .

k k
be

r d r
k k k k

tfor k k and k k k N

ρ ηνμ ρπνμ νρ νπ ρη ημ η
α α α α α

η ρ π π

ν μ
= − = − = − = −

π πμ
α

⎡ ⎤ ⎡
= − − −

⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣

= − = − =

∑ ∑ ∑ ∑C C C C S K C S C
⎦ . (III.43) 

 

(iv) The components ( )be
r

νμ
C , , of the calibrated best-estimate covariance 

matrix , for the best-estimate responses takes on the following particular form of Eq. 

(III.33):  

( , 1,k kν μ = − )

r

be
rC

 

( ) ( )†

1 1 1 1

1, ; 1, ; 1,2,..., .

k k
be
r m m r d m

k k k k

tfor k k and k k k N

ρ ηνμ ρπνμ νρ νπ ρη ημ η
α α

η ρ π π

ν μ
= − = − = − = −

π πμ⎡ ⎤ ⎡
= − − −

⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣

= − = − =

∑ ∑ ∑ ∑C C C C S K C S C
⎦ . (III.44) 

 

(v) The components ( )be
r

νμ

αC , , of the best-estimate response-parameter 

covariance matrix 

( , 1,k kν μ = − )

be
rαC  take on the following particular  form of  Eq. (III.34): 

  

( ) ( )†

1 1 1 1

1, ; 1, ; 1,2,..., .

k k
be
r r m r d r

k k k k

tfor k k and k k k N

ρ ηνμ ρπνμ νρ νπ ρη ημ η
α α α α

η ρ π π

ν μ
= − = − = − = −

π πμ
α

⎡ ⎤ ⎡
= − − −

⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣

= − = − =

∑ ∑ ∑ ∑C C C C S K C S C
⎦

N

. (III.45) 

 

For each time node, 1,2,..., tk = , the quantities d
νηK  which appear in Eqs. (III. 41) through 

(III. 45) have the following expressions:  
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( )
( ) ( ) ( )

111, 1 1, 1 1, , , 1

1 11, 1 1, 1 1, , , 1 1, 1

k k k k k k k k k k
d d d d d

k k k k k k k k k k k k
d d d d d d

−−− − − − − −

1− − −− − − − − − − −

⎡ ⎤= −⎢ ⎥⎣ ⎦

= +

K C C C C

C C C K C C
 (III.46) 

 

( ) ( )
( )

11 11, 1, 1 1, , , 1 1, 1 1,

11, 1 1, ,

k k k k k k k k k k k k k k
d d d d d d d

k k k k k k
d d d

−− −− − − − − − − −

−− − −

⎡ ⎤= − −⎢ ⎥⎣ ⎦

= −

K C C C C C C

C C K
 (III.47) 

 

( )
( ) ( ) ( )

11, , , 1 1, 1 1,

1 1, , , 1 1, 1 1,

k k k k k k k k k k
d d d d d

k k k k k k k k k k k k
d d d d d d

−−− − − −

− − − − − −

⎡ ⎤= −⎢ ⎥⎣ ⎦

= +

K C C C C

C C C K C C
1, −

−

   (III.48) 

 

( ) ( )
( )

11 1, 1 , , 1 1, 1 1, , , 1

1, , 1 1, 1

k k k k k k k k k k k k k k
d d d d d d d

k k k k k k
d d d

−− −− − − − −

− − − −

⎡ ⎤= − −⎢ ⎥⎣ ⎦

= −

K C C C C C C

C C K
  (III.49) 

 

For time-independent problems, the time-dependent results derived in the forgoing reduce to 

expressions that are formally identical to Eqs. (III.21), (III.25), (III.27), (III.28) and (III.29); 

hence, these expressions can be used directly to obtain the best-estimate predicted values for 

parameters, responses, and their respective covariances. It is also important to note that 

although modeling errors have not been considered explicitly in this Section, they can be 

treated in a manner similar to parameter uncertainties by including the discretization intervals 

in the vector of model parameters, as shown in Refs. 16 and 17.   

 

Finally, it is important to emphasize that the explicit formulas presented in this Section are 

based on the linearized relationship between responses and parameters that customarily 

underlies the “propagation of moments” method, i.e., Eq. (III.10), without considering 
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nonlinearities explicitly. Nevertheless, this limitation is not as severe as it may appear at first 

glance, since nonlinear relations between computed responses and model parameters can be 

treated by considering Eq. (III.10) iteratively, starting with the known nominal values of the 

quantities involved. The first iteration (in such an iterative procedure) would yield all of the 

major explicit results derived in Eqs. (III.21), (III.25), (III.27), (III.28) and (III.29). The 

subsequent iteration would the results of Eqs. (III.21), (III.25), (III.27), (III.28) and (III.29) as 

the “prior information” in a second application of these formulas, and compute the new 

(“second-iteration”) best-estimate quantities by using once again these formulas. This iterative 

procedure would then be repeated until the best-estimated values would not change any longer, 

ereby indicating convergence of the nonlinear iterative procedure. 

V. DATA CONSISTENCY AND REJECTION CRITERIA  

th

 

 

I

 

The actual application of the model calibration (adjustment) algorithms, cf. Eqs. (III.21), 

(III.25), (III.27), (III.28) and (III.29), to the a physical system characterized by nominal 

values and uncertainties for model parameters together with the computed and measured 

responses is straightforward, in principle, although it can become computationally very 

demanding on both data handling and computational speed. It is also important to note that 

the indiscriminate incorporation of all (seemingly relevant) experimental-response data could 

produce a set of calibrated (adjusted) parameter values that might differ unreasonably much 

from the corresponding original nominal values. Worse yet, the indiscriminate use of 

information might even fail to improve the agreement between the calculated and measured 

values of some of the very responses by which the library was calibrated (adjusted). When 

calibrating (adjusting) a library of model parameters, it is tacitly assumed that the given 

parameters are basically “correct,” except that they are not sufficiently accurate for the 
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objective at hand. The calibration procedure uses additional data (e.g., experimental 

responses) for improving the parameter values while reducing their uncertainties. Although 

such additional information induces modifications of the original parameter values, the 

adjusted parameters are still generally expected to remain consistent with their original 

nominal values, within the range of their original uncertainties. However, calibration of model 

parameters by experimental responses which significantly deviate from their respective 

computed values would significantly modify the resulting adjusted parameters, perhaps even 

violating the restriction of linearity underlying the calibration procedure, cf. Eq. (III.10). Such 

unlikely adjustments would most probably lead to failure of even reproducing the original 

xperimental responses.  

 measure the 

utual and joint consistency of the information available for model calibration. 

pendix, the minimum value, 

e

 

On the other hand, calibrating a parameter library by using measured responses that are very 

close to their respective computed values would cause minimal parameter modifications and a 

nearly perfect reproduction of the given responses by the adjusted library (as would be 

expected). In such a case, the given responses would be considered as being consistent with 

the parameter library, in contradistinction to adjustment by inconsistent experimental 

information, in which case the adjustment could fail because of inconsistencies. These 

considerations clearly underscore the need for using a quantitative indicator to

m

 

 As shown in the Ap ( )min
beQ Q≡ z , of ( )Q z takes on the 

following expression: 

( ) ( ) 1† 0
min

be
dQ Q

−
⎡ ⎤≡ = ⎣ ⎦z d C α d , ( )0

x−d R α r  .    (IV.1) 

 

 
CASL-U-2011-0055-000



As the above expression indicates, ( )  min
beQ Q≡ z  the square of the length of the 

vector d , measuring (in the corresponding metric) the deviations between the experimental 

and nominally computed responses. Note that 

represents

( )min
beQ Q≡ z  can b ated directly from 

the given data (i.e., give  and responses, together with their original uncertainties) 

after having inverted the deviation-vector uncertainty matrix 

e evalu

n parameters

( )0
dC α . It is also very 

important to note that ( )min
beQ Q≡ z  is independent of calibrating (or adjusting) the original 

data. As the dimension of d  indicates, the number of degrees of freedom characteristic of the 

 under consideration is equal to the number of experimental responses. In the 

of absence of experimental responses, no actual calibration takes place since 

( )=d R α

calibr n

extreme case 

st the inal values, i.e., 

ental response is 

 the bulk of the contribution to the joint 

osterior probability distribution, which comes from the point 

atio

0

=

, so that the best-estim

; an actual adjustme

ate parameter values a

nt occurs only when 

re ju  original nom

at least one experim( ) ( 0beα α )k k

included. 

