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Solution Verification for GTRF-CFD

Solution Verification Applied to Drekar and Fuego
Calculations using of Grid-to-Rod-Fretting (GTRF)

William J. Rider
Sandia National Laboratories, Albuquerque
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VRI/SNL): D. Turner, S. Rodriguez, R. Bond, R. Summers Drekar (CASL, THM/SNL): P.
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Executive Summary

We have conducted an initial assessment of the numerical error associated with the
computational fluid dynamics (CFD) solution of a 3x3 subregion flow through a span
of the rod bundle for the purpose of estimating the vibrational excitation of the fuel
rod. This phenomenon is known as “Grid-To-Rod-Fretting” or GTRF [Lul1,Wan10].
The flow field will then be utilized to compute the vibrational response of the fuel
rod via structural calculations. This is a more high fidelity technique than current
capability utilized industrially where substantially simpler models are used. The
CFD solutions are computed with two Sandia National Laboratories’ codes, Fuego
[Turl1] (VRI, part of the Sierra suite of codes) and Drekar (THM) [Shal1a,Shal1b].
Both codes use the large eddy simulation (LES) modeling technique to provide
closure to the fluid equations for the effects of turbulence.

Our results indicate that the grids used for the current simulations provide
convergent results, the solutions are currently quite poorly resolved with large 30-
50% errors in the pressure drop through the simulated span of the rod bundle.
Further, in order to reduce errors significantly relatively enormous grids would
need to be utilized, the modeling approach would need to be modified. We also
examined the initial lower level validation results achieved with Drekar for vortex
shedding from a cylinder at several Reynolds numbers. This is important because
the code is relatively immature. On the other hand, Fuego is a mature code with
significant verification and validation work preceding this study [Fuego].

The solution verification and concomitant error analysis [Rid11a] shows that a
number of issues remain outstanding with the GTRF calculations. These issues are
the mesh resolution, mesh optimization, numerical method, and turbulence
modeling approach. Another significant issue is the relatively short span of grid
simulated, which may necessitate the simulation of significantly larger grid to get
complete results. We also examine numerical uncertainty using the standard
approach in the verification community, and a new method developed under the
auspices of CASL utilizing the statistical uncertainty of the data itself.
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Many of the descriptions here are cursory as other reference contain a much more
detailed descriptions of the two codes and the GTRF physical problem.

Computational Fluid Dynamics (CFD)

CFD is being increasingly used by the nuclear industry to analyze their systems for a
variety of operational scenarios [Ben09,Elm11,Abb10,Kar11,Lah05,Lak02]. The
trend is increasing with many industrial users utilizing commercial CFD products,
which have grown up through development in civil, aerospace and mechanical
engineering applications [CD-Adaptco]. This is contrasted with the historical use of
government driven simulation tools in the early years of the nuclear industry. We
are seeking to fill this gap. While the CFD tools used are impressive, they are often
lacking in the rigor of the quality control over simulations and the sophistication of
the underlying algorithms. Furthermore, these tools are not freely available in the
same manner as government developed codes.

The CFD codes are usually solving the incompressible Navier-Stokes equations often
with turbulence and multiphase flow. The codes vary in approach, but are typically
control volume or finite element for discretization with some sort of nonlinear
stabilization technique for computing advective transport. Pressure-velocity
coupling takes a number of approaches and the overall solution procedure is
dominated by variants of the (linearized) SIMPLE algorithm. Overall, the codes are
quite advanced, but their application especially in terms of uncertainty
quantification is lacking. Numerical error analysis is rarely observed in practice
although nothing about the current CFD codes precludes its regular application.

Fuego Description

Fuego is a 3D, incompressible computational fluid dynamics (CFD) code with state-
of-the-art turbulence models [Fuego]. It utilizes generalized unstructured meshes
using a control-volume-finite element formalism and runs well on massively parallel
computers. It includes a variety of Reynolds-averaged Navier-Stokes (RANS) and
large eddy simulation (LES) turbulence models. For anisotropic turbulent flow
fields with complex mixing and swirling the dynamic Smagorinsky turbulence
model [Smag63,Fis01] recommended [Rod10a,Rod10b,Rod10c] and chosen for the
work here. The code is currently being developed at Sandia National Laboratories
(SNL) as part of a set of strategic, comprehensive codes funded through the
Advanced Simulation and Computing (ASC) program. Fuego is a part of the Sierra
suite of computational tools.

For spatial discretization, Fuego handles advection in a hybrid fashion with varying
mixing of upwind (user choice between first order upwind and second order
upwind via a limited MUSCL scheme) and centered approaches. In this context,
hybrid refers to the blending between the upwind and centered schemes. For LES
simulations, ideally a skew-symmetric operator is commonly employed to preserve
kinetic energy conservation in the absence of explicit dissipation. Higher order
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upwind methods lack the formal kinetic energy conservation ability as the operator
is not skew symmetric. Upwinded approximations produces numerical diffusion
and as a consequence, secondary vortices generally do not develop properly during
turbulent flow simulations. Thus, a first order upwind method can alleviate
oscillations, but may do so at the expense of too much diffusion in the solution.
Fuego has undergone extensive validation and verification (V&V) testing on flows
that include: conventional jets, swirling jets, jets in cross flow, swirling jets in cross
flow, flows around a vertical cylinder, staggered tubes in cross flows, and mixed
convection heat transfer to heated horizontal cylinders in cross flow.

