

L3:VRI.PSS.P3.01
Ross Bartlett

ORNL
Completed: 9/30/11

CASL-U-2011-0167-000

Technical Note
Virtual Reactor Integration

VERA

From: Roscoe A. Bartlett (ORNNL), and Roger Pawlowski
(SNL)

Number: VRI-11-002
Date: October 1, 2011

Subject: LIME 2.0 Architecture and Design : Version 0.5 (Rev. 1)

Executive Summary

The architecture and design of LIME 2.0 is described. LIME 2.0 provides the foundation for multi-
physics coupling in the CASL VERA software collection and will be reused in a number of other software
efforts outside of CASL.

Contents

1 Introduction 2

2 Additional background 2

3 Subpackage and dependency structure for LIME 2.0 2

4 LIME 2.0 subpackages 2
4.1 LIMELite . 3

4.1.1 Properties of LIMELite . 3
4.1.2 Basic LIMELite interfaces and supporting classes . 4
4.1.3 Other possible issues to consider for LIMELite . 8

4.2 LIMEImplicit . 9

5 Coding and development standards for LIME 2.0 10

6 Summary and next steps 11

7 Endorsers of LIME 2.0 design plan 11

CASL-U-2011-0167-000

VRI-11-002 -2- October 1, 2011

1 Introduction

The domain model for multi-physics coupling that the design for LIME 2.0 is based on is given in [16]. This
domain model provides the terminology and concepts used in this design document.

There are a number of drivers for the creation of a LIME 2.0 package but the primary driver is the CASL
project. LIME 2.0 will form the foundation for the VERA Base collection of packages [1].

The existing LIME 1.0 software package has a number of limitations that require the creation of a new
version in order to satisfy the growing requirements of multi-physics coupling in VERA and other related
projects. However, this document will not provide a code review of the existing LIME 1.0 implementation.
Instead, a listing of desired properties of LIME 2.0 will be stated and these can be to compared to LIME
1.0.

The CASL VERA project is partitioned into two major tracks of development. The first track of de-
velopment is to assimilate a number of existing legacy simulation codes and provide the most basic type of
coupling to create an incrementally improved simulation capability. However, very little refactoring of these
existing codes will take place and therefore very little extra functionality will be expressed in these codes.
The second track of CASL VERA development will be to couple together more modern and more actively
developed simulation codes that can provide greater functionality. These two development tracks drive and
shape the design of LIME 2.0 and will drive its implementation.

The requirements for LIME 2.0 will be listed implicitly with the properties each of the subpackages of
LIME 2.0 described below.

2 Additional background

In addition to the domain model for multiphysics coupling provided by the LIME Theory document [16], a
little more background needs to be covered before describing the design of LIME 2.0.

One important concept to describe is the idea of Abstract Numerical Algorithms (ANAs). ANAs are
comprised of algorithms that only deal with abstract operators, vector spaces, functions on those spaces
and algorithms built up from those abstractions [6, 2]. This software knows nothing of parallel computing,
meshes, or PDE discretizations. Examples of this type of software from Trilinos include NOX, Rythmos,
and MOOCHO. All of these Trilinos packages accept problems expressed in the Trilinos standard ANA
API called Thyra [2]. Any algorithms expressed in pure Thyra objects almost automatically leads to ANA
software. In addition, gven the black-box nature of most DAKOTA algorithms, DAKOTA would also be
categorized as a type of ANA software since it does not see the underlying mesh, discretizations, or details
of the parallelization of the physics solves. All of the core interface and solver classes described for LIME
2.0 will all meet the basic requirements of ANAs; some the DAKOTA variety and others more the Thyra
variety.

3 Subpackage and dependency structure for LIME 2.0

Figure 1 shows the main LIME2 package broken down into two primary subpackages: LIMELite and
LIMEImplicit. The first subpackage is a light-weight version of LIME (i.e. LIME “Lite” or LIMELite)
for steady-state and transient solvers using Black-Box Picard Iterations. The second subpackage LIMEIm-
plicit contains all of the additional interfaces and more advanced support algorithms for Block-Implicit and
Nonlinear-Elimination Newton Methods.