 

Replacing Eq. (IV.1) in Eq. (III.14) shows that

be=z zp , takes on the form of 

the following multivariate Gaussian distribution:  

 

( ) ( ) ( ) ( ) ( )0 0 0| exp exp
2 2

be be
x d xp Q

† 11 1 −⎡ ⎤ ⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤− = − − −⎨ ⎬⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎩ ⎭
z C z r R α C α r R α∼ . (IV.2) 

 

The above relation indicates that experimental responses can be considered om 

variables approximately de ultivaria Gaussian distribution with means located 

at the nominal values of the computed responses, and with a covariance matrix ( )0
dC α . In 

turn, the random variable minQ ≡  a 2

as rand

scribed by a m te 

obeys( )beQ z  χ -dis bution with n  degrees of freedom, tri
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where n  denotes the total number of experimental responses considered in the calibration 

(adjustment) procedure.  Since ( )min
beQ Q≡ z  is the “ 2χ  of the calibration (adjustment) at 

hand“, it can be used as an indicator of he agreement between the computed and 

experimental responses, measuring essentially the consistenc

t

y of the experimental responses 

ith t model parameters. Reche all that the 2χ  (chi-square) w distribution with  degrees of 

freedom of the continuous variable (

n

0 x≤ < ∞ ) is defined as 

 

( ) ( ) ( ) ( )2 2 1 2
2 , 0, 1, 2, .

2 2
n x

n nP x x dx k x dx x e dx x n
n

χ − −< < + = > =
Γ

…  (IV.3) 

 

The 2

1

χ - distribution is a measure of ation of a “true d stribution” (in this case – the 

distribution of experimental responses) from the hypothetic one (in this case – a Gaussian). 

The mean and variance of 

the dev ii

x  are x n=  and ( )arv 2x n= . Further practically useful 

asymptotic properties of the 2χ - stribution for n →∞  are as follows:  di (i)  x  is 

asymptotically normal with mean n  and variance 2n ; (ii) /x n  is asymptotically normal with 

mean 1  and variance 2 / n ; (iii)  2x  is asymptotically normal with mean 2 1n −  and 

variance 1. Although the 2χ - distribution is extensively tabulated, the notation is not uniform 

in the literature for the various derived quantities (in particular

). The cumulative di

, for the corresponding 

stributions, denoted here by cum lative distribution functions d fractilesu

2

an

( )  and ( )2
nQ χ , are defined as  nP χ

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2
0

2
0

2 2 2 2 2 2 2
0 0 0 0 00

; 1n n n n nP P k t dt Q k t dt P
χ

χ
Pχ χ χ χ χ χ χ

∞
≤ ≥ = −∫ ∫ . (IV.4) 
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In practice, one rejects a hypothesis using the 2χ - distribution when, for a given significance 

level α  and number of de  frgrees of eedom n , the value of 2
minQ χ≡  exceeds a chosen 

critical fractile valu )n . Published tables often show χe 2 (αχ
2
1 ( )nα−  versus α . When the 

number of degrees of freedom is large ( 30n > ), a useful asymptotic approximation is 

( )2

2zα α+  , 2 1/ 2 2 1n nχ ≈ − with ( ) 2z α  denoting 

, computed by solving the equation 

the fractile of the standard 

norm l distribution 

corresponding 

a ( )0 zΦ ( )0 2z α2 1 2αΦ = − , using the 

tabulated tables for ( )zΦ . r large or small values of 0  Fo α , a more accurate approximation is 

3

2 1χ
⎛ ⎞

≈ −⎜ ⎟⎜ ⎟
⎝ ⎠

. It m o2
2 2

9 9
z

m mα α+( )n n ay be often m re convenient to transform 2χ  to the 

variate  2t nχ=  (i.e., “ 2χ  per degree of freedom”), in which case the transformed 

( ) ( ) ( )distribution, ng t , becomes n nnk=g t nt , with mean value 1t =  and variance 2 n

ents are consistent with the assumptions regarding the respective 

means, variances, and covariances. For example if 

.  

 

For model calibration (adjustment), it is important to assess if: (i) the response and data 

measurements are free of gross errors (blunders such as wrong settings, mistaken readings, 

etc), and (ii) the measurem

2 nχ hat the measurements are 

very likely to be both free of gross errors and consistent with the assumptions. However, if 

1 , then t

2 1nχ  or 2 1nχ , the measurements (or at least so asurements), the assumptions, 

or both are suspect. In particular, unusually large values 

me me

2 1 could be obtained when 

the original variances are underestimated; increasing them beyond their assumed nominal 

values would cause the adjusted values of 

nχ

2 nχ  and ( )2
nP χ  to decrease accordingly. The 

reverse argument would apply if the a priori values of 2 nχ  and ( )2
nP χ  were unusually 

small (e.g., 2 1nχ  , ( )2 410P χn
−∼ ), which could be the result of a priori overestim  ated
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variances. A practical quantitative criterion for “acceptance“ (or “rejection“) of 

experimental results in conjunction with a given “theoretical“ model (i.e., in conjunction with 

the 

the assumptions regarding the variates underlying the model) is to accept the value of 2 nχ  

whenever  in analogy to the ( )20.15 0.85nP χ< < , "1  range of normal distributions. Note "σ

n setting an acceptance criterion for 2 nχ  of the general form that, whe

 

( )2 1nPα χ α< < − ,    (IV.5)  

 

the exact value of α  

 ( )2
nP

is not essential and  is ent. This is because the 

probability

 subject to personal judgm

χ  is still sensitive to the value of 2 nχ  due to the fact that 

( )2χ (except for few degrees of freedom, e.g., for 1 2n n±  5n ≤ ), so the acceptable 

range of 2 nχ  narrows as 1 n  2 nαχ (see also the pr ly noted asymptotic forms for evious ).  

oderate changes in In other words, m 2 nχ  lead to s icant rela s in tive change ( )2
nP χignif . For 

xam %-range of ple, the central 50 2 20χ  is (0.77, 1.19), and the corresponding 90%-range is e

(0.54, 1.57), implying that values of 2 20χ  below 0.4  or above 2.0  would be definitely 

unacceptable.

 

In addition to measuring the overall consistency of a given set of parameters and responses, 

the quantity 2 / nχ  also measures the consistency among the measured responses. Hence, an 

entire data set (model parameters and/or experimental responses) should not be 

indiscriminately disqualified because of too high or too low value of 2 / nχ , since even a 

single “outlying” response could significantly degrade the set‘s overall consistency. Note that 

a simple-minded assessment and ranking of “questionable responses” according to the values 
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of the “individual consistencies” (i.e., the values of 2χ  obtained for ea  response as if it 

were the only response available for calibrating the entire set of param ry 

i

i i

ch

eters), would be ve

likely misleading. This is because the sum of the respective “individual consistencies” [which 

would numerically be obtained by dividing the squares of the deviations, , through the sum 

of the respective variances of the computed and measured responses ) ], 

would not be equal  to the “joint consistenc  joint 

2d

r ( ) ( expva varcompr r+

2y” (i.e., the χ ) of the entire set of

r uncertainty ma

 

experimental responses. This is because the d viation- trix e

+  

vecto

( ) ( ) ( ) ( )†0 0 0 0⎡ ⎤ ⎡ ⎤− −C α C α C S α S α C Cd rc r r xα α⎣ ⎦ ⎣ ⎦

( )0
rcC α  and 

is generally non-diagonal, even if both 

xC  are diagonal. On the other hand, verifying the consistency of all partial sets 

of the array of n  responses with respect to

practical, since the number of partial sets of an array of 

iven library of param

time and evaluatin 2

 their consistency with the given library is usually 

1− ; hence, such n  responses is 2nim

a verification would be practically feasible only when the number of measured responses is 

very small.  