Drekar Description

Drekar is an unstructured, fully-implicit, finite element Navier-Stokes solver with
the capability to include coupled conjugate heat and mass transfer effects
[Shalla,Shal1lb]. Itis based on the earlier Charon code, but in relative terms is
immature and under considerable recent development. The spatial discretization is
currently an equal-order stabilized finite element (SFE) approach that can employ
linear or quadratic interpolation. Convection stabilization is achieved through the
streamline-upwind-Petrov-Galerkin (SUPG) approach and discontinuity-capturing
operators can also be included as part of the stabilized finite element formulation
[Sha10b,Sha06]. The temporal discretization is based on a variable-order fully-
implcit multi-step backward differentiation (BDF) method that can vary from first-
order (a.k.a. Backward Euler) to a fifth-order BDF method (BDF5) in this work the
second-order BDF?2 is utilized. A parallel fully-coupled nonlinear solution procedure
based on an scalable algebraic multilevel preconditioned Newton-Krylov method is
used to solve the discretized system of equations [KK04].

The basic turbulence models are developed from a time-averaged Reynolds
Averaged Navier- Stokes (RANS) procedure as well as a spatially-filtered large-eddy
simulation (LES) approach. In the initial simulations reported on in this study the
wall-adapted-large-eddy (WALE) model is used [Smil1]. The WALE model
introduced by Nicoud and Ducros [Nic99] is an eddy viscosity model based on the
square of the velocity gradient tensor that requires only local data. The results for
this study were obtained on runs with 256 to 1024 cores of the SNL Redsky capacity
computer. In preparation for this study, Drekar was also ported and run on up to
9600 cores of the ORNL Jaguar platform. Currently a sequence of production runs
and scaling runs are planned for the Jaguar system.

Grid-to-Rod-Fretting (GTRF)

Solution of the challenge problems is crucial to the overall CASL effort. This
particular problem requires the use of high-resolution temporal and spatial
approximations to turbulent single- and multi-phase flow in complex geometries.
The aspects of interest in this challenge problem are the high-resolution CFD
simulation of turbulent flow to provide unsteady forcing via stresses for use in the
GTREF structural dynamics simulations. This problem is characterized by flow
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induced rod vibrations that cause erosion of the rod cladding material, and support
grids, at points of contact. The vibrations are due to turbulent flow generated at the
core inlet and substantially by rod-bundle support grid mixing vanes. Turbulence is
desired to enhance heat transfer and prevent localized hot spots from occurring.
Like most turbulence, this problem is inherently three-dimensional and unsteady.
We hope that a more complete understanding of excitation phenomena through
high fidelity CFD simulations can improve clad time-to-failure, and improve reactor
core performance while reducing costs.

In the lead up to full-scale simlations, various sub-scale rod-bundle assemblies
serving as prototypes will be simulated and analyzed. Separate fluid and structural
dynamic simulations will be conducted where the rod excitation predicted by the
fluid simulations will be transferred to the structural code through surface
boundary conditions. Our initial prototype problem is a turbulent transient flow
over the 3x3 rod assembly, with WEC V5H grid spacer, as defined by AMA [Wan10].

The image on the left of Figure 1 shows the center rod surface and the surrounding
support grid spacers and mixing vanes. A portion of the geometry is presented in
Figure 2 with a specified inflow, a free pressure (stress-free) outflow with periodic
boundaries laterally to define an “infinite” lattice of fuel rods and flow channels. The
domain spans 17.86 rod diameters with 3.11 diameters upstream of the spacer and
10.74 diameters downstream of the spacer. The original geometry was 54.94
diameters, however, this was shortened to reduce the mesh sizes. The location and
orientation of the periodic boundaries are also labeled. The computational grids
were generated using Sandia National Laboratories mesh generating software called
CUBIT. The geometry was supplied by WEC in the form of a CAD file [Tur11]. Cross-
sections of the grids are shown in Figure 3. The meshing strategy consisted of first
generating a mesh comprising tetrahedral elements and then sub-dividing each
tetrahedral into hexahedral elements. A smoothing algorithm was then applied to
the meshes to improve element quality.

Figure 1. The metal boundaries for the fluid flow in the vicinity of the rod spacers
and mixing vanes for the 3x3 geometry.
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Figure 2. A diagram showing the boundary conditions used with the flow geometry.
We note that the Fuego results are presently achieved with symmetry rather than
periodic boundary conditions. Periodic boundary conditions will be conducted with
Fuego later.

Inflow

|

Figure 3. A sequence of coarse to fine meshes (left to right) showing the topology of
mesh cells used in the Cubit derived mesh across the 3x3 channel. The coarse mesh
corresponds to the 664K element mesh, the medium grid corresponds to the 1912K
element mesh, and the fine mesh corresponds to the 5280K mesh.