4 LIME 2.0 subpackages

The two major subpackages comprising lime, LIMELite and LIMEImplicit, are described below.

CASL-U-2011-0167-000

VRI-11-002 -3- October 1, 2011

LIMELite Basic Utilities
(Teuchos only)

Implicit Solver
Support Software
(e.g. Thyra)

LIMEImplicit

LIME2

Figure 1: LIME 2.0 Sub-Packages. (UML Package Diagram.)

4.1 LIMELite

The LIMELite subpackage is designed to provide only the minimal support needed to couple together black-
box legacy codes. In black-box mode, all of the state equations fi(. . .) and state variables xi are eliminated
using the model-specific solvers to yield the reduced response functions

ĝi,j({zi,k}, {pi,l}), for i = 0, . . . , Nf − 1, j = 0, . . . , Ngi
− 1. (1)

The system coupling parameters {zi,k} defined in (1) are determined through the transfer functions

zi,k = ri,k({xm}, {pm,n}), for i = 0, . . . , Nf − 1, k = 0, . . . , Nzi
− 1, (2)

Note that the transfer functions ri,k(. . .) in (2) still need to “see” the state variables xm from each given
physics model fm(...) but this is part of the elimination that is occurring to give the final set of fully reduced
response functions

ĝi,j({pi,l}), for i = 0, . . . , Nf − 1, j = 0, . . . , Ngi
− 1. (3)

In actuality, the reduced response functions from the different models will be combined or selected in some
way to give a global set of responses and parameters

ĝj({p) = 0, for j = 0, . . . , Nĝ − 1. (4)

The form of the fully reduced and processed response functions in (4) after performing the full multi-
physics solve is what would be seen by a higher-level driver like DAKOTA to perform parameter, UQ studies,
and other automated studies.

The basic design of LIMELite is shown in Figure 2. Before describing the classes in Figure 2 in detail,
we first state some of the basic properties of LIMELite software.

4.1.1 Properties of LIMELite

• LIMELite only supports black-box solves of the underlying model equations using built-in model-
specific solvers (i.e. only the reduced response functions ĝj(. . .) are exposed, not the full equations
fi(. . .)).

• LIMELite supports basic parameters and response functions throughout so as to facilitate parameter
studies, UQ studies, design optimization, etc. (e.g. driven by DAKOTA).

CASL-U-2011-0167-000

VRI-11-002 -4- October 1, 2011

• LIMELite interfaces or algorithms will not support any parameter/response sensitivities or other types
of more advanced calculations.

• LIMELite only has dependencies on minimal utility software needed for safe memory management,
object control, object introspection, and to provide a more general foundation for more advanced
features (e.g. a dependence on core Teuchos software part of the Trilinos coding and documentation
guidelines described in Section 5).

• LIMELite interfaces and algorithms are ANAs and will therefore not have any direct concept of a
communicator in the highest level interfaces or support algorithms.

• LIMELite supports the hierarchical aggregation of solvers to allow embedding one multi-physics solve
as a single model in higher-level multi-physics solvers, etc.

• LIMELite supports arbitrary data transfers from any number of physics models to any other physics
models. These interfaces will have no concept of a mesh or other complex concept of the underlying
applications.

• LIMELite will not define a single (or even a closed set) of concrete multi-physics solver classes or
algorithms. The individual physics model adapters will not know about or point to any specific multi-
physics coupling class. This is critical to allow for independence, testability, and reusablilty of the
individual physics application adapters. (For example, the SIERRA Solution Control module could be
refactored to work in terms of LIMELite interface classes.)