 

A procedure that has been successfully used to identify successively the responses which are 

least consistent with a g eters is based on leaving out one response at a 

g ( )1 1nχ −  for the remaining 1n −  responses. The response left out is 

subsequently returned to the response set, another response (response “two”) is eliminated, 

and the corresponding ( )1 2nχ −  is evaluated. This procedure is continued until all remaining 

( )2
1 , 3, , ,n i i nχ − = …  are successively evaluated. The response that yields the lowest 2

1n

2

χ −  when 

eliminated is considered to be “the least consistent”, and is thus ranked “last” in the 

consistency sequence, and eliminated from further consideration. The evaluation procedure is 

then repeated for the remaining 1n −  (“more consistent“) responses, to identify the “second 

least consistent response”, which is then ranked next-to-last. The procedure is then repeatedly 
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applied to he 

s ch a consistency sequence requires only 

 the successive, fewer and fewer, partial response sets until establishing t

complete consistency sequence. E tablishing su

( )1 2 , as compared to ( )2 1n −2χ  calculations needed to assign 2χ  n n +  computations of 

values to all possible partial sets of n  responses.  

 

The quantity 2 nχ  measures the consistency of any set of n  experimentally 

responses with a given library of model parameters, in the sense that if 1

measured 

2χ  refers to a specific 

set of n  experimental responses and 2
2χ  to another set of n  responses, then 2 2

1 2χ χ<  means 

e first set is more consistent with the library than the second. On the other hand, when 

varying the number o  is not a priori obvious whether the set yielding a smaller 

that th

f respo , nses it

2 nχ  is also necessarily the o ram

consider the value

 m st consistent with the given pa eters. As an example, 

 ( )2P χ 0.85= , which can correspond to both 2 5 1.623  and χ = also n

to 2 10 1.453χ = . If, for example, one set of 5 responses would give a computed value 

2 5 1.6χ = , and second set of 10 responses would give 2 10 1.5χ = , th  

considered to be the “more consistent”, f

e fir

0

st set wo

% range,“ whereas 

( )

uld

or 

e se d does not

 be

it falls within th

 situations, it is preferable to use the quantity

e “central 7

con . In such ( )2 21n nQ Pχ χ

abilities 

th = − , 

experim

performe  then determining the prob

as an additional measure of consistency.  

 

Quite generally, therefore, the calibration (adjustment) of a set of model parameters and 

ental responses must include the verification of their mutual consistency, which is 

d by first generating the consistency sequence, and

( )2
iQ χ , when , while generating the sequence. The less consistent responses will 

show up at the end of the sequence, and the probabilities 

1, 2, ,i n= …

( )2
iQ i  χ  will generally decrease as 
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approaches the total number of responses, n . Such an analysis would identify the 

significantly less-consistent responses, and would also indicate the level of consistency of all 

sponse subsets along the consistency sequencre e.  

 

In parallel, the irregular model parameters, if any, must also be identified. This can be done 

by computing not only  2χ  for any respon 21) the 

corresponding best-estimate parameters ( )

se su t, but also computing from Eq. (III.bse

( ) ( )† 10 0be −0
r dα α

⎡ ⎤ ⎡ ⎤= + − ⎣ ⎦ ⎣ ⎦α α C C S α C α d . This 

way, the actual individual parameter adjustments induced by the respective response subset 

are also examined while proceeding step-by-step along the consistency sequence, noting 

which parameters vary more than others, and by how much. Usually, the parameter-

adjustments induced by the more consistent subsets of responses tend to be marginal.  The 

less-consistent responses and the questionable parameters would tend to undergo larger 

djustments, requiring specific further examinations. 

. CONCLUDING REMARKS  

a

 

 

V

 

This work has presented a general mathematical framework for simultaneously calibrating 

(adjusting) model parameters and responses through the assimilation of experimental data, 

leading to “best-estimate” values with reduced uncertainties for both parameters and 

responses in a generic time-dependent system. When only first and second moments of model 

parameters and experimental responses are a priori available, as is most often the case in 

practice, the maximum entropy principle of statistical mechanics was employed in 

conjunction with information theory to construct a Gaussian prior distribution that takes all of 

the available information into account while minimizing (in the sense of quadratic loss) the 
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introduction of spurious information. This prior distribution comprises also any correlations 

among model parameters and responses, thus generalizing the state-of-the-art data 

ssimilation algorithms used in the geosciences5,6.   a

 

The posterior distribution for the best-estimate calibrated model parameters and responses has 

been constructed by using Bayes’ theorem. The best-estimate predicted mean values and 

reduced covariances, which are customarily needed when employing decision theory under 

“quadratic loss”, were computed by extracting the bulk contributions via the saddle-point 

method. In particular, this procedure yields the same Gaussian posterior distribution as would 

be obtained by using the maximum likelihood method.  The minimum value of the quadratic 

form appearing in the exponent of the Gaussian posterior distribution also provides the “ 2χ  

of the calibration (adjustment) at hand“. This quadratic form can therefore be used as an 

indicator of the agreement between the computed and experimentally measured responses, 

indicating essentially the consistency of the measured responses with the model parameters. 

When all information is consistent, the posterior probability density function yields reduced 

best-estimate uncertainties for the best-estimate model parameters and responses. The 

accompanying PART II7 will present typical results obtained by applying the methodology 

resented in this work to an illustrative paradigm time-dependent thermal-hydraulic system. 

s used in geophysical sciences, while extending these 

nses (as opposed to just initial 

 responses (as opposed to no 

parameter-response correlations, e.g., in geophysical sciences); 

p

 

The model calibration methodology presented in this work provides a rigorous mathematical 

foundation for similar methodologie

methodologies in several directions:  

(i) Simultaneous calibration of all parameters and respo

conditions, as usually performed in geophysical sciences);  

(ii) Treatment of systems involving correlated parameters and
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(iii) Simultaneous calibration over all time intervals; the usual two-step time advancement 

procedures used in geophysical sciences simply becomes a consequence, as a particular case, 

of the general methodology presented in this work.  

  

Computationally, the most intensive aspect of the methodology presented in this work is the 

computation of the sensitivities of responses to model parameters, which play a crucial role as 

weighting functions in all of the expressions for the best-estimated predicted values for 

parameters, responses and their associated best-estimated reduced uncertainties.  For large-

scale systems, the most efficient method for computing these sensitivities is the adjoint 

sensitivity procedure (ASAP), as detailed in Refs. 16 and 17. The other computationally 

intensive aspect in this mathematical formalism is the inversion of the covariance matrix 

  associated with the vector ( 0
dC α ) ( )0

x−d R α r , which measures the deviations between 

the respective computed and experimentally-measured responses. Methods for efficiently 

inverting of this matrix, as well as for reducing its dimension, (e.g., reduced-order modeling 

using proper orthogonal decomposition methods) are of substantial interest.   

 

The best-estimate calibrated values for model parameters obtained through the application of 

the mathematical framework presented in this work can also be used to estimate quantitatively 

the validation domain of the model under consideration, by computing contours of constant 

best-estimate uncertainties in the high-dimensional parameter-space. The best-estimate 

calibrated values can also be used to perform “model extrapolation”, by predicting 

uncertainties in new environments or conditions of interest. Extrapolation of large-scale 

models would address both untested parts of the parameter space and higher levels of system 

complexity in the validation hierarchy.  

 

 
CASL-U-2011-0055-000



The explicit formulas presented in this work are based on the linearized relationship between 

responses and parameters that customarily underlies the “propagation of moments” method, 

without explicitly considering nonlinearities and modeling errors. Nevertheless, neither of 

these limitations is as severe as it may appear at first glance, since: (i) modeling errors can be 

treated in a manner similar to parameter uncertainties, as shown in Refs. 16 and 17, by 

including the discretization intervals in the vector of model parameters; and (ii) nonlinear 

relations between computed responses and model parameters can be treated iteratively, by 

considering Eq. (III.10), and hence, all of the major results derived explicitly in Sections III 

and IV, as the first step in an iterative procedure which starts with the known nominal values 

of the quantities involved. The subsequent step of such an iterative procedure would be to use 

the formulas for the best-estimate mean values and covariances for the parameters and 

responses obtained in Sections III and IV as the “prior information”, and compute the new 

(“second-generation”) best-estimate quantities by using once again the formulas of Sections 

III and IV. This iterative procedure would be repeated until the best-estimated values would 

not change any longer, thereby indicating convergence of the nonlinear iterative procedure. 

