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Demonstration of Validation Methodology Applied to VIPRE-W Boiling Index
Calculations

Brian J. Williams, Brian M. Adams, Yixing Sung, Walter R. Witkowski

1. Introduction

The initial CASL validation plan (AMA.VAL.Y1.02) provided a roadmap for validating
the Virtual Environment for Reactor Applications (VERA) software for industrial
applications. The general approach was adapted to several CASL challenge
problems, including Crud Induced Power Shift (CIPS). In this demonstration
supporting CASL milestone VUQ.SAUQ.Y1-2.01, we are concerned with comparing
VIPRE-W calculations of boiling index with experimental calculations of crud index.

A component of the initial VERA release, VIPRE-W is a Westinghouse version of the
VIPRE-01 code. VIPRE-01 is a thermal hydraulic subchannel code based on the
COBRA codes developed by Pacific Northwest National Laboratories under
sponsorship of the Electric Power Research Institute (EPRI) [1]. VIPRE-W contains
enhancements for pressurized water reactor applications, including the mass
evaporation and grid spacer heat transfer models required for CIPS risk assessment.

Figure 1 shows an axial diagram of a Westinghouse fuel assembly in Plant B that had
a CIPS occurrence. For specified settings of uncertain physics model parameters,
VIPRE-W calculates a boiling index in each of the axial regions 4A, 4B, 54, 5B, 6A, 6B,
7A, and 7B. The grid span for each axial region consists of 5-7 nodes, each with four
channels in the VIPRE-W model. For each node, the percentage of channels in
subcooled boiling (positive mass evaporation rate) is calculated. The boiling index
for each axial region is then computed as a weighted average of these percentages
across its constituent nodes, with weights given by the lengths of each node.
Additional details on the VIPRE-W simulations used in this study are provided in [2].

Experimental measurements of crud index for four assemblies belonging to Plant B
are used to calibrate uncertain parameters in VIPRE-W physics models and to
validate VIPRE-W predictions of boiling index. Crud index was estimated for each
axial region 4A-7B by observing the relative surface area covered with crud [3].
Crud index measurements from three assemblies designated F71, F22, and F88
were used for parameter calibration. Crud index data from assembly F09 were held
aside and compared with calibrated VIPRE-W predictions of FO9 boiling indices for
each axial region.

[t is critical to note that VIPRE-W boiling index is indirectly related to crud
formation and thus should be cautiously compared to observed crud index. A key
assumption in the study is that the VIPRE-W boiling index is comparable to the crud
index. Future studies with VERA capable of predicting crud deposition will allow
direct calculation of crud index, allowing a scientifically defensible validation
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Figure 1. Diagram of fuel rod in Plant B assemblies showing axial regions 4A - 7B in
which VIPRE-W calculated boiling index is compared with experimental crud index.

utilizing the approach outlined in the next section.

Table 1 provides the five uncertain physics (or modeling) parameters with their
allowable ranges of variation in VIPRE-W calculations. These parameters are
assigned uniform prior distributions on these ranges in the sensitivity analyses and
calibrations of the next section.

Table 1. VIPRE-W uncertain physics parameters and allowable ranges.

Parameter Range Parameter Range

Lead coefficient of Dittus-Bolter 0.019 - Lateral Resistance Correlation 1.5-4

Correlation (DBCoeff) 0.033 Coefficient (LRCCoeff)
Lead Coefficient of Grid Heat 2-6 Exponent of Partial Boiling 1-4
Transfer Model (GHTCoeff) Model (ExpPBM)
Axial Friction Correlation 0.1-
Coefficient (AFCCoeff) 0.25
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Table 2 presents the experimentally observed values of crud index for each axial
region across the four assemblies. Observational uncertainties were not recorded;
however, they are a required component in statistical calibration of uncertain model
parameters. For the purposes of this analysis, we assumed a binomial model for
uncertainty in crud index, having one standard deviation equal to 10% of a crud
index measurement of 0.5 (ie., 0.05). Future applications of these data for VERA
validation will explore the sensitivity of results to assumptions about observation
error.