4.1.2 Basic LIMELite interfaces and supporting classes

The different classes in LIMELite shown in Figure 2 are described below.
BlackBoxModelEvaluator is an abstract interface for a black-box eliminated physics model and repre-

sents the reduced response function ĝi,j shown in (1). This is a statefull interface where the client can set
current values of the parameters using a Parameters objects (see below) and then call solve() to converge
the internal hidden state equations. If the solve is successful (as determined by isConverged()) then the
values of the given response functions can be computed/extracted using the getResponses() function as
a Responses object (see below). The solve() function takes an optional tolerance that can be chosen by
the client to control how tightly the state equations are solved and can be used by an outer driver algo-
rithm to progressively tighten the tolerance as fixed-point Picard iterations are performed. Not shown but
a getValidParameters() function could be included that provides a listing of valid parameters and their
names to allow clients to identify and pass in a subset of parameters. The class Parameters would then
provide a subset of the full set of supported parameters leaving the other parameters as their default values.

SomeSteadyStateApp1Adapter represents an ADAPTER subclass that implements the basic BlackBox-

ModelEvaluator interface in terms of an existing steady-state legacy code shown as SomeLegacyApp1. Much
of the work involved in integrating a legacy code into this system includes refactoring the legacy application
(SomeLegacyApp1) and then in writing the adapter (SomeSteadyStateApp1Adapter) to set parameters, drive
the solution process, and then extract response functions.

TransferOperator is an abstract interface that aggregates one or more compatible transfer functions
ri,k shown in (2) to extract the state variables {xm} from a given set of converged “upstream” Black-

BoxModelEvaluator objects in order to set one or more coupling variables zi,k to a set of “downstream”
BlackBoxModelEvaluator objects that will have solve() called on them. This approach provides complete
flexibility in how physics models are coupled together allowing the state from one or more physics models to
provide input to one or more other physics models. Subclasses such as SomeTransferOperator would use
dynamic casting to get at the converged states from upstream BlackBoxModelEvaluator objects and set the
coupling parameters on downstream BlackBoxModelEvaluator objects. Any number of mix-in interfaces
or other approaches could be used to make these TransferOperator subclasses more or less general. Some

CASL-U-2011-0167-000

VRI-11-002 -5- October 1, 2011

LIMELite

 1…*

1…Nf

SomeSteadyStateApp1Adapter
TransientBlackBoxModelEvaluator

getCurrentTimeRange(): TimeRange {const}
getDesiredNextStepSize(): Time {const}
getMaxNextStepSize(): Time {const}
setNextTimeStepSize(in dt : Time)
eraseCurrentTimeStep()

 0…*

TransferOperator

transferData(
 in upstreamModels : BlackBoxModelEvaluator[],
 inout downstreamModels : BlackBoxModelEvaluator[])

DAKOTA

BlackBoxModelEvaluator

setParameters(in p : Parameters) {const}
getResidualNorm() : Scalar {optional}
solve(in tol : Scalar)
isConverged(): bool
getResponses() : Responses){const}

 models

 models

SteadyStateBlackBoxPicardSolver

 transfers

SomeTransientApp2Adapter

TransientBlackBoxPicardSolver

connectivityGraph : ConnectivityGraph

SomeTransferOperator

SomeLegacyApp1

SomeLegacyApp2 fullTimeRange : Time Range

Figure 2: Core LIMELite interfaces and classes. (UML Class Diagram.)

CASL-U-2011-0167-000

VRI-11-002 -6- October 1, 2011

very specific implementations could be hard-coded to a given set of concrete model subclasses (e.g. dynamic
casting directly to SomeSteadyStateApp1Adapter) or more general implementations could dynamic cast to
more general mix-in interfaces that utilize a common mesh/field interface to allow for greater reuse. How
the transfers are done is of no concern to the higher-level ANAs implemented in terms of the LIMELite
interfaces. However, a major task in coupling legacy application codes will be in refactoring the underlying
legacy codes to expose states and coupling variables and in implementing these transfer subclasses.