  

Ongoing research is currently devoted to the explicit treatment of modeling errors, and to 

extending the results of Sections III and IV by including not only the sensitivities (i.e., first-

order information) but also the Hessians (i.e., second-order information) of the responses. 

Additional work is also ongoing to remove the current restriction to Gaussian distributions. 

Actually, the de-facto limitation to Gaussian distribution is characteristic of all of the state-of-

the-art procedures for data assimilation and model calibration, as evidenced by the scientific 

literature published thus far. Removing these limitations would contribute significantly to 

understanding the validation of coupled nonlinear multi-physics models (e.g., of two or more 

physical phenomena that were not coupled in the initial validation database), particularly the 

accompanying increase of uncertainty. Developing predictive experimentally validated “best-
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estimate” numerical models is particularly important for designing new technologies and 

facilities based on novel processes, while striving to avoid, as much as possible, the costly and 

lengthy procedures of building representative mock-up experiments, which might confirm -

but would not necessarily explain- the predictions of simulation tools.  
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APPENDIX: SOLUTION OF THE CONSTRAINED MINIMIZATION PROBLEM 

EXPRESSED BY EQ. (III.19) 

 

Recall that the augmented Lagrangian functional ( ),P z λ  defined as  

 

( ) ( ) ( )
0

† 0, 2 min,
be

be
be

m

P Q at
⎞⎛ −⎡ ⎤≡ + + = = ≡ ⎟⎜⎣ ⎦ −⎝ ⎠

α α
z λ z λ Z α z d z z

r r
.  (III.19)  

 

where  denotes the corresponding vector of Lagrange multipliers. In the 

above expression, the superscript “be” denotes “best-estimated values”, and the factor “2” 

was introduced for convenience in front of λ  in order to simplify the subsequent algebraic 

derivations. The point  where the functional 

( 1,..., ,..., tNν=λ λ λ λ

bez

)

( ),P z λ  attains its extremum (minimum) is 

defined implicitly through the conditions 

 

( ) ( ), , , , beP P at∇ = ∇ = =z λz λ 0 z λ 0 z z .    (III.20) 

 

The condition  ensures that the constraint ( ),P∇λ z λ 0= ( )0 + =Z α z d 0  is fulfilled at be=z z , 

while the condition  yields ( ),P∇z z λ = 0

 

( ) ( ){ }
( )

† 1 † † †

†
1

, 2 ,

2 2 , .be

P

at

−

−

⎡ ⎤∇ = ∇ + − +⎣ ⎦

⎛ ⎞
= + = =⎜ ⎟

−⎝ ⎠

z zz λ z C z λ S α λ z λ d

S α λ
C z 0 z z

λ

2

   (A.1) 

 

Multiplying the last line of the above equation on the left by  and solving it for  gives: C bez
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( ) ( )† †
rbe

r m

α α

α

⎞ ⎞⎛ ⎛⎞⎛
= =⎟⎜ ⎟⎜− −⎝ ⎠⎝ ⎝

⎟⎜
⎠ ⎠

C CS α λ S α λ
z C

C Cλ λ
.    (A.2) 

 

 Writing the above expression in component form gives the following results for the 

calibrated best-estimate parameters and responses, respectively: 

 

( )( )†0be
rα α

⎡ ⎤= + − ⎣ ⎦α α C C S α0 λ     (A.3) 

 

( ) ( )( )†0be
c m m rα ⎡ ⎤= + − ⎣ ⎦r α r C C S α λ

α

    (A.4) 

 

The Lagrange multiplier λ  can be evaluated by using Eqs. (A.3) and (A.4) in Eq. (III.17) at 

 , to obtain  bez

 

( ) ( ) ( ) ( )†0 0 0 0
m rc r r mα

⎡ ⎤⎡ ⎤ ⎡ ⎤≡ − = − − +⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
d R α r C α C S α S α C C λ .  (A.5) 

 

In the above equation, the matrix-valued expression that multiplies λ  is actually the 

covariance-matrix, ( )0
dC α , of the vector of response-deviations, d , namely:  

 

( ) ( )( ) ( )( )
( ) ( ) ( )

†0 † 0 † † 0

†0 0 0

d

rc r r mα α

δ δ δ δ ⎡ ⎤= − − ⎣ ⎦

⎡ ⎤ ⎡ ⎤= − − +⎣ ⎦ ⎣ ⎦

C α dd r S α α r α S α

C α C S α S α C C
  (A.6) 

 

In component form, the matrix  is expressed as dC
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( ) ( )

( ) ( )

1 111 11 11

1 1 1

11 111 † 11 11 11 1 †

1

111 † 1 †

1

t t

t t t t t t t t t

t
tt

t
tt t t t

N N
d d rc m rc m

d
N N N N N N N N N
d d rc m rc m

N NN
r r r r

N NN N N N
r r r

ρρ
α α α α

ρ

ρρ ρ ρρ
α α α

ρ

=

=

⎞ ⎞⎛ ⎛ + +
⎟ ⎟⎜ ⎜
=⎟ ⎟⎜ ⎜

⎜ ⎟ ⎜ ⎟+ +⎝ ⎝⎠ ⎠

+ +

−

+ +

∑

∑

… …

…

C C C C C C
C

C C C C C C

C S S C S C C S

C S S C C S S C
1

.
tN

ρ=

1 t

t

N

N
r

ρ
α

⎞⎛
⎟⎜
⎟⎜
⎟⎜
⎟⎜
⎟⎜ ⎡ ⎤
⎟⎜ ⎢ ⎥⎣ ⎦⎝ ⎠

∑

 (A.7) 

Note that the second and third terms in Eq. (A.6), which are transposes of each other, are 

square matrices, which implies that the matrix ( )0
dC α  is symmetric. In terms of the matrix 

, Eq. (A.5) yields the following expression for the Lagrange multiplier  at  : ( 0
dC α ) λ bez

 

( ) 10
d

−
⎡ ⎤= ⎣ ⎦λ C α d .     (A.8) 

 

Replacing now Eq. (A.8) in Eq. (A.3) yields the following expressions for the nominal values 

of the calibrated (adjusted) best-estimate parameters:  

 

( )( ) ( )†0 0be
r dα α

−10⎡ ⎤ ⎡ ⎤= + − ⎣ ⎦ ⎣ ⎦α α C C S α C α d   (A.9) 

In component form, the above expression for the calibrated best-estimate parameter values 

becomes 
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( )

( )

( )

( )

( ) ( )

( ) ( )

11 111 11 † 1 †1 10
1

0 111 1 † †

1

1

1

1

t
tt

t t t
tt t t t t

t

t
t

N NN
be r r

N N Nbe NN N N N N
r r

N

d

N
N
d

ρρ
α α α α

ρ

ρρ
α α α α

ρ

η η

η

η η

η

=

=

=

=

⎛ ⎞
− −⎜ ⎟⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= +
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎜ ⎟

⎝ ⎠
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟×
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

∑

∑

∑

C C S C C Sα α

α α C C S C C S

K d

K d

…

 (A.10) 

 

where d
νηK  denotes the corresponding ( ),ν η -element of the block-matrix . As  Eq. (A.10) 

indicates, each component (

1
d
−C

)be ν
α , representing the calibrated best-estimates for the system 

parameters at a specific time node ν , takes on the expression 

 

( ) ( ) ( )0 †

1 1 1
, 1, ,

t tN N
be

r d N
μν ν μρνμ νρ μη η

α α
μ ρ η

ν
= = =

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪= + − =⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

∑ ∑ ∑α α C C S K d … t .  (A.11) 

