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Introduction

Introduction

Uncertainty Quantification for Computer Simulations

Needed when PDE-governed system has uncertainty due to random
inputs

Includes propagating uncertainty to outputs efficiently

Used for design, optimization, and characterization

Output-based adaptive methods

Provide accurate outputs with efficient use of computing resources

Return estimates of error in output calculation
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Introduction

Goal and Approach of this Work

Goal
To develop a nonintrusive method for output-based error estimation and
adaptation in both deterministic and stochastic spaces

Approach

Choose simulations to refine and new ~α’s to simulate

Consider exact solution in deterministic (~x) and stochastic (~α) spaces:
u(~x , ~α)

Define statistical output J(u(~x , ~α), ~x , ~α) (may include priors)

Use deterministic adjoint and residual information for adaptation

Restrict present study to one dimension in x and α and

J(y) ≡
∫

f (y(u(x , α)))dα
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Discretizations

Deterministic Space

1D model problem

−α∂
2u
∂x2 + c

∂u
∂x

= S(x , α)

Solve via LDG method
C11 = (px + 1)2/h

DG test functions
φi

H(x) ∈ Ppx

Solution uH(x) ∈ Ppx s.t.
Rx

H(uH , φ
i
H) = 0, ∀i

Dual problem

Define output y(u(x))

Adjoint equation

∂Rx
H

∂uH

T

ψH =
∂yH

∂uH

T

Solved by inverting the
Jacobian-transpose
LDG is dual-consistent
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Discretizations

Deterministic Space

c = 5, α = 2.11

S = 4
25α

3x2 sin(αx2/5)− 2
5α

2 cos(αx2/5) + α
x2 + 2

5αcx cos(αx2/5) + c
x

For x ∈ [1, 5], BC: u(1, α) = u(5, α) = 0, with Nx = 16 elements, px = 2

y =

Z 3

2
u(x)dx = 0.874
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Discretizations

Stochastic Space

Parameters
Consider parameters of PDE, e.g. µ, c
Each parameter yields another dimension of u(~x , ~α)

Collocation in ~α: nonintrusive, but sabotages dual-basis

Solution and Output

Interpolate u(~x) in ~α-space in tensor-product fashion
Statistical output J(y(~α)) defined over entire parameter space

e.g. std. dev. of performance, probability of failure

x

α

u(x , α)

α

y(α)
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Discretizations

Stochastic Space

J =

Z 3

1
y(α)dα = 1.8462
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Error Estimation

Discrete DWR
Output, correction, and error estimate

J =
∑

i

wi f (y(αi)), αi ∈ T αH

∆J =
∑

i

wi
∂fh
∂yh,i

[IxIαi ψHH ]
T Rx

h (IxIαi uHH ;αi), αi ∈ T αh

δJ =
∑

i

wi
∂fh
∂yh,i

[ψhh − IxIαi ψHH ]
T Rx

h (IxIαi uHH ;αi), αi ∈ T αh

ψhh ≈
(
∂Rx

h (IxIα
i uHH ;αi )

∂uh

)−T
∂yh
∂uh

T

wi = integration weights for
trapezoid rule

x

α

T αH T x
H VHH

x
T αh T x

h Vhh

Πα

Iα
Ix
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Error Estimation

Continuous DWR

Correction and error estimate

∆J =
∑

q

wq
∂fh
∂yh,q

[
IxIαq ψHH

]T Rx
h (IxIαi uHH ;αq)

δJ =

∫
f ′[y ] (Rx (uHH , ψ−ψHH ;α)) dα

≈
∑

q

wq
∂fh
∂yh,q

[
ψhh − IxIαq ψHH

]T Rx
h (IxIαq uHH ;αq)

ψhh ≈
(
∂Rx

h (IxIα
q uHH ;αq)

∂uh

)−T
∂yh
∂uh

T

αq,wq = LGL integration points and weights
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Error Estimation

Calculating Rx
h(·;αi)

A common mesh
Use common mesh within α-slabs
Tree structure: common mesh = “maximum” mesh
Intrusiveness: transfer (inject) solutions between meshes

← u(x , αi)αi

← u(x , αi+1)αi+1

← Common meshαi+1/2

LGL nodes

Evaluating residuals

Discrete (Collocation): if splitting α-slabs, need Rx
h (·;αi+1/2)

Continuous (FEM): need to evaluate Rx
h at quad-points αq
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Error Estimation

Adjoint Reconstruction

Correction
ψHH (pα = 1: linear interp. in α) injected onto Vhh

Error estimate: reconstructing ψhh

Solve for ψ(x , αi) exactly ψhh

Interpolate ψHH in x and α Ĩx ĨαψHH

Solve from appx. fine Jacobian
(
∂Rx

h (IxIα
i uHH ;αi )

∂uh

)−T
∂yh
∂uh

T

Solve from coarse Jac., interp. in x Ĩx
[(

∂Rx
H (Iα

i uHH ;αi )
∂uH

)−T
∂yH
∂uH

T
]

New Jacobian assembly or interpolate it in α
Actually use δψ = Iα (Παψhh − IxψHH) so that δψ 6= 0 at αi , αi+1
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Error Estimation

Adjoint Reconstruction
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Error Estimation

Adjoint Reconstruction
px = 1
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Error Estimation

x-α Splitting

Error estimate for a specific fine space→ fraction of error
x-only: refine x-meshes
α-only: new simulations (same x-mesh)