The problem domain and boundary conditions are designed to model a subset of a
rod bundle "ideally” far away from the reactor core walls such that significant cross-
flow in the x-y directions can exist. A similar configuration was used by
Benhamadouche et al,, [Ben10] to study rod excitation using LES. In another study
Abbasian et al., [Abb10] used a different rod configuration without the complication
of a spacer grid to study rod excitation. At the inflow plane, a uniform velocity is
assumed and at the outlet, a stress free condition is imposed. All other external flow
surfaces are periodic and all solid surfaces are no-slip (note that the Fuego
simulations are done with symmetric conditions laterally). The Reynolds number
based on rod diameter and mean inlet velocity was Re = 192,800.

Solution Verification and Error Estimation

Calculation or solution verification is a process for the determination of estimates of
the discretization or numerical error is estimated in simulations of problems of
interest [Roa98,Ro0a09]. Calculation verification employs techniques of both error
estimation and uncertainty quantification (UQ) [Rid11b]. We will apply defined
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procedures to define numerical error estimates that are converted to numerical
uncertainty estimates. Code verification is a related, but distinct process, where the
correctness of a software implementation of a numerical algorithm is evaluated,
typically by comparison against an exact solution [Rid10].

Numerical methods that are used to obtain approximate numerical solutions of
continuum models unavoidably lead to errors in the computed results. These errors
are associated with the numerical method alone and have nothing to do with any
assumptions related to the form of the continuum models (e.g., model-form errors).
The challenge of calculation verification is to help provide estimates of such
numerical errors. These errors are of four general types: (1) round-off errors,

(2) sampling errors, (3) iterative (linear and nonlinear) solver errors, and (4)
discretization errors [Rid11a,Roy05,Roy10a,Roy10b].

Solution verification is an activity that is central to the quality of a calculation. The
goal of solution verification is to assess the adequacy of a calculation and estimate
the error associated with a numerical solution. It is often confused with the term
mesh sensitivity study. The two approaches are similar, but the former lacks the
quantitative edge offered by the more rigorous verification procedure.

Numerous error estimation techniques exist, but all are formally limited in
applicability based on the setting of a problem in a functional setting. Despite these
limitations, the process of performing a calculation on a properly posed sequence of
discretizations remains a useful approach for estimating numerical error in the
broadest set of circumstances. For its generality, we use this approach.

Let us first distinguish the approach of mesh sensitivity from solution verification.
In mesh sensitivity, typically several grids are used (often only two total) and the
solution is examined for the change in value. For example, “a second finer grid was
used and the solution only changed by 1%"”. We note that a convergent sequence
cannot be established with fewer than three grid resolutions. Furthermore, our
results will show that this approach to quality is nothing short of misleading and can
lead to incorrect conclusions.

In this report we follow the standard approach to solution verification aside from a
single important extension. Many of our results are quantities, which are unsteady
and the result is an averaged value in the sense of a time series. This average is also
reported with the fluctuations about that average in standard statistical language,
that is normal (Gaussian) statistics. The variability is some value proportional to the
standard deviation of the result. This is a common, but flawed assumption that will
not be challenged here. Using the statistical “envelope” of solutions defined by
normal statistics, we produce a concomitant envelope of error estimates defined by
the lower and upper set of values reported. Each sequence is computed in the same
manner as the convergence of the average values. The overall envelope of results
provides a good characterization of the uncertainty in the numerical error.
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The workhorse technique for estimating discretization error is systematic mesh
refinement (or de-refinement, i.e., coarsening), while the method for estimating
iterative error involves systematic changes in stopping criteria for the iteration. A
fundamental expectation for a numerical method is the systematic reduction in
solution error as, say, the characteristic length scale associated with the mesh is
reduced. By the same token, iterative errors are assumed to be smaller as the
stopping criterion is decreased in numerical value. For mesh refinement, in the
asymptotic limit where the mesh length scale approaches zero, a correct
implementation of a consistent method should approach a rate of convergence equal
to that defined by numerical analysis (often obtained with the aid of the Taylor
series expansion). In practice, this expectation is not typically met particularly as
calculations become more realistic and relevant to engineered systems, i.e.,
calculations might not be in the asymptotic range. This circumstance does not
obviate the need for some estimate of the numerical error; in fact the necessity may be
increased under these conditions.

To conduct analysis using this approach, a sequence of grids with different intrinsic
mesh scales is used to compute solutions and their associated errors. The
combination of errors and mesh scales can then be used to evaluate the observed
rate of convergence for the method in the code. In order to estimate the
convergence rate, a minimum of two grids is necessary (giving two error estimates,
one for each grid). The convergence tolerance for iterative solvers can be
investigated by simple changes in the value of the stopping criteria. Assessing
iterative convergence is complicated by the fact that the level of error is also related
to the mesh through a bounding relation in which the error in the solution is
proportional to the condition number of the iteration matrix. Most investigations of
iterative solver error only consider the impact of the stopping criteria alone.