 

Similarly, replacing now Eq. (A.8) in Eq. (A.4) yields the following expressions for the 

nominal values of the calibrated (adjusted) best-estimate responses:  

 

( ) ( )( ) ( )† 10 0be
m m r dα

−
⎡ ⎤ ⎡ ⎤= + − ⎣ ⎦ ⎣ ⎦r α r C C S α C α d    (A.12) 

 

or , in component form: 
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( )

( )

( )

( )

( ) ( )

( ) ( )

11 111 11 † 1 †1 1
1

111 1 † †

1

1

1

1

t
tt

t t t
tt t t t t

t

t
t

N NN
be m r m r

x

N N Nbe NN N N N Nx
m r m r

N

d

N
N
d

ρρ
α α

ρ

ρρ
α α

ρ

η η

η

η η

η

=

=

=

=

⎞⎛
− − ⎟⎜⎞⎛ ⎞⎛

⎟⎜⎟⎜ ⎟⎜
⎟⎜⎟⎜ = +⎟⎜
⎟⎜⎟⎜ ⎟⎜⎜ ⎟⎜ ⎟ ⎟⎜⎝ ⎠ − −⎝ ⎠ ⎟⎜

⎝ ⎠
⎞⎛
⎟⎜
⎟⎜
⎟⎜×
⎟⎜
⎟⎜
⎟⎜

⎝ ⎠

∑

∑

∑

∑

…C C S C C Sr r

rr C C S C C S

K d

K d

 (A.13) 

 

As  indicated by Eq. (A.13), each component ( )be ν
r , of calibrated best-estimates for the 

responses at a specific time node ν , becomes 

 

( ) ( ) ( )†

1 1 1

, 1, ,
t tN N

be
m m r d N

μν μρν νμ νρ μη η
α

μ ρ η

ν
= = =

⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪= + − =⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

∑ ∑ ∑ …r r C C S K d t . (A.14) 

 

The best-estimate covariances, be
αC  and , corresponding to the best-estimate parameters 

 and responses , together with the new best-estimate parameter-response covariance 

matrix 

be
rC

beα ( ber α )
be

rαC  are defined as follows:  

 

( )( )†be be be
α − −C α α α α ,     (A.15) 

 

( )( ) ( )( )†
be be be
r − −C r r α r r α     (A.16) 

 

( ) ( )( )†
be be be be
r rα α= − −C C α α r r α .   (A.17) 
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The explicit expression of be
αC  is obtained by replacing Eq. (A.9) in Eq. (A.15), by carrying 

out the respective averaging procedure, and by noting that  

 

( ) ( )( )0 0
m m− = − − −d R α r r r S α α α0 .   (A.18) 

 

Performing the operations indicated above yields 

( )( ) ( ) ( ) ( )( )
( )( ) ( ) ( )

( )( ) ( ) ( ) ( )( )

1†0 0 0 † 0 0

† 1 †0 0 0

† 1 10 0 † 0 0

be
d r

r d

r d d r

α α α

α α

α α α

−

−

− −

⎡ ⎤ ⎡ ⎤− − − − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤− − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

C α α α α α α d C α C S α C

C C S α C α d α α

C C S α C α dd C α C S α Cα

 (A.19) 

 

The above expression can be simplified by recalling Eq. (A.6), and by noting that 

 

( ) ( ) ( )( )†0 0 † 0 ,d rα α α
⎡ ⎤− = − ⎣ ⎦C α α α d C C S α    (A.20) 

 

( ) ( ) ( )( ) ( ) ††0 0 0
d rα α α

0
dα

⎡ ⎤ ⎡− = − = ⎤
⎣ ⎦ ⎣C α d α α C S α C C α ⎦ .   (A.21) 

 

Replacing Eqs. (A.19) through (A.21) in the expression of be
αC  leads to  

 

( )( ) ( ) ( )( )
( ) ( ) ( )

† 10 0 0

10 0 0 †

be
r d r

d d d

α α α α α α

α α α

−

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

C C C C S α C α C S α C

C C α C α C α
  (A.22) 

 

Furthermore, noting that  
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( ) ( ) ( )( )†0 † ,rd m m rα
0⎡ ⎤− = − ⎣ ⎦C α r r d C C S α  

( ) ( ) ( )( ) ( ) ††0 0
dr m m r rdα

0⎡ ⎤ ⎡− = − = ⎤⎣ ⎦ ⎣C α d r r C S α C C α ⎦ . (A.23) 

 

and replacing the above expressions in Eq. (A.16) gives the following expression for the best-

estimate parameter covariance matrix:  

 

( )( ) ( ) ( )( )
( ) ( ) ( )

† 10 0 0

10 0 0 †

be
r m m r d m

m r d d r d

α α

−

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

C C C C S α C α C S α C

C C α C α C α

r
 (A.24) 

 

A similar sequence of computations leads to the following expression for the best-estimate 

response-parameter covariance matrix:   

 

( )( ) ( ) ( )( )
( ) ( ) ( )

† 10 0 0

10 0 0 †

be be
r r r m r d r

r r d d d

α α α α α

α α

−

−

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

C C C C C S α C α C S α C

C C α C α C α

α
 (A.25) 

 

Note in Eq. (A.22) that a symmetric positive matrix is subtracted from the initial parameter 

covariance matrix αC ; hence, in this sense, the best-estimate parameter uncertainty matrix 

be
αC  has been reduced by the calibration (adjustment) procedure, through the introduction of 

new information from experiments. Similarly in Eq. (A.24), a symmetric positive matrix is 

subtracted from the initial covariance matrix of the experimental-responses; hence, the 

best-estimate response covariance matrix C  has been improved (reduced) through the 

introduction of new experimental information. Furthermore, Eq. (A.25) indicates that the 

mC

be
r
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calibration (adjustment) procedure will introduce correlations between the calibrated 

(adjusted) parameters and responses even if the parameters and response were initially 

uncorrelated, since  even if 0be
rα ≠C 0rα =C

( )

 , i.e.,  

 

( )10 0
r m m
be

rcα α

−
⎡ ⎤ ⎡⎣ ⎦ ⎣C S α C⎤⎦ , when 0rα =C .  (A.26) = +C αC C

 

As the above expression indicates, the adjustment (calibration) modifies the correlations 

among the parameters through couplings introduced by the sensitivities of the participating 

responses; these sensitivities relate the initial parameter-covariances and experimental-

response covariances. In summary, the incorporation of additional (experimental) information 

in the adjustment (calibration) process reduces the variances of the adjusted parameters and 

responses while also modifying their correlations. 

 

Note that Eq. (A.24) expresses the best-estimate predicted response covariance matrix  in 

terms of the initial covariance matrix  of the experimental-responses. On the other hand, 

the expression of the computed best-estimate response covariance matrix, , can be derived 

directly from the model (the subscript “rc”, denotes “computed response”, to distinguish it 

from the covariance , which is obtained directly from the calibration/adjustment process). 

The starting point for computing  is the linearization of the model, similar to that shown in 

Eq. (III.10), but around  instead of , i.e. 

be
rC

mC

be
rc

0α

be
rcC

be
rC

beα

C

 

( ) ( )( )be be higher order terms= + − +α αbeS α αr R .   (A.27) 

 

It follows from Eqs. (A.27) that  
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( )( ) ( )( ) ( ) ( )( ) ( )

( ) ( )

( ) ( )( ) ( ) ( )( ) ( )

† ††

†

† 10 0 0

be be be be be be be
rc

be be be

be be
r d r

α

α α α α α

−

⎡ ⎤ ⎡ ⎤= − − = − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= ⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡= − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣⎢ ⎥⎣ ⎦

C r R α r R α S α α α α α S α

S α C S α

S α C C C S α C α C S α C S α
†
⎤⎦

 (A.28) 

 

Comparing Eq. (A.28) to Eq. (A.24) reveals that  since be be
rc r≠C C ( ) ( 0be ≠S α S α

α

) , in general. 