Table 2. Crud index measurements for four Plant B assemblies used in calibration
and validation analyses.

Axial Region F71 F22 F88 F09
7B 0.025 0.025 0.35 0.325
7A 0.1075 0.0375 0.4625 0.3
6B 0.475 0.2125 0.7875 0.4125
6A 0.38 0.1375 0.625 0.35
5B 0.3925 0.125 0.5625 0.35
5A 0.2125 0.075 0.3375 0.2375
4B 0.1175 0.0375 0.2125 0.1625
4A 0.0175 0.0125 0.095 0.05

2. Analyses

For each assembly, VIPRE-W boiling index output is viewed as a function of axial
location. A symmetric Latin hypercube design [4] in the five physics variables of
Table 1 was used to specify 200 VIPRE-W runs, from which surrogate models of
boiling index were built for each assembly. These surrogate models were utilized
for all sensitivity analyses and calibrations of the physics variables described in this
section.

We provide a brief description of the statistical modeling approach taken in this
study to provide context for the results presented. Let m(t) denote the vector of
boiling indices calculated at each of the eight axial regions 4A - 7B, corresponding to
physics variable setting t. An orthogonal basis representation for boiling index is
specified,

3
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n(t) =kw,(t)+--+k, w, (t).

J

The basis vectors k ...,k are eigenvectors of the principal component

decomposition derived from the covariance matrix of the 200 VIPRE-W calculations
of boiling index, while all principal component coefficients w,(t) are modeled as

independent Gaussian processes [5,6]. All components having positive variance are
included in this surrogate model.

For each assembly, the sensitivity of boiling index to variation in the five physics
variables was assessed using the methodology [7], extended to account for
uncertainty in the surrogate models [8]. Table 3 provides main and total effect
indices [9] for each physics variable by assembly. Assuming a uniform distribution
on the inputs, the main effect index for a specific input measures the fraction of total
output variance explained by variation in that input. The total effect index measures
the fraction of total output variance explained by the single and all interaction
effects involving that input. The results in Table 3 show that output variance is
dominated by variation in DBCoeff (explaining roughly 95% of total output
variance), and that interaction effects involving multiple inputs are fairly
insignificant. Therefore, the crud index measurements will inform mostly on
DBCoeff, providing a focus for the following calibration results.

Table 3. Sensitivity analysis results for VIPRE-W boiling index across four Plant B
assemblies (ME = main effect; TE = total effect).

F71 F22 F88 F09

Parameter ME TE ME TE ME TE ME TE
(%) (%) (%) (%) (%) (%) (%) (%)

DBCoeff 94.8 98.1 93.6 98.1 93.1 96.8 96.6 98.4
GHTCoeff 1.7 4.8 0.4 3.3 2.5 5.6 1.2 2.8

AFCCoeff 0 0.4 0.2 3.2 0.4 1.6 0.3 0.7
LRCCoeff 0 0.4 0.1 2.8 0 0.6 0 0.2
ExpPBM 0 0.3 0.1 2.8 0 0.4 0 0.2

Let 0 denote the unknown, best values of the five physics parameters given in Table
1. By “best,” we seek an answer to the question, “What probability distribution for 6
is most consistent with experimental evidence and prior information?” The
approach taken in this analysis is fully Bayesian. As mentioned previously, we
assume a uniform prior distribution on @ with ranges given in Table 1. In general,
expert judgment or small-scale data may be used to inject additional prior
information.

4
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Although the true crud index T is unobservable, it is related to the experimental
values y through an observational error model €, y =T + &. The error model is
stochastic and represents the investigator’s assumptions on the underlying random
processes leading to replicate variation in experimental results. This includes
measurement errors but extends beyond those to incorporate inherently irreducible
(aleatory) uncertainties. We assume independent Gaussian errors across each
element y; of the crud index vector y, having binomial variances yi(1 - yi)/100.