Ideal Asymptotic Convergence Analysis

In this section, we examine the case of ideal asymptotic convergence analysis. The
axiomatic premise of asymptotic convergence analysis is that the computed
difference between the reference and computed solutions can be expanded in a
series based on some measure of the discretization of the underlying equations.
Taking the spatial mesh as the obvious example, the ansatz for the errorina 1-D
simulation is taken to be

Hgf—gc =A, +A1(Ax)a+0((Ax)a) (1)

In this relation, g’ is the reference solution, which for calculation verification is
computed on a refined mesh, g° is the computed solution, Ax is some measure of the
mesh-cell size, A, is the zero-th order error, A, is the first order error, and the

notation “0((Ax)a)" denotes terms that approach zero faster than (Ax)a as Ax—0*.
For consistent numerical solutions, Ao should be identically zero; we assume this to
be the case in the following discussion. For a consistent solution, the exponent & of
Ax is the convergence rate: o =1 implies first-order convergence, =2 implies
second order convergence, etc.
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Assume that the calculation has been run on a “coarse” mesh (subscript ¢), and a
very course mesh (subscript vc) characterized by Ax, (Ax,.), which we hereafter also
denote as Ax. The error ansatz implies:

le” =g =4, + A (Ax)" +... (2)

Let us further assume that we have computational results on a “fine” mesh Ax;
(subscript f), where 0 < Ax; < Ax, with Ax./ Ax; = o > 1. In this case, the error ansatz
implies:

¢ -

=0A (Ax)" +... 3)

Manipulation of these two equations leads to the following explicit expressions for
the quantities aand A;:

o =[rogle’ 5

— log| g -g" ]/logo (4)

/(Ax)* (5)

A= Hgf -g

These two equalities are the workhorse relations that provide a direct approach to
convergence analysis as a means to evaluating the order of accuracy for code
verification.

For quantities of interest (QOIs) or figures of merit (FOMs) the above development
can be utilized without resorting to error norms. For our report here this is the
approach taken here. We note that the lack of functional analytical setting weakens
the expectations for formal convergence, but most QOIs or FOMs are closely related
to some sort of normed quantity. The quantity, G, is defined without the use of a
norm with the following related error model,

G=G"+A(Ax) +... (6)
with the remainder of the development proceeding as above provided the approach
toward G, the mesh converged solution, is monotonic. In the case where a solution
is not monotonically approached, the above error model can still be utilized as long
as the error in absolute terms is diminishing monotonically. This recommendation

is in some clear opposition to the existing literature although error norms
themselves are typically positive definite quantities.

Non-Ideal Asymptotic Convergence Analysis

The term “non-ideal” refers to situations for which the error does not monotonically
decrease with increasing mesh refinement in the simulation: the computed
solutions may diverge under mesh refinement, in either a monotonic or non-
monotonic fashion, or the computed values may have no overarching characteristics
beyond simply being bounded. Some researchers contend that one cannot make
further statements about calculations that do not exhibit the ideal asymptotically
convergent behavior described in the previous section. Insofar as such non-ideal
behavior is often seen in practical engineering simulations, however, this section
contains a discussion of the analysis of such non-ideal cases.

8

CASL-U-2011-0192-000



Solution Verification for GTRF-CFD

The salient parameters in these analyses are the theoretical convergence rate of the
underlying numerical scheme, ¢, and the observed convergence rate, based on
Richardson Extrapolation (see, e.g., [Obe10]), corresponding to the actual
simulation results, o,. A study of this approach is given by Xing and Stern [Xin10],
who build upon earlier work of Eca and Hoeckstra [Eca06].

For the estimation of convergence properties of scalar quantities, Eca and Hoeckstra
[Eca06] approach the problem of estimating the observed convergence rate as a
least-squares solution to the governing error ansatz equation,

G" - G|=A(Ax)"+... (7)

Let p denote the convergence rate corresponding to the least-squares solution for
this equation based on the signed differences of results computed with adjacent grid
spacings, i.e., where both positive and negative values are allowed on the left-hand
side of Eq. (9). Similarly, let & represent the convergence rate corresponding to the
absolute differences of results computed with adjacent grid spacings, i.e., where
absolute values of the left-hand side of Eq. (9) are used. Then, the behavior of the
set of computations is determined from the following algorithm:

If a>0 then monotonic convergence
Else if a<0 then monotonic divergence
Else if o <0 then oscillatory divergence
Else oscillatory convergence

A second way to characterize the nature of the convergence is to examine the ratio
of signed error in the solution from one mesh refinement level to the next,

R=(G'-G")/(G"-G")=AT[A™, (10)

If R<1 then monotonic convergence
Else if R>1 then monotonic divergence
Else if R <-1then oscillatory divergence
Else (-1<R<0)oscillatory convergence

Estimation Of Associated Numerical Uncertainty

Once the nature of the solution has been properly categorized, the numerical
uncertainty can then be estimated as part of the overall uncertainty estimate.! The
Grid Convergence Index (GCI) of Roach (see [Roa98, Roa09]) is perhaps the original
attempt to codify the numerical uncertainty associated with inferred convergence
parameters. Roache [Roa98] claims that there is evidence for the numerical
uncertainty based on the GCI method (with a safety factor of 1.25) to achieve a “95%
confidence level.” This approach was extended to the Correction Factor (CF)