Nevertheless, when the model is “perfect” (i.e., free of numerical errors) and exactly linear, 

then the sensitivity matrix is independent of the parameter values , i.e.,  S

 

( ) ( )0be = =S α S α S , for “perfect” and linear models,   (A.29) 

 

It consequently follows that 

 

( ) ( )
( ) (

† 1 †

1† †

, " "

be
rc r d r

rc rc r rc e r r rc r

be
r perfect

α α α α α

α α α

−

−

⎡ ⎤= − − −⎣ ⎦

⎡ ⎤= − − + − − −⎣ ⎦
=

C S C C C S C C SC S

C C SC C C C S SC C C S

C for linear models.

)α   (A.30) 

 

The above equality can be demonstrated by using the following identity which holds for 

regular square matrices ,  and C , A B

 

( )( ) ( ) ( )( ) ( )1 1† † †− −
− − + − − − = − − + − − −A A C A B C C A C B B C A B C C B C† , (A.31) 
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and by effecting the replacements ,   in the above identity. For 

completeness, note that Eq. (A.31) can be obtained by starting from the identity 

rc→A C m→B C †
rα→C C S

 

( )( ) ( )( )1 1† † †− −
= − + − − + − + − −I A C A B C C B C A B C C , 

 

and by multiplying it on the right by ( )−A C  to obtain 

 

( )( ) ( )

( )( ) (
( )( ) ( )

( )( ) ( )
( )( ) ( )

1† †

1† †

1† †

1† †

1† †

−

−

−

−

−

− = − + − − −

+ − + − − − + − + −

= − + − − −

+ − + − − + − −

− − + − − −

A C A C A B C C A C

B C A B C C A C B B C C

A C A B C C A C

B C A B C C A B C C

B C A B C C B C

)†

)

)

 

 

a result which, after some minor rearrangements, reduces to Eq. (A.31). 

 

It is important to note that the computation of the best estimate parameter and response values, 

together with their corresponding best-estimate uncertainties, cf. Eqs. (A.9), (A.12), (A.22), 

(A.24) and (A.25) require the inversion of a single matrix, namely the matrix  defined 

in Eq. (A.6). This is often advantageous in practice, since the order of the matrix   is 

given by the number of measured (or computed responses), which is most often considerably 

smaller that the number of model parameters under consideration.  

( 0
dC α

dC ( 0α

On the other hand, when the number of parameter exceeds the number of responses, it is 

possible to derive alternative expressions for the best-estimate calibrated parameters and their 
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corresponding best-estimate covariances, by performing all derivations in the “parameter 

space” rather than in “response space”. This entails using Eq. (III.10) to eliminate the 

response (variables)  at the outset, and carrying out the minimization procedure solely for 

the parameters (variables) α . Alternatively, a considerable shortcut can be achieved by 

employing the Sherman-Morrison-Woodbury extension  

r

( ) ( )1† 1 1 1 † 1 †− 1 1−− − − −+ = − +A CBD A A C B D A C D A−   (A.32) 

where  and are invertible, and A B =D C ,  to rewrite the matrix ( ) 10
d

−
⎡ ⎤
⎣ ⎦C α  , defined in Eq. 

(A.6), in the following  alternative way  

 

( )
( )

11 †

11 1 1 † 1 † 1 †,

d rc r r m

m r

α α

rα α α

−−

−− − − − −

− − +

= − + − −

C C C S SC C

A A S C S A S S A A C C S SC
.  (A.33) 

 

The above expression provides the bridge between the “response-space” and “parameter-

space” formulations. This expression also highlights the fact that the response-space 

formulation requires a single inversion of a square symmetric matrix of the same dimensions 

as the number of responses. In contradistinction, the “parameter space” formulation requires 

the inversion of three symmetric matrices, two of which have dimensions equal to the number 

of parameters and one of dimensions equal to the number of responses. When the parameters 

and responses are initially uncorrelated, i.e., when rα =C 0 , the expressions in parameter 

space of the best-estimate calibrated (adjusted) quantities can be simplified somewhat by 

using the following special form of Eq. (A.32)  

 

( ) ( )1 1† † 1 † 1− − † 1− − −+ = +BC A CBC B C A C C A ,    (A.34) 
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in which case Eq. (A.33) can be rewritten in the form   

 

( ) 1† 1 1 † 1 † 1
d mα α

−− − −= +C S C C S C S S Cm
− , when rα =C 0 .   (A.35) 

 

In the above case, the “parameter-space” expressions for  and beα be
αC  become  

 

( ) 10 1 † 1 † 1be
mα

−− −= − +α α C S C S S Cm
− d ,   when rα =C 0 ,   (A.36) 

 

( ) 11 † 1be
mα α

−− −= +C C S C S ,   when rα =C 0 .   (A.37) 

 

The computational evaluation of the above expressions still require the inversion of two 

matrices of dimensions equal to the number of parameters, and of one matrix of dimensions 

equal to the number of responses. Hence, from a computational standpoint, the “response-

space” formulations should be used whenever possible. 

 

For completeness, the calibrated best-estimated predicted covariance matrices, corresponding 

to the calibrated best-estimates system parameters, are given below in component form:  

 

( ) ( )

( ) ( )

11 1
111

11

1 111 11 11

1 1 1

t
t

t t tt t t

t t

t t t t t t t t

Nbe be N

be

N N NN N Nbe be

N N
d d d d d

N N N N N N N N
d d d d d

α α α α

α

α α
α α

α α α α

α α α α

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟

−⎜ ⎟⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

C C C C
C

C CC C

C C K K C C

C C K K C C

… …

… … …
†1 t

t

N
d

N
d

 (A.38) 
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where 

 

( ) ( )

( ) ( )

11 111 11 † 1 †
111

1

1
111 1 † †

1

t
tt

t

t t t t
tt t t t t

N NN
r rN

d d

N N N N Nd d N N N N N
r r

ρρ
α α α α

ρα α

ρα α ρ
α α α α

ρ

=

=

⎛ ⎞
− −⎜ ⎟⎛ ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ − −⎜ ⎟

⎝ ⎠

∑

∑

C C S C C S
C C

C C
C C S C C S

…
…

 (A.39) 

 

The block-matrix expression in Eq. (A.38) can be written in component form, for the 

calibrated best-estimate parameter covariance matrix ( )be νμ

αC  between two (distinct or not) 

time-nodes, as follows 

 

( ) ( )†

1 1 1 1

t tN N
be

r d r

ρ ηνμ ρπνμ νρ νπ ρη ημ ηπ
α α α α α

η ρ π π= = = =

⎡ ⎤ ⎡
= − − −⎢ ⎥ ⎢

⎣ ⎦ ⎣
∑∑ ∑ ∑C C C C S K C S Cπμ

α
⎤
⎥
⎦

. (A.40) 

 

The expression of the calibrated best-estimate covariance block-matrix  for the best-

estimate responses is:  

be
rC

 

( ) ( )

( ) ( )

11 1
111

11

1 111 11 11

1 1 1

t
t

t t tt t t

t t

t t t t t t t

Nbe be N
r r m m

be
r

N N NN N Nbe be m m
r r

N N
rd rd d d rd rd

N N N N N N N N
rd rd d d rd rd

⎞⎛ ⎞⎛⎟⎜ ⎟⎜⎟⎜ = ⎟⎜⎟⎜ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
1 t

t t

N

N

⎞ ⎞ ⎞⎛ ⎛ ⎛
⎟ ⎟⎜ ⎜ ⎜

− ⎟ ⎟⎜ ⎜ ⎜
⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎝ ⎝

⎟
⎟

⎠ ⎠ ⎠

… …

… … …

C C C C
C

C CC C

C C K K C C

C C K K C C

†
  (A.41) 

 

where 
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( ) ( )

( ) ( )

11 111 11 † 1 †
111

1

1
111 1 † †

1

t
tt

t

t t t t
tt t t t t

N NN
m r m rN

rd rd

N N N N Nrd rd N N N N N
m r m r

ρρ
α α

ρ

ρρ
α α

ρ

=

=

⎞⎛
− − ⎟⎜⎞⎛ ⎟⎜⎟⎜ ⎟⎜=⎟⎜ ⎟⎜⎜ ⎟ ⎟⎜⎝ ⎠ − − ⎟⎜

⎝ ⎠

∑

∑

…
…

C C S C C S
C C

C C
C C S C C S

 (A.42) 