TransientBlackBoxModelEvaluator is an abstract interface that derives from BlackBoxModelEvaluator

and adds functions needed to drive a transient multi-physics time-step solve. The function getCurrent-

TimeRange() returns a TimeRange1 object that provides the lower and upper time bounds for the time-step
that a physics object currently represents. The function getDesiredTimeStepSize() returns the time step
size that the physic model wants to take next (i.e. to satisfy its stability or LTE targets). The function
getMaxNextTimeStepSize() returns the maximum time step size that a physics model can handle, such as
to satisfy a CFL limit for an explicit time integration method. The set of these two time step sizes could
then be used by a black-box Picard solver to negotiate a single time step for all of the physics models. The
function setNextTimeStepSize(dt) is called by the black-box solver to set the next time step and then
solve() is called iteratively in a black-box Picard iterative method to converge the time-step equations for
a single time step.

SomeTransientApp2Adapter is an ADAPTER subclass that implements the TransientBlackBoxModel-
Evaluator interface in terms of an existing transient legacy application code shown as SomeLegacyApp2.
This is identical to the SomeSteadyStateApp1Adapter subclass described above but now for a transient
application code that exposes its inner time-step solver. All of the same issues of difficulties refactoring the
legacy code apply equally.

SteadyStateBlackBoxPicardSolver is an example of a steady-state black-box Picard solver implemen-
tation that LIMELite could contain. This is just one example a concrete implementation of such an algorithm
in LIMELite since LIME 2.0 will not mandate a single implementation. In order to construct a fully deter-
mined multi-physics system, a set of 1, . . . , Nf model objects of type BlackBoxModelEvaluator are needed
along with a set of 0, . . . , Nr transfer objects of type TransferOperator and connectivity information
about how the transfer objects map to model objects. It is this connectivityGraph (represented as the
concrete ConnectivityGraph class) that defines the computational workflow for each iteration of a black-box
Picard iterative method. For a simple 2x2 system of equations, the SteadyStateBlackBoxPicardSolver’s
solve() function could perform the Picard iterative method as shown in Figure 3 (shown in Python-like
pseudo code for the sake of readability and compactness). TheJacobi Picard iterative method shown in
Figure 3 does not pass in tolerances or check residual norms but another version could (if all of the support-
ing physics models supported returning residual norm estimates and accepted tolerances). Also, the real
implementation would contain loops and use the info in connectivityGraph to match up model objects
with transfer calls but one should get the idea.

Figure 4 shows an example concrete instantiation of a 2-by-2 system of coupled physic models that
is driven by an analysis study using DAKOTA. In this example, both of the steady-state physics models
are legacy application codes wrapped as BlackBoxModelEvaluator objects. Also, in this example, the
two TransferOperator subclass objects are specifically designed to transfer data for these concrete legacy
application codes. When transferData(...) is called, dynamic casts are be performed to the concrete
adapter subclasses in order to access the underlying legacy application code in order to extract converged
states and to set coupling variables.

Finally, the class TransientBlackBoxPicardSolver provides a concrete implementation of a black-box
transient solver that derives from the BlackBoxModelEvaluator interface (and can therefore by driven by
a DAKOTA or other analysis study) and uses black-box Picard solves to converge the time-step equations.

1The TimeRange class was defined in the Trilinos Rythmos package and defines a careful system for representing time ranges
and inclusion or exclusion in a give time range taking into account floating point issues. Any piece of software for transient
simulation that does not carefully handle time ranges will be fragile, unpredictable, and potentially inefficient as compared to
an implementation that is careful. The class TimeRange simply and elegantly standardizes the handling of time and resolves
these tricky issues.

CASL-U-2011-0167-000

VRI-11-002 -7- October 1, 2011

SteadyStateBlackBoxPicardSolver::solve()
Set parameters (splitting the global parameters into two subsets)
models[0].setParamters(parameters(subset 0))
models[1].setParamters(parameters(subset 1))
Perform Picard iteration (Jacobi in this case)
converged = false
while not converged:

Perform transfers
transfers[0].transferData(models[0], models[1])
transfers[1].transferData(models[1], models[0])
Check for convergence
if models[0].isConverged() and models[1].isConverged():

converged = true
break

Solve each physics model
models[0].solve()
models[1].solve()

Compute responses (taking from models[0] in this case)
responses = models[0].getResponses()

Figure 3: Listing of a simple implementation of a steady-state black-box Picard solver.

analysis : DAKOTA

 solver : SteadyStateBlackBoxPicardSolver

 BBME

: SteadyStateApp0Adapter : SteadyStateApp1Adapter

: LegacyApp0 : LegacyApp1

 BBME BBME

 models[0] models[1]

: App0ToApp1TransferOperator

 TO

: App1ToApp0TransferOperator

 TO
transfers[0]

transfers[1]

Figure 4: Example instantiation of a 2-by-2 coupled system where BBME=BlackBoxModelEvaluator and
TO=TransferOperator. (UML Object Diagram.)