1 The proceedings of the 1st, 2nd, and 3rd Workshops on CFD Uncertainty Analysis [Eca08]

9
CASL-U-2011-0192-000



Solution Verification for GTRF-CFD

method of Stern et al. [Ste01]. Xing and Stern [Xin10], however, take issue with both
of these approaches, stating, “...there is no statistical evidence for what confidence
level the GCI and CF methods an actually achieve” and, more specifically, that their
analyses “...suggest that the use of the GCI1 method is closer to a 68% than a 95%
confidence level.” As we describe below, Xing and Stern come to a different
conclusion regarding an approach that does meet the 95% confidence level
measured empirically on varied computational applications.

To evaluate the numerical uncertainty associated with these solution verification
estimates, Xing and Stern performed a statistical analysis of 25 sets of
computational data, covering a range of fluid, thermal, and structural simulations, to
arrive at various parameters for their estimations of simulation uncertainty. The
parameters obtained by Xing and Stern provide computational uncertainty
estimates that demonstrably satisfy the 95% confidence level for the data sets upon
which that analysis is based. They suggest that the formula below provides a safety
factor with empirical, statistical support. We suggest following this approach
whenever the grid sequence provides a convergent sequence.

(245-0.85P)|8,|.if0< P <1
Unum = FS|60£| = . (9)
(164P-1438)|5,|.if P>1
where P = ore/own defines whether the solution is asymptotic in observed nature.
The numerical error magnitude comes from the Richardson extrapolation toward
the monotonically mesh converged solutions as
G' -G
= (10)
o -1
or the related error estimate for monotonically decreasing error as
G -G
= (11)
o -1

In the case where the solution is not convergent, the numerical uncertainty should
nonetheless be estimated, however rough those estimates may be. It is the authors’
experience that users of codes will generally move forward with calculations and—
without guidance to the contrary—may offer no numerical uncertainty estimates
whatsoever. We maintain that this practice is potentially more dangerous than
providing a weakly justified estimate. We offer the important caveat that this bound
is not rigorously justified; instead, it is perhaps appropriately viewed as a heuristic
estimate that can be produced given limited information. The simplest approach is
to examine the range of solutions produced and multiply this quantity by a generous
safety factor,

U,., =3(maxG — minG) (12)
The safety factor, set to 3 in (14), might assume different values in different
computational science applications. This heuristic approach is similar to that
advocated by Eca and Hoekstra [Eca06].
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The errors associated with iterative (linear and nonlinear) solution of systems of
equations can be approached similarly. We note that many investigations have
sought to merely render these errors too small to be significant. While such an
approach can work, it may not be generally possible in practice. A more complete
approach is to quantify these errors in terms of the controllable numerical
parameters, usually the stopping criteria for such iterations.

Detailed Workflow

Here, we expand on the details of the proposed workflow. There are other
workflow approaches (see, e.g., [Joh06]), and the steps described below are by no
means exhaustive. The proposed steps do, however, standardize a calculation
verification workflow that can be conducted by a code team (developers and
testers) for the purpose of estimating numerical uncertainty. Ideally, the code
verification process should be conducted regularly (as well as on demand) so that
incorrect implementations impacting mathematical correctness are detected as
soon as possible. The general consensus in software development is that the cost of
bugs is minimized if they are detected as close as possible to their introduction.

This procedure assumes that the code team is using a well-defined software quality
assurance (SQA) process, and the code verification is integrated with this activity.
Such SQA includes source code control, regression testing, and documentation,
together with other project management activities. For consistency and
transparency, we recommend performing the code verification in the same manner
and using the same type of tools as other SQA processes.

1. Starting with an implementation (i.e., code) that has passed the appropriate
level of SQA and code verification scrutiny, choose the executable to be
examined. Calculation verification can be a resource-intensive activity
involving substantial effort to perform. Calculation verification should be
applied to the same version of the code that analysts would use for any
important application. The notion that verification and validation should be
applied to the same code is important to keep in mind. This process should
be applied to the specific version of the code used throughout the entire V&V
UQ activity.

2. Provide an analysis of the numerical method as implemented including
accuracy and stability properties. The analysis should be conducted using
any one of a variety of standard approaches. Most commonly, the
von Neumann-Fourier method could be employed. For nonlinear systems,
the method of modified equation analysis can be used to define the expected
rate and form of convergence. The form and nature of the solution being
sought can also influence the expected behavior of the numerical solution.
For example, if the solution is discontinuous, the numerical solution will not
achieve the same order of accuracy as for a smooth solution. Finite element
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methods can be analyzed via other methods to define the form and nature of
the convergence (including the appropriate norm for comparison).

Produce the code input to model the problem(s) for which the code verification
will be performed. Each problem is run using the code’s standard modeling
interface as for any physical problem that would be modeled. It can be a
challenging task to generate code input that correctly specifies a particular
problem?; e.g., special routines to generate particular initial or boundary
conditions that drive the problem may be required, and these routines must
be correctly interfaced to the code. It is advisable to consider the
complexities and overhead associated with such considerations prior to
undertaking such code verification analyses.