 

The block-matrix expression given in Eq. (A.41) can be written in component form, for the 

calibrated best-estimate parameter covariance matrix ( )be
r

νμ
C  between two (distinct or not) 

time-nodes as follows: 

 

( ) ( )†

1 1 1 1

t tN N
be
r m m r d m

ρ ηνμ ρπ

r
νμ νρ νπ ρη ημ ηπ

α α
η ρ π π= = = =

⎡ ⎤ ⎡
= − − −⎢ ⎥ ⎢

⎣ ⎦ ⎣
∑∑ ∑ ∑C C C C S K C S Cπμ ⎤

⎥
⎦

.  (A.43) 

 

A similar sequence of computations leads to the following expression for the best-estimate 

response-parameter covariance block-matrix be
rαC : 

 

( ) ( )

( ) ( )

11 1
111

11

1 111 11 11

1 1 1

t
t

t t tt t t

t t

t t t t t t t t

Nbe be N
r r r r

be
r

N N NN N Nbe be r r
r r

N N
rd rd d d d d

N N N N N N N N
rd rd d d d d

α α α α

α

α α
α α

α α

α α

⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞⎛
⎜ ⎟⎜ ⎟

−⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

C C C C
C

C CC C

C C K K C C

C C K K C C

… …

… … …
†1 t

t

N

N

⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

  (A.44) 

 

The block-matrices in the above expression can be written in component form, for the 

calibrated best-estimate parameter-response covariance matrix ( )be
r

νμ

αC  between two (distinct 

or not) time-nodes as follows: 
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( ) ( )†

1 1 1 1

t tN N
be
r r m r d r

ρ ηνμ ρπνμ νρ νπ ρη ημ ηπ
α α α α

η ρ π π= = = =

⎡ ⎤ ⎡
= − − −⎢ ⎥ ⎢

⎣ ⎦ ⎣
∑∑ ∑ ∑C C C C S K C S Cπμ

α
⎤
⎥
⎦

.  (A.45) 

 

Computing the calibrated best-estimate quantities by using Eqs. (A.11), (A.14), (A.40), 

(A.43), and (A.45) is clearly more advantageous in terms of storage requirements than the 

direct computations of the corresponding full block-matrices. The largest requirement of 

computational resources is involved when inverting the matrix . In view of Eq. (A.7), it is 

important to note that the inverse matrix, 

dC

1
d
−C , incorporates simultaneously all of the available 

information about the system parameters and responses at all time nodes [i.e., 1, 2,..., tNν = ]. 

Specifically, at any time node ν , 1
d
−C  incorporates information not only from time nodes 

prior to ν  (i.e., information regarding the "past" and "present" states of the system) but also 

from time nodes posterior to ν  (i.e., information about the “future” states of the system). 

Through the matrix , at any specified time node 1
d
−C ν , the calibrated best-estimates 

parameters ( )be ν
α  and responses ( ) berber α , together with the corresponding calibrated 

best-estimate covariance matrices ( )be νμ

αC , ( )be
r

νμ
C , and ( )be

r

νμ

αC  will also incorporate 

automatically all of the available information about the system parameters and responses at all 

time nodes [i.e., 1 tN, 2,...,ν = ].  

 

In this respect, the methodology presented in this section is conceptually related to the 

"foresight" aspects encountered in decision analysis. It is also important to note that, in 

practice, the application of the methodology developed in this section involves two distinct 

computational stages. A complete sensitivity data base (i.e., sensitivities nisνμ  at all times nodes 

, 1, , tNν μ = … ) needs to be generated prior to performing the “data assimilation” and “model 

calibration” (or data adjustment) stage, since all of the sensitivities are needed in order to 
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perform data assimilation and model calibration. These stages are performed subsequently, 

together with the computation of calibrated best-estimate covariance matrices (the 

“uncertainty analysis” stage), by combining the sensitivities with covariance matrices.  

 

A.1. Particular Case:  Two-Step “On-Line” Mathematical Framework 

 

If only information from two consecutive time nodes 1, ; (1, 2,..., )tk k k Nν = − =  is 

considered, then Eq. (III.6) becomes 

 

( )
( )

11 01 1 1, 1

, 1 , 0

kkk k k k

k k k k k k kk

−−− − − −

−

⎛ ⎞−⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ −⎝ ⎠

α αr R S 0
r R S S α α

.   (A.46) 

 

Corresponding to the relation above, the “sandwich formula” , which yields the 

covariance matrix for the computed linearized responses, cf. Eq. (III.12), reduces to  

†
rc αC SC S

 

( ) ( )
( )

† †1, 1 , 11, 1 1, 1, 1 1,1, 1

, 1 , , 1 ,, 1 , †,

k k k kk k k k k k k kk k
rc rc
k k k k k k k kk k k k k krc rc

α α

α α

− − −− − − − − −− −

− −−

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎜ ⎟=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

S SC C C CS 0
C C C CS S 0 S

 (A.47) 

 

Carrying out the above matrix multiplications yields the following explicit expressions of the 

components of the covariance matrix,  , of the computed responses:  rC

 

( ) ( )†1, 1 1, 1 1, 1 1, 1 1, 1k k k k k k k k k k
rc rcα
− − − − − − − − − −= =C S C S C

†
   (A.48) 

( ) ( )
( )

† †1, 1, 1 1, 1 , 1 1, ,

†, 1

k k k k k k k k k k k k
rc

k k
rc

α α
− − − − − − −

−

⎡ ⎤= +⎢ ⎥⎣ ⎦

=

C S C S C S

C
   (A.49) 
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( ) ( )
( )

† †, 1 , 1 1, 1 1, 1 , , 1 1, 1

†1,

k k k k k k k k k k k k k k
rc

k k
rc

α α
− − − − − − − − −

−

= +

=

C S C S S C S

C
    (A.50) 

( ) ( )

( ) ( )
( )

† †, , 1 1, 1 , 1 1, ,

† †, , 1 , 1 , ,

†,

k k k k k k k k k k k k
rc

k k k k k k k k k k

k k
rc

α α

α α

− − − − −

− −

⎡ ⎤= +⎢ ⎥⎣ ⎦
⎡+ +⎢⎣

=

C S C S C S

S C S C S

C

⎤
⎥⎦

x

   (A.51) 

 

Recall that the inversion of the symmetric matrix †
d rc r rα α− − +C C C S SC C

)tN

 plays a 

central role in the computation of the calibrated best estimate results. If only information from 

two consecutive time nodes 1, ; (1, 2,...,k k kν = − =  is considered, then the matrix  

reduces to: 

dC

 

( ) ( )

( )

1, 1 1, 1, 1 1, 1 1, 1,

, 1 , , 1 , 1 , ,

1, 11, 1 † 1, 1 1, 1 1, 1 1, 1, †

1

1, 1, 1 †

k k k k k k k k k k k k
d d rc m rc m

d k k k k k k k k k k k k
d d rc m rc m

kk k kk k k k k k k k k k k
r r r r

k

k kk k
r

ρρ
α α α α

ρ

α

− − − − − − − − −

− − −

− −− − − − − − − − − −

= −

− −−

⎞ ⎞⎛ ⎛ + +
=⎟ ⎟⎜ ⎜

+ +⎝ ⎝⎠ ⎠

+ +

−
∑

C C C C C C
C

C C C C C C

C S S C S C C S

C S ( ), 1 , †

1 1

.
k k kk k k k k

r r
k k

ρρ ρ ρ ρ ρ
α α

ρ ρ

−

= − = −
rα

⎞⎛
⎟⎜
⎟⎜
⎟⎜ ⎡ ⎤+ + ⎟⎜ ⎢ ⎥⎣ ⎦⎝ ⎠

∑ ∑S C C S S C

 (A.52) 

 

Since both  and  are nonsingular sub-matrices, the partitioned matrix  can be 

inverted directly (“by partitioning”); noting that  

1, 1k k
d
− −C ,k k

dC dC

 