The “best” VIPRE-W boiling index calculation is connected to the true crud index
through a refinement of the above observational error model: T =n(0) + 8. The
statistical model for m introduced earlier is retained, and discrepancy 8 is modeled
as a kernel regression: 6 = Dv, where the columns of D are 13 Gaussian kernels
centered on a set of equally spaced knots spread out along the axial dimension of the
fuel rod and v are a priori statistically independent Gaussian random variables.
Discrepancy accounts for the possibility that no best setting 6 can be found such
that the resulting VIPRE-W boiling indices match the corresponding experimental
crud indices simultaneously to within observational error.

With these specifications, calibration proceeds by solving an inverse problem for 0
to obtain its posterior distribution [10-12]. This is often accomplished through
forward sampling algorithms such as Markov chain Monte Carlo (the method
adopted in this analysis) although recently adjoint methods have been employed
[13]. Additional details on calibration of 0 in the presence of functional output (as is
the case here) can be found in [14]. Calibrated predictions of boiling index are
obtained by propagating a posterior sample of @ forward through VIPRE-W. Such
predictions are used in the validation assessment for the FO09 assembly described
below.

Two joint calibrations of the five physics inputs 8 were performed, the first to crud
index data from F71 and F22 simultaneously, and the second to crud index data
from F71, F22, and F88 simultaneously (see Table 2). The crud indices from
different assemblies are taken to be conditionally independent given a value for 0.
Figure 2 compares calibrated VIPRE-W boiling indices from these two analyses for
the F22 and F88 assemblies. Two immediate conclusions arise:

* The two joint calibrations do not result in predictions that are entirely
consistent. This can be seen, for example, in the central axial regions 5B, 64,
and 6B. This is a consequence of the fact that the average power for the three
assemblies differs: 1.18 times nominal (F71), 1.26 (F22), and 1.29 (F88).
Including the higher power assembly F88 in the joint calibration modifies the
calibration sufficiently to cause a shift in the resulting predictions at some
axial locations. This effect is clearly seen in Figure 3, which shows the
marginal posterior distribution for the most sensitive physics input DBCoeff
arising from both calibrations. Inclusion of F88 causes a shift to larger values
of DBCoeff, suggesting the undesirable result that physics variable calibration
depends significantly on operating conditions.

5
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* Significant discrepancy between observed crud index and calibrated VIPRE-
W boiling index exists at some axial locations.

F22 Calibrated Predictions F88 Calibrated Predictions
Bl *» — Bl —e
- data
. nominal .
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Figure 2. Calibrated VIPRE-W boiling index predictions for assemblies F22 (left)
and F88 (right). Results are given for the nominal VIPRE-W boiling index
calculation (cyan) and two calibrations using crud index data (black) from F71 and
F22 (green) and F71, F22, and F88 (blue). 95% prediction intervals are shown for
the calibrated predictions along with three-sigma bounds on the observation errors.

Calibrated predictions of VIPRE-W boiling index for FO9 were computed and shown
in Figure 4 for the two calibrations described previously. The purpose of examining
these predictions is to assess if comparing them with the corresponding FO9 crud
index measurements allows for validation of VIPRE-W boiling index calculations for
this assembly. As with assessment of the calibration results above, although the
crud index measurements from the other assemblies substantially constrain VIPRE-
W predictions of FO9 boiling index, significant discrepancy remains at several axial
locations. Furthermore, inclusion of F88 crud index measurements in the
calibration generally improves VIPRE-W predictions of FO9 boiling index at axial
locations 5B, 6A and 6B. This is not surprising given the average power of the F09
assembly is the same as that of F88; nevertheless, uncertainties in VIPRE-W
predictions at these axial locations are large relative to observational uncertainty
and would be reduced simultaneously with the mitigation of discrepancy that is
anticipated with access to the enhanced capabilities of VERA.
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Figure 3. Prior (red) and marginal posterior distributions for DBCoeff based on two
calibrations to crud index from F71 and F22 (green) and F71, F22, and F88 (blue).
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Figure 4. Calibrated VIPRE-W boiling index predictions for assembly F09. Results
are given for the nominal VIPRE-W boiling index calculation (cyan) and two
calibrations using crud index data (black) from F71 and F22 (green) and F71, F22,
and F88 (blue). 95% prediction intervals are shown for the calibrated predictions
along with three-sigma bounds on the observation errors.
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Table 4 presents the nominal values for the five uncertain physics variables and
their posterior median values from the calibration to the F71, F22, and F88 crud
index measurements.