Select the sequence of discretizations to be examined so each solution.
Verification necessarily involves convergence testing, which requires that the
problem be solved on multiple discrete representations (i.e., grids or
meshings). This is consistent with notions associated with h-refinement,
although other sorts of discretization modification can be envisioned. The
mathematical aspects of verification are typically most conveniently carried
out if the discretizations are factors of two apart.

Run the code and provide of means of producing appropriate metrics to
compare the numerical solutions. The solutions to the problem are computed
on the discretizations. Most commonly and as discussed above, these metrics
take the form of norms (i.e., p-norms such as the L2 or energy norm). The
selection of metrics is inherently tied to the mathematics of the problem and
its numerical solution. The metrics can be computed over the entire domain,
in subsets of the domain, on surfaces, or at specific points. The domain over
which the metrics are evaluated and the analysis to be conducted must be
free of any spurious solution features (due, e.g., to numerical waves
erroneously reflected from computational boundaries).

Use the comparison to determine the sequence of errors in the discretizations.
Using the well-defined metrics for each solution, the error can be computed
for each discrete representation. Ideally, there will be a set of metrics
available, providing a more complete characterization of the problem and its
solution.

The error sequence allows the determination of the rate-of-convergence for the
method, which is compared to the theoretical rate. With a sequence of errors
in hand, the demonstrated convergence rate of the code for the problem is
estimated. The theoretical convergence rate of a numerical method is a key
property. Verification relies upon comparing this rate to the demonstrated
rate of convergence. Evidence supporting verification is provided when the
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demonstrated convergence rate is consistent with the theoretical rate of
convergence. This can be a difficult inference to draw, because the
theoretical rate of convergence is a limit reached in an asymptotic sense,
which cannot be attained for any finite discretization. As a consequence,
there are unavoidable deviations from the theoretical rate of convergence, to
which judgment must be applied.

8. Using the results, render an assessment of the method’s implementation
correctness. Based on the discrete solutions, errors, and convergence rate, a
decision on the correctness of a model can be rendered. This judgment is
applied to a code across the full suite of verification test problems.

a. The assessment can be positive, that is, the convergence rate is
consistent with the method’s expected accuracy.

b. The assessment can be negative, that is, the convergence rate is
inconsistent with the method’s expected accuracy.

c. The assessment can be inconclusive, that is, one cannot defensibly
demonstrate clearly uniform consistency or inconsistency with the
method’s expected accuracy. For example, the convergence rate is
nearly the correct rate, but the differences between the expected rate
and the observed rate is uncomfortably large, potentially indicating a
problem.

Figures 1 show the entire process in diagrams that conceptually show how the work
flows. This process should be repeatable and available on demand. As noted in the
introduction to this section, having the code verification integrated with the ongoing
SQA activity and tools can greatly facilitate this essential property. The solution
verification process is not monolithic, but instead it is flexible and should meet the
needs of the specific application.
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Figure 4. The flowchart version of the list of activities is shown for code verification,
which can be interpreted as an expansion of the simple expression of this activity.
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We will provide a detailed example using contrived data to illustrate this approach.
In Table 1 we give some data to help illustrate our approach. The data shows a
convergent sequence of calculations converging at first order along with a standard
deviation of averages for several different cases. We hope to illustrate the sort of
results that will be observed in practice.

Grid Average Error Error Error Error Error
Case 1 Case 2 Case 3 Case 4 Case 5
4h 8 +0 +1/2 *1 *1 +1/2
2h 6 *0 +1/2 +1/2 +1/2 *1
h 5 +0 +1/2 +1/4 *1/16 +3/2

Table 1. The idealized data used in our demonstration example for convergence
with statistically defined data.

We now set out to compute the convergence rate of three sequences for each case:
the average (the same for all cases here), the lower boundary (the average minus
error), and the upper boundary (the average plus the error). The error may be

given in terms of a standard deviation, or a confidence interval, or simply an interval.
We will give the results in terms of the estimated mesh converged solution, with
lower and upper bounds and the level of numerical error associated with each on

the finest grid, “h.” The average solution for the data in Table 1 behaves as,

G(Ax)=a+b(Ax) =4+(%)(Ax)l (13)

for all cases. We summarize the results for the upper and lower bounds of the error
in Table 2.

Lowera Lowerb Lower c Upperb Upper c

4 1/h 1 4 1/h 1
3.5 1/h 1 45 1/h 1
4 0.75/h 1 4 1.25/h 1
3.42857  1.50893/h* 0.62148 4.16000 0.90251/h* 1.2115
1.25 2.25/h* 0.73697  6.25 0.25/h* 1.5850

Table 2. The results of the idealized error envelope example for the solutions
defined by the data in Table 1. The “*” denotes that the exponent on “h” should
equal the value of “c” in the adjacent column to assure dimensional consistency.