No error contamination
Used for efficient anisotropic adaptation

x

α

VHH x

α

VhH

x

α

VHh x

α

Vhh
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Error Estimation

Adaptive Indicators: Other Methods

Interpolation error in
x : single simulation, fine x-mesh
α: interp. of u on coarse x-mesh at αi+1/2

Residuals
x : Rx

h (IxuHH ;αi ), αi ∈ T αH (old sims on fine mesh)

α: Rx
H(Iαi uHH ;αi ), αi ∈ T αh (resid. at new α: no eqn. in α)

Jumps in
x : uHH across x-elements
α: nearby uHH at αi+1/2 (assumes smoothness of jumps; no eqn. or
jumps in α)

Asher and Fidkowski (UM) USNCCM 2011 July 26, 2011 16 / 31

CASL-U-2011-0077-000



Error Estimation

Refinement Strategy

Allocating DOFs

Split x-elements or α-slabs in half
C({(αi , Tj);αk+1/2}) = DOFs actually solved for

Work growth: Cn ≤ fgCn−1

Choosing {(i , j); k}: knapsack problem
Nonlinear cost f’n: C({(1,1), (1,2); ·}) < C({(1,1), (2,2); ·})
No polynomial time algorithm for exact solution
Appx. sol’n: allocate x and α DOFs (fα), then add extra x-elements
(fx )

Choosing mesh for αi+1/2

Coarse mesh
Common mesh, refine if surrounding elements are refined
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Error Estimation

Refinement Strategy
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Results

px = 1, fx = 0.5 px = 2, fx = 0.5
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Results

Discrete vs. continuous, px = 1, 2, 3

Varying adaptation parameter, px = 1

Other adaptation metrics, px = 1

Other adaptation metrics, px = 2
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More Stochastic Dimensions

Two Stochastic Dimensions: Discretization and
Results

Tensor product grid for simplicity, adaptive
Sparse grids give slightly better scaling with dimensionality

−α1
∂2u
∂x2 + (5 + α2x)

∂u
∂x

= 1

Solved with x ∈ [1,5], α1 ∈ [4,5], α2 ∈ [1,2]. BC: u(1; ·) = u(5; ·) = 0.

α1

α2

x
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More Stochastic Dimensions

Two Stochastic Dimensions: Discretization and
Results

px = 1, perspective of α1
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More Stochastic Dimensions

Two Stochastic Dimensions: Discretization and
Results

px = 1, perspective of α2
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Conclusions and Future Work

Conclusions

Developed nonintrusive method for error estimation and
adaptation in ~x- and ~α-spaces; requires ability to

Solve for u and ψ
Transfer solutions between meshes
Evaluate residuals and ψ at intermediate ~α
Adaptively refine ~x-mesh

Can take advantage of cheap residual evaluations for more
accurate error estimates
Adaptive converges at same rate as uniform, uses same or less
computation time, can use fewer DOFs
Adaptive converges faster than other adaptation metrics, plus
error estimates

Asher and Fidkowski (UM) USNCCM 2011 July 26, 2011 24 / 31

CASL-U-2011-0077-000



Conclusions and Future Work

Future Work

Inconsistencies in discretization and non-zero correction,
convergence rates
Adaptation constants (DOF growth factor, extra x-element factor)
Adaptation mechanics (multiple refinements)
More deterministic dimensions
More stocastic dimensions: kriging

High-dim. interp, complexity independent of number of dimensions
Assumes stochastic nature of parameters (as opposed to
response-surface method)
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Conclusions and Future Work

Thank You!

Funded by the Center for Advanced Simulation of Light-water reactors

[Backup slides]
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Conclusions and Future Work

Adaptive vs. uniform refinement, px = 2,3

px = 2, fx = 0.7 px = 3, fx = 0.7
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Conclusions and Future Work

Convergence of correction and error estimate
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Conclusions and Future Work

Two Stochastic Dimensions: Discretization and
Results

Tensor product grid for simplicity, adaptive
Sparse grids give slightly better scaling with dimensionality

−α1
∂2u
∂x2 + (5 + α2x)

∂u
∂x

= 1

Solved with x ∈ [1,5], α1 ∈ [4,5], α2 ∈ [1,2]. BC: u(1; ·) = u(5; ·) = 0.

α1

α2

x
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Conclusions and Future Work

Two Stochastic Dimensions: Discretization and
Results

px = 1, iap=1
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Conclusions and Future Work

Two Stochastic Dimensions: Discretization and
Results

px = 1, iap=2
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Conclusions and Future Work

Two Stochastic Dimensions: Discretization and
Results

px = 2, iap=1
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Conclusions and Future Work

Two Stochastic Dimensions: Discretization and
Results

px = 2, iap=2
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Conclusions and Future Work

Two Stochastic Dimensions: Discretization and
Results

px = 3, iap=1
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Conclusions and Future Work

Two Stochastic Dimensions: Discretization and
Results

px = 3, iap=2
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Conclusions and Future Work

Non-zero correction
FEM, px = 1
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Conclusions and Future Work

Non-zero correction
FEM, px = 2
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Conclusions and Future Work

Adapted Grids

Col, px = 1 Col, px = 2
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Conclusions and Future Work

Adapted Grids

FEM, px = 1 FEM, px = 2
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