CASL-U-2011-0167-000

VRI-11-002 -8- October 1, 2011

TransientBlackBoxPicardSolver::solve()
Set up the stead-state Picard solver that will converge time-step equations
steadyStateBlackBoxPicardSolver.initialize(models, transfers)
Set parameters for the transient solve
steadyStateBlackBoxPicardSolver.setParameters(parameters)
Do the time-step loop
currentTime = fullTimeRange.lower()
while compareTimeValues(currentTime, fullTimeRange.upper()) < 0:

Find the next time step size to try
maxTimeStep = fullTimeRange.upper() - currentTime
maxTimeStep = min(models[0].getMaxNextTimeStep(), maxTimeStep)
maxTimeStep = min(models[1].getMaxNextTimeStep(), maxTimeStep)
desiredTimeSteps[0] = models[0].getDesiredNextTimeStepSize()
desiredTimeSteps[1] = models[1].getDesiredNextTimeStepSize()
nextTimeStepSize = Some value less than maxTimeStep while considering desiredTimeSteps[]
Set the next time-step size and solve using picard iterations
models[0].setNextTimeStepSize(nextTimeStepSize)
models[1].setNextTimeStepSize(nextTimeStepSize)
steadyStateBlackBoxPicardSolver.solve()
Update the current time
currentTime += nextTimeStepSize

Extract the response at the final time (a terminal response in this case)
responses = models[0].getResponses()

Figure 5: Listing of a simple implementation of a transient black-box Picard solver.

This class utilizes the time-step specific functions in the TransientBlackBoxModelEvaluator interfaces of
each transient model to coordinate and set up the time-step equations for before a time-step solve. An
embedded SteadyStateBlackBoxPicardSolver object is then (re)used to converge the time-step coupled
equations for each time-step. An example of the implementation of the solve() function for a transient
time-step loop for a simple 2-by-2 set of equations might look like shown in Figure 5 (again in Python-like
pseudo code). The transient solve in Figure 5 has many simplifications over a more general implemenation. It
assumes that the time-step equations can always be solved and that the only response is a terminal response
(however, every distributed response can be reformulated as a terminal response by adding more ODES to
the model’s transient equations). Also, again, of course the real implementation would use loops over the
model objects. What this example does show is how the the steady-state Picard solver class can be used
unchanged in the transient solver class and how the interface all work well together.

4.1.3 Other possible issues to consider for LIMELite

Additional issues that might be addressed in the design of LIMELite in the near future include:

• Concurrent evaluations of single-physics solves and transfer operators: For example, it might be desir-
able to distribute the first model’s solve onto one set of 100 processors and another model’s solve onto
a different separate set of 1000 processors (load balanced so that they should both finish at about the
same time) and then execute the two physics solves in parallel of each other on the two different sets
(i.e. clusters) of processors. This could provide up to a factor of two reduction in wallclock time for
parallel codes (and less so for serial codes but still useful). Supporting concurent operations can be
easily accommodated by providing “begin” and “end” versions of the solve() and transferData()

functions. For example, all of the solves can be started with a call to non-blocking beginSolve()

and then blocking wait operations can be invoked on all of the model solves by calling endSolve() .

CASL-U-2011-0167-000

VRI-11-002 -9- October 1, 2011

This allows all of the solves to take place in parallel of each other and the synchronize at the end.
These functions can transparently be implemented on the backend in SPMD mode using (MPI) com-
municators or using threading but the LIMELite algorithms would be completely oblivious to this and
therefore remain true ANAs.