The first case is trivial, and the second case behaves as expects with the error
envelope being constant across the meshes. When the error does not behave in the
same manner as the average the results begin to become interesting. This is
explored in the last three cases. In case 3 the error converges just as the average
hence vanishes as expected, but the form of the error varies depending on the mesh.
In case 4 the error converges faster than the average. This results in differing
convergence behavior and uncertainty in the rate of convergence. Note that the
errors are reported as symmetric about the average, but the lower and upper
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bounds are unsymmetric. In case 5, the error becomes larger under mesh
refinement and the upper and lower bounds expand the uncertainty tremendously
(as it should). The constants in the convergence analysis become quite uncertain.
This approach should provide an appropriate representation of the uncertainty
given the reporting of statistically derived quantities (or other quantities with
defined error, or fluctuations).

In case 4, the bounds of the solution can be described in a single equation as
A(h)=[3.42857,4.16000 ] +[ 0.90251,1.50893 |nl"*** "] (13)

where the brackets, [a,b] show the upper and lower bounds of for the error equation.
Similarly, case 5 has a similar form,

A(h)=[1.25,6.25]+[ 0.25,2.25 |nl*7*" ] (14)

Drekar Validation and Error Estimates

Because Drekar is a relatively new code, we decided to proceed with a validation
study on a phenomena related to GTRF. Specifically the vortex shedding from the
mixing vanes and grid spacers is essential to simulate effectively. For this reason,
the vortex shedding frequency associated with the classical flow over a right circular
cylinder was examined. This classical problem has been examined at a large range
of Reynolds number, and its solution should provide a confidence building exercise
for Drekar. The vortex shedding is characterized by the Strouhal number, which is
defined by St= (d 1)/U, where U is the flow velocity, d is the cylinder diameter, and 4
is the frequency of vortex shedding (the Reynolds number Re=d U/v, where vis the
viscosity is the other dimensionless quantity of importance). The classical
experimental studies can be found is Schlichtings text and we reproduce them in
Table 3.

Flow | Re=60 Re=100 Re=400 Re=1000

St 0.136+0.006 | 0.164+0.005 | 0.205+0.005 | 0.212+0.006

Table 3. The relevant Strouhal numbers from classical experiments with error bars
estimated from the plots of the historical data [Sch79].

Drekar was used with second-order time and space differencing (with linear
interpolation and SUPG) on a sequence of grids. For all calculations shown here we
should expect second-order results for mesh-converged global quantities. We
measured the grid scale by the RMS length of the mesh. We note that this grid is far
more regular and classical in structure than the highly irregular mesh used for the
GTREF calculations.

St(h,At)=St, +C,h* +C,, (A1)
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Figure 6: A snapshot of the vortex shedding simulation showing the flowfield, and
several of the variables plotted in the form of a time series.
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Figure 7: Data reduction is accomplished the FFT of the fluctuating velocity at a
location in space and reporting the frequency where the FFT has its largest peak.

Case At RMS h St A(St) 95%

0.002 0.054111988 0.110474853 0.001219
0.002 0.023801688 0.152492294 0.004537
0.002 0.010786082 0.164777976 0.004979
0.002 0.005264375 0.165127187 0.004369
0.008 0.010786082 0.134265285 0.005306
0.004 0.010786082 0.154923058 0.00756

0.001 0.010786082 0.165999038 0.00491

0.0005 0.010786082 0.1661293 0.005012

RNV WN =

Table 4. Drekar results for vortex shedding at Re=100.

The average Strouhal number estimate has the following structure
St(h,Ar)=0.170935 - 7.94234h" %" - 47 434 (A1) """

(15a)
For the lower bounding estimate given statistically, the convergence is
St(h,A1)=0.167213 - 5.83905h - 217375 (A1) ™ (15b)
and the upper bounding estimate is
_ 176271 1.77237
St(h,At)=0.17470 - 10.3214h - 164.206(At) (15¢)

Overall, the solutions indicate that the code is performing well for this problem
although the meshes are a bit under-resolved. Furthermore, the solution is
converging to a solution thatis 1.8 to 6.5% too high. This may be related to the size
of the domain or three-dimensional effects neglected in the simulation.

In this case it make sense to recomputed the convergence and include only the five
finest resolutions in time and space in the convergence rate. We will find that this
produces a significantly lower level of numerical uncertainty. The results for this
application of our procedure is
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St(h,At) =0.168561 - 190.704>" - 5.7963(A
for the average Strouhal number, and
St(h,At) =0.162377 - 1726.87h*""- 474.21(At

St(h,At): 0.171947 - 15428437435 1774.7(At)2.2061

for the lower and upper bound respectively. The lower bounds value is almost
identical to the experimental observed value, and range of asymptotic Strouhal
numbers is smaller with higher rates of observed convergence. This would indicate
that the coarser meshes and larger time steps are insufficient to resolve the problem.
The UQ estimate computed using these values is quite small with a value of 0.36% of
the Strouhal number. This is smaller than the range supported by the statistically
bounded values. We suggest taking the larger reported bound as the uncertainty,
which evaluates to 5.83% of the Strouhal number.

t)1.2418

)2.0380

A(St) 95%
0.054111988 0.125325559 0.001116
0.002 0.023801688 0.19155126 0.00093
0.002 0.010786082 0.223538936 0.000943
0.002 0.005264375 0.230566339 0.003085
0.008 0.010786082 0.168450246 0.001905
0.004 0.010786082 0.204941286 0.002198
0.001 0.010786082 0.238016281 0.005241
0.0005 0.010786082 0.240079932 0.002972

RNV WN =

Table 5. Drekar results for vortex shedding at Re=1000.