1, 1 1,
1

, 1 ,

k k k k
d d

d k k k k
d d

− − −
−

−

⎛ ⎞
⎜
⎝ ⎠

K K
C

K K ⎟  ,     (A.53) 

 

it follows that components d
νηK  can be computed using the following expressions:  
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( )
( ) ( ) ( )

111, 1 1, 1 1, , , 1

1 11, 1 1, 1 1, , , 1 1, 1

k k k k k k k k k k
d d d d d

k k k k k k k k k k k k
d d d d d d

−−− − − − − −

1− − −− − − − − − − −

⎡ ⎤= −⎢ ⎥⎣ ⎦

= +

K C C C C

C C C K C C
 (A.54) 

 

( ) ( )
( )

11 11, 1, 1 1, , , 1 1, 1 1,

11, 1 1, ,

k k k k k k k k k k k k k k
d d d d d d d

k k k k k k
d d d

−− −− − − − − − − −

−− − −

⎡ ⎤= − −⎢ ⎥⎣ ⎦

= −

K C C C C C C

C C K
 (A.55) 

 

( )
( ) ( ) ( )

11, , , 1 1, 1 1,

1 1, , , 1 1, 1 1, ,

k k k k k k k k k k
d d d d d

k k k k k k k k k k k k
d d d d d d

−−− − − −

− − − − − −

⎡ ⎤= −⎢ ⎥⎣ ⎦

= +

K C C C C

C C C K C C
1−

−

   (A.56) 

 

( ) ( )
( )

11 1, 1 , , 1 1, 1 1, , , 1

1, , 1 1, 1

k k k k k k k k k k k k k k
d d d d d d d

k k k k k k
d d d

−− −− − − − −

− − − −

⎡ ⎤= − −⎢ ⎥⎣ ⎦

= −

K C C C C C C

C C K
  (A.57) 

 

The calibrated best-estimate parameter values are given by the following reduced form of. Eq. 

(A.10):  

 

( )
( )

( )
( )

( ) ( )

( ) ( )

1, 1 ,1, 1 1, 1 † 1, 1, †1 10
1

0 1, 1, 1 , 1 † . , †

1

1,

1

,

1

kk k kk k k k k kk kbe r r
k

k k kbe k k kk k k k k k k
r r

k

k
k
d

k

k
k
d

k

ρρ
α α α α

ρ

ρρ
α α α α

ρ

η η

η

η η

η

− −− − − − −− −

= −

− −− −

= −

−

= −

= −

⎛ ⎞
− −⎛ ⎞ ⎛ ⎞ ⎜ ⎟

⎜ ⎟ ⎜ ⎟ ⎜ ⎟= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ − −⎜ ⎟⎝ ⎠ ⎝ ⎠
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎜ ⎟×
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

∑

∑

∑

C C S C C Sα α

α α C C S C C S

K d

K d

,

(A.58) 

 

 
CASL-U-2011-0055-000



As Eq. (A.58) indicates, the components ( )kbeα , representing the calibrated best-estimates for 

the system parameters at time node k , can be written in a particular form of Eq. (A.11), as 

follows: 

 

( ) ( ) ( )0 †

1 1 1

k kk kbe k k
r

k k k

μ μρμ ρ μη
α α

μ ρ η= − = − = −

⎧ ⎫⎡ ⎤ ⎡⎪ ⎪= + −⎨ ⎬⎢ ⎥ ⎢
⎪ ⎪⎣ ⎦ ⎣⎩ ⎭

∑ ∑ ∑α α C C S K dd
η ⎤
⎥
⎦

.  (A.59) 

 

The calibrated best-estimate covariance matrix, be
αC , for the above calibrated best-estimates 

system parameters is obtained by particularizing Eq. (A.38) to two consecutive time nodes 

, which leads to  ( 1,k k− )

 

( ) ( )
( ) ( )

1, 1 1,
1, 1 1,

, 1 ,, 1 ,

†1, 1 1, 1, 1 1, 1, 1 1,

, 1 , , 1 , , 1 ,

k k k kbe be k k k k
be

k k k kk k k kbe be

k k k k k k k k k k k k
d d d d d d
k k k k k k k k k k k k

d d d d d d

α α α α
α

α αα α

α α α α

α α α α

− − −
− − −

−−

− − − − − − − − −

− − −

⎛ ⎞ ⎛ ⎞⎜ ⎟ = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞⎛ ⎞
−⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

C C C C
C

C CC C

C C K K C C
C C K K C C

  (A.60) 

 

where 

 

( ) ( )

( ) ( )

1, 1 ,1, 1 1, 1 † 1, 1, †
1, 1 1,

1

, 1 , 1, 1 ., 1 , 1 † , , †

1

kk k kk k k k k k k
r rk k k k

kd d
k k k k kk k kk k k k k k kd d

r r
k

ρρ
α α α α

ρα α

ρρα α
α α α α

ρ

− −− − − − − −
− − −

= −

−
− −− −

= −

⎛ ⎞
− −⎜ ⎟⎛ ⎞ ⎜ ⎟=⎜ ⎟ ⎜ ⎟⎝ ⎠ − −⎜ ⎟

⎝ ⎠

∑

∑

C C S C C S
C C
C C C C S C C S

  (A.61) 

 

The components ( )be νμ

αC , ( , of the (block) covariance matrix ), 1,k kν μ = − be
αC  given by Eq. 

(A.60) can be written in the following particular form of Eq. (A.40):  
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( ) ( )†

1 1 1 1

1, ; 1, ;

k k
be

r d r
k k k k

for k k and k k

ρ ηνμ ρπνμ νρ νπ ρη ημ η
α α α α α

η ρ π π

ν μ
= − = − = − = −

⎡ ⎤ ⎡
= − − −⎢ ⎥ ⎢

⎣ ⎦ ⎣
= − = −

∑ ∑ ∑ ∑C C C C S K C S Cπ πμ
α
⎤
⎥
⎦

η ⎤
⎥
⎦

.  (A.62) 

 

The vector ( , representing the calibrated best-estimates for the system parameters at a 

time node , is a particular form of Eq. (A.14), as follows: 

)kber

k

 

( ) ( ) ( )†

1 1 1

k kk kbe k k
m m r d

k k k

μ μρμ ρ μη
α

μ ρ η= − = − = −

⎧ ⎫⎡ ⎤ ⎡⎪ ⎪= + −⎨ ⎬⎢ ⎥ ⎢
⎪ ⎪⎣ ⎦ ⎣⎩ ⎭

∑ ∑ ∑r r C C S K d .   (A.63) 

 

Similarly, the calibrated best-estimate covariance block-matrix  for the best-estimate 

responses takes on a particular form of Eq. (A.43), having in this case four components  

be
rC

( )be
r

νμ
C , , expressed as follows:  ( , 1,k kν μ = − )

r

 

( ) ( )†

1 1 1 1

1, ; 1, ;

k k
be
r m m r d m

k k k k

for k k and k k

ρ ηνμ ρπνμ νρ νπ ρη ημ η
α α

η ρ π π

ν μ
= − = − = − = −

π πμ⎡ ⎤ ⎡
= − − −

⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣

= − = −

∑ ∑ ∑ ∑C C C C S K C S C
⎦ . (A.64) 

 

A similar sequence of computations leads to the following particular  form of  Eq. (A.45), for 

the four matrix-valued components ( )be
r

νμ

αC , ( ), 1,k kν μ = − , of the best-estimate response-

parameter covariance matrix be
rαC : 

 

( ) ( )†

1 1 1 1

1, ; 1, ;

k k
be
r r m r d r

k k k k

for k k and k k

ρ ηνμ ρπνμ νρ νπ ρη ημ η
α α α α

η ρ π π

ν μ
= − = − = − = −

⎡ ⎤ ⎡
= − − −⎢ ⎥ ⎢

⎣ ⎦ ⎣
= − = −

∑ ∑ ∑ ∑C C C C S K C S Cπ πμ
α
⎤
⎥
⎦ .  (A.65) 
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