• Support for dampened fixed-point iterations: A simple fixed-point Picard iteration may not converge
without some dampening. If all of the models support the getResidualNorm() function and accept
tolerances in the solve(tol) function, then one type of dampening can be accomplished by starting
out with a loose solve tolerance and then reducing the tolerance as the multiphysics system converges.
A more general approach to dampening would be for the transfer operators to not fully transfer the
the state information from upstream models to the coupling variables of the downstream models but
to instead use some type of continuation method to control how strong the transfers would be. This
could be accomplished in a general way by adding a continuation parameter α (i.e. where α = 0.0 is
no transfer and α = 1.0 is full undampened transfers) to the TransferOperator interface. Then, the
outer dampened Picard solver would start with a small α and then over a number of iterations increase
it to α = 1.0 before converging the whole set of coupled physics equations.

• Support for just first-order response/parameter senstivities ∂ĝ/∂p: To support some of the more efficient
and robust sensitivity, UQ and optimizaiton methods, we might consider adding support for just the
response/parameter sensitivty matrix for ∂ĝ/∂p to the Responses class. In this way, if an underlying
BlackBoxModelEvaluator object could support this basic sensitivity matrix then it could be passed
through the interface.

• Support for text processing tools for setting parameters and extracting response functions by modifying
input files and reading output files, respectively : These utilities would be very useful in helping to
couple black-box application codes that would need to read and write output files. Such a coupling
approach would not be very high performance but could be a quick initial implementation that could
be later refined to remove file-based manipulation. These file processing utilties may not go into the
LIMELite subpackage itself but they could go into another utility subpackage in LIMELite or in some
other part of Trilinos (perhaps in Teuchos) to be readily available for user of LIMELite to exploit.

4.2 LIMEImplicit

The LIMEImplicit subpackage would contain (or rely on other provided) interfaces and support software for
implementing more sophisticated implicit multi-physics solution methods. Some of the critical properties of
LIMEImplicit are given below.

Properties of LIMEImplicit

• LIMEImplicit will support Block-Implicit Newton Methods, Nonlinear-Elimination Newton Methods,
and arbitrary combinations of these methods nested in with one another.

• LIMEImplicit core algorithms will be represented as ANAs and therefore not have any specific mention
of communicators, meshes, or any other non-general mathematical entity that is inconsistent with
ANAs.

• LIMEImplicit will define (or leverage) a set of tools for constructing various implicitly based multi-
physics coupling algorithms and support software for various implementations but will not define a
master solution class. This collection of solver algorithms will be extensible by outside developers
without having to touch any LIMEImplicit source code (i.e. the Open-Closed Principle (OCP) [14]).

• LIMEImplicit constructed solvers will be representable as black-box models and can be incorporated
into LIMELite black-box coupling algorithms.

CASL-U-2011-0167-000

VRI-11-002 -10- October 1, 2011

• LIMEImplicit will support full 64 bit address spaces to allow the largest simulations possible on the
highest end super supercomputers to be constructed and used through the year 2020 or later (e.g. using
Tpetra not Epetra).

• LIMEImplicit core interfaces and algorithms will be 100% agnostic to the computing platform and
will work, unchanged, in newer multi-core computing paradigms (e.g. OpenMP through GPUs using
CUDA).

• LIMEImplicit core ANA interfaces and algorithms support software will not have any required depen-
dency on any concrete (parallel or serial) linear algebra implementation. However, adapters to necessary
implementations can live in other subpackages (e.g. for Epetra, Tpetra, PETSc, SUNDIALS, etc.).

• LIMEImplicit will leverage (and be leveraged by) external solver software for preconditioners, lin-
ear equations, nonlinear equations, stability analysis, time integration, embedded optimization, and
embedded UQ and other advanced algorithms. LIMEImplicit will not itself contain complex generic
algorithms would be more suited to exist in more general software collections (e.g. Trilinos, PETSc,
etc.)