Table 4. Nominal and posterior median values for uncertain physics variables.

Parameter Posterior Median Nominal Parameter Posterior Median Nominal

DBCoeff 0.0225 0.023 LRCCoeff 3.008 2.66
GHTCoeff 4.444 2.22 ExpPBM 2.985 2
AFCCoeff 0.203 0.184

Table 5 compares the VIPRE-W boiling index predictions for FO9 at axial levels 4A -
7B resulting from the posterior median values in Table 4 with those from the
nominal values and the observed crud index values. The only differences in the
predictions from the posterior median and nominal values occur in axial regions 64,
where the F09 crud index is substantially over-predicted by the nominal values, and
5A where the nominal prediction is slightly closer to the observed data.

Table 5. Comparison of VIPRE-W boiling index predictions for FO9 using the
posterior median and nominal parameter values.

Axial Location

4A 4B S5A 5B 6A 6B 7A 7B
Posterior 0 0 0 0.5 0.5 0.5 0.167 0
Median
Nominal 0 0 0.05 0.5 0.643 0.5 0.167 0

F09 Crud 0.05 0.1625 0.2375 0.35 0.35 0.4125 0.3 0.325
Index

This study included four uncertain operating parameters that were fixed at nominal
values for the calibration studies above. Table 6 lists these parameters with their
ranges and the means and standard deviations of independent Gaussian
distributions (truncated on the given ranges) representing uncertainty in their
values. Figure 5 presents VIPRE-W boiling index predictions for assembly F09 that
includes these uncertainties in addition to the physics uncertainties. It is clearly
seen that inclusion of operating parameter uncertainty substantially increases
uncertainty in VIPRE-W boiling index predictions beyond the level seen in Figure 4.

8
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Table 6. Operating parameters with ranges and means and standard deviations of
Gaussian distributions (truncated) representing their uncertainty.

Parameter Ranges Mean Standard Deviation
Assembly Power 60.9 - 73.0 66.9454 2.008362
(power)
Coolant Flow (flow, 16.05-16.88 16.47 0.2058323
gpm)
Temperature 554.4 - 566.4 558.8 3

(temperature, °F)

System Pressure 2185 - 2315 2270 25
(pressure, psia)

Therefore, validation of VERA crud index predictions will require substantial
reduction in operating parameter uncertainty.

3. Future work

This calibration/validation study is limited by the fact that VIPRE-W alone cannot
calculate crud index; rather, it computes boiling index as a surrogate. This will be
remedied with the next release of VERA, which includes the BOA code for computing
crud deposition. The interpretability of results from this or similar studies is
expected to improve with the VERA multi-physics codes, allowing better
comparisons between code calculations and experimental data. Furthermore, the
following extensions to the methodology in this study will be pursued in future
iterations subject to feasibility:

* Inclusion of small-scale data to calibrate separate physics models within
VERA component codes ANC, VIPRE-W and BOA.

* Inclusion of additional plant data for calibration and validation of separate
and coupled physics models relevant to prediction of crud deposition.

* Application of rigorous quantitative validation criteria (eg. [15]).

* Replacement of statistical surrogates with direct code calculations in
sensitivity analysis and calibration algorithms for applications in which code
calculations are relatively fast (on the order of minutes).

* Comparison of results with alternative calibration and validation paradigms.

9
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FO09 Validation with Operating Uncertainty
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Figure 5. VIPRE-W boiling index predictions for assembly F09, including operating
and physics parameter uncertainties. Results are given for the nominal VIPRE-W
boiling index calculation (cyan), prior uncertainty in the physics variables (red), and
physics uncertainty resulting from the calibration to crud index data (black) from
F71,F22, and F88 (blue). 95% prediction intervals are shown for the predictions
along with three-sigma bounds on the observation errors.

* Extension to additional CASL challenge problems.
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