• LIMEImplicit will support fully general parameters and response functions throughout so as to facilitate
parameter studies, UQ studies, design optimization, etc. (e.g. driven by DAKOTA).

• LIMEImplicit model interfaces will support the full range of extended derivative quantities such as
Jacobians, gradients, Lagrangians, Hessians, etc. that are needed to efficiently implement a wide range
of advanced embedded analysis and optimization methods.

• LIMEImplicit will contain or leverage basic interfaces and support software to construct various oper-
ator split methods for time integration.

In future versions of this document, a design for LIMEImplicit will be defined that will describe the
toolbox of classes and interfaces that will support the creation of a variety of block-implicit and nonlinear
eliminatin Newton methods and a limitless number of combinations of implicit and black-box solve methods.

5 Coding and development standards for LIME 2.0

In order for LIME 2.0 to provide a solid foundation for VERA Base [1] (and therefore CASL) and for
collaborative development, a number of different standards need to be considered. Several different categories
of standards that need to be considered for LIME 2.0 include the following.

• LIME 2.0 should follow accepted object-oriented and agile design best practices [14, 10, 13, 15, 11, 12,
9, 8, 7] : Without using solid agile OO design principles, LIME 2.0 will be fragile, hard to modify and
extend, and hard to maintain.

• LIME 2.0 should adhere to the Trilinos Lifecycle Model 2.0 [5] : The new lean/agile consistent lifecycle
model being developed for Trilinos should be used for the development of LIME 2.0 (as well as for all of
VERA). The standards and practices outlined in this lifecycle model allow for a smooth transition from
research-based code to solid production code, all the while keeping the software clean and exceptionally
well tested.

• LIME 2.0 should follow the Trilinos coding and documentation guidelines [4] : These coding guidelines
are based on excepted best practices in design and C++ development and are augmented with items
more specific to CSE codes building on the foundation of core Trilinos utilities in the Teuchos package.
An important part of this is the Teuchos Memory Management standard [3].

CASL-U-2011-0167-000

VRI-11-002 -11- October 1, 2011

• LIME 2.0 should be developed and released as a BSD-licensed Trilinos package: Developing LIME
2.0 inside of the Trilinos system as a Secondary Stable add-on package will result in more portable
code and greater feedback than what can be achieved just through CASL-specific efforts. Once LIME
2.0 is copyrighted, it can go into the main Trilinos repository and can then become Primary Stable
code. Also, developing LIME 2.0 as a Trilinos package and copyrighting as BSD software provides an
automatic quarterly release mechanism for the software (i.e. regular releases four times a year).

6 Summary and next steps

The design for LIME 2.0 described here lays out a strategy for well supporting the immediate needs of CASL
to couple existing legacy codes with black-box solution methods (e.g. ANC/VIPRE/BOA) and for a second
track of development to couple more modern codes with fully implicit approaches (e.g. Fully coupled Drekar
and Denovo).

The development of LIME 2.0 can be initially carried out in a separate “LIME2” namespace and package
as to not conflict with the existing LIME 1.0 code and coupling efforts. The existing LIME package can
be made to optionally depend on this separate LIME2 package and adapters and drivers for the LIME2
interfaces and support software can be built side-by-side with the existing LIME 1.0 adapters and drivers.
The LIME 1.0 based software will be refactored to reduce duplication with the LIME2 software. Eventually,
all usage of the black-box solvers and interfaces in LIME 1.0 will be replaced with LIMELite in LIME2 for
all usage in CASL.

The initial thrust of development will be to create LIMELite software using Teste Driven Development
(TDD) (i.e. with excellent unit tests) and replicate and then replace the existing LIME 1.0 black-box adapters
and drivers. A parallel development thrust will be to design LIMEImplicit and decide how to leverage and
reuse software from Trilinos, LIME 1.0, and AMP to create the initial and growing capability. This initial
implementation of LIMEImplicit will be driven by demonstration calculations with early modern VERA
codes such as Denovo and Drekar.

The high-level design of LIME2 will evolve over time and this high-level architecture and design document
will be kept up to date to reflect the current state of the system. However, the lower-level details will be
documented in the software itself in the form of Doxygen documentation and various executable tested
examples and tests.

7 Endorsers of LIME 2.0 design plan

The following individuals have read this LIME 2.0 design plan and have explicitly provided their endorsement
to the design and implementation plan:

• Brian Adams (SNL)

References

[1] C. Baker, R. Bartlett, K. Clarno, B. Collins, T. Evans, R. Pawlowski, R. Schmidt, and
J. Turner, “Domain model specification for VERA: Version 1.0,” Oak Ridge Technical Note VRI-11-
002, Oak Ridge National Laboraties, September 2011.

[2] R. Bartlett, “Thyra linear operators and vectors: Overview of interfaces and support software for
the development and interoperability of abstract numerical algorithms.,” Tech. Rep. SAND2007-5984,
Sandia National Laboratories, 2007.

[3] R. A. Bartlett, “Teuchos C++ memory management classes, idioms, and related topics: The com-
plete reference (a comprehensive strategy for safe and efficient memory management in C++ for high per-

CASL-U-2011-0167-000

VRI-11-002 -12- October 1, 2011

formance computing),” Technical report SAND2010-2234, Sandia National Laboratories, Albuquerque,
New Mexico 87185 and Livermore, California 94550, 2010.

[4] R. A. Bartlett and et. al., “Trilinos coding and documentation guidelines (version 1.0),” Technical
report In preparation, Sandia National Laboratories, Albuquerque, New Mexico 87185 and Livermore,
California 94550, 2011.

[5] R. A. Bartlett, M. Heroux, R. Pawlowski, and J. Willenbring, “Trilinos lifecycle model (ver-
sion 2.0),” Technical report In preparation, Sandia National Laboratories, Albuquerque, New Mexico
87185 and Livermore, California 94550, 2011.

[6] R. A. Bartlett, B. G. van Bloeman Waanders, and M. A. Heroux, “Vector reduc-
tion/transformation operators for linear algebra interfaces to efficiently develop complex abstract nu-
merical algorithms independently of data mapping,” 2003. Submitted to ACM TOMS.

[7] K. Beck, Test Driven Development. Addison Wesley, 2003.

[8] K. Beck, Extreme Programming (Second Edition). Addison Wesley, 2005.

[9] P. Duvall and et. al., Continuous Integration. Addison Wesley, 2007.

[10] E. Evans, Domain-Driven Design. Addison Wesley, 2004.

[11] M. Fowler, Refactoring (Improving the Design of Existing Code). Addison Wesley, 1999.

[12] M. Fowler, UML Distilled (third edition). Addison Wesley, 2004.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns. Addison Wesley, 1995.

[14] R. Martin, Agile Software Development (Principles, Patterns, and Practices). Prentice Hall, 2003.

[15] S. McConnell, Code Complete: Second Edition. Microsoft Press, 2004.

[16] R. Pawlowski, R. A. Bartlett, N. Belcourt, R. Hooper, and R. Schmidt, “A theory manual
for multi-physics code coupling in LIME,” Sandia Technical Report SAND2011-2195, Sandia National
Laboratories, March 2011.

Distribution

CASL-U-2011-0167-000

VRI-11-002 -13- October 1, 2011

CAUTION

This document has not been given final patent clear-
ance and is for internal use only. If this document is to
be given public release, it must be cleared through the
site Technical Information Office, which will see that
the proper patent and technical information reviews
are completed in accordance with the policies of Oak
Ridge National Laboratory and UT-Battelle, LLC.

CASL-U-2011-0167-000

	CASL_MS_coversheet.pdf
	CASL-U-2011-0167-000
	Introduction
	Additional background
	Subpackage and dependency structure for LIME 2.0
	LIME 2.0 subpackages
	LIMELite
	Properties of LIMELite
	Basic LIMELite interfaces and supporting classes
	Other possible issues to consider for LIMELite

	LIMEImplicit

	Coding and development standards for LIME 2.0
	Summary and next steps
	Endorsers of LIME 2.0 design plan