The average Strouhal number estimate has the following structure
St(h,At)=0.266514 - 3.26418h"*7- 262295 (A )" """

(16a)
For the lower bounding estimate given statistically, the convergence is
St(h,At)= 0259479 - 3.60563h"'*"*- 392129 (A7 )" (16b)
and the upper bounding estimate is
_ 1.08355 0.748689
St(h,At) =0.273924 - 2.97891h - 18.1265(At) (160)

Overall, the solutions indicate that the code is not performing well for this problem
for the likely reason that the time and space mesh is quite under-resolved. This is a
pre-cursor to the GTRF results shown next. To make that point, the solution is
converging to a solution that is 22 to 29% too high. Additionally, this may be related
to the size of the domain or three-dimensional effects neglected in the simulation.

We apply the same procedure as we did for the Re=100 results and remove the
coarsest discretizations from the results and redo the convergence analysis. This
results in the following results

19
CASL-U-2011-0192-000



Solution Verification for GTRF-CFD

l)l 4870

St(h,At)=0.252791 - 235.18h*7*- 12621(A
St(h,At)=0.251719 - 220.12h>*"**- 285.10(A

St(h,At)=0.256687 - 1196.0h>7*- 1951.1(At

for the average, lower and upper bounds respectively. We then can establish our
two estimates on the uncertainty, one using the convergence for mean Strouhal
number and the second using the reported confidence interval’s convergence. The
reported interval gives an uncertainty of 1.97% of the value of the Strouhal number.
The mean value’s uncertainty estimate as given in the “Solution verification
procedure” document [Rid11a] is 3.57%. Here, the two values reported are similar
and our confidence is bolstered. Given these relatively small values we can express
better confidence in the calculations. We note that the converged mean value is
19.2% from the experimental value, and the experimental value is not bounded by
the converged lower and upper confidence intervals.

l)l 0562

)1 2663

Based on the convergence analysis the space-time errors are almost identical in
magnitude for both Reynolds number. The uncertainty estimates are different in
character. For Re=100 the uncertainty estimates for space and time are nearly
identical is size (ASt = 0.00025 and 0.00023 respectively). For Re=1000, the space
uncertainty estimates are three times larger than the time estimate (ASt = 0.00149,
0.00058) indicating a problem in using the same grids for both Reynolds numbers.
Applying these estimates to the solutions does not bring them into agreement with
the experimentally observed values.

These calculations have only scratched the surface of the results although the
results did secure a greater faith in Drekar’s capabilities. The issues of mesh
resolution and fundamental numerical methodology are not fully explored.
Furthermore, the behavior of the vortex shedding for turbulent flows is unexamined
at this point.

GTREF Error Estimation

The results from the initial Fuego and Drekar calculations are limited due to several
issues although we expect further analysis to define more quantities to examine.

For now, the single quantitative result that behaves reasonablely for both codes is
the pressure drop through the computational domain. It provides a good reference
point for a comparison between the code and a starting point for validation to follow.
Table 6 gives the data used for the analysis that follows.

For Fuego the analysis gives the following somewhat astonishing result. The
convergence rate is absurdly high,
Ap(h)=2434+6.10x10" "% (17)

which is a warning sign given the methods utilized by the code, first-order in time
and second(upwind)-order in space. It would imply that the solution is converged,
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but a more accurate implication is significant doubt. Our uncertainty analysis
below will indicate precisely that.

For Drekar the results look more reasonable in terms of the convergence rate,

Ap(h)=a+bh* =1742-163.7h'* -

indicating a solution requiring significantly greater resolution, but a convergence
rate that is low, but reasonable for this challenging circumstance.

Medium 24.6kPa 23.8 kPa

Table 6. Pressure drop through the grid span computed with both Fuego and
Drekar for three grids. We note that the coarse, medium and fine grids are not the
same for the two different codes.

Uncertainty estimation is a quantitative and more precise manner to give these
conclusions. For Fuego, Ap = -6.6 kPa for the uncertainty or 27.1% of the asymptotic
value. This results from the very high rate of convergence, which produces a larger
multiplier on the asymptotic error estimate. For Drekar Ap=-8.9 kPa or 51.1% of
the asymptotic value; however, its convergence rate is low, but reasonable given the
methods used.

The calculations are similarly reliable as determined by the uncertainty analysis and
quite under-resolved. Either far greater mesh density, or a more optimal mesh is
called for. The results are too preliminary in nature to yield any conclusions on the
differences between methods and models in the two codes. Greater mesh resolution
and a more comprehensive set of metrics would provide a much clearer picture,

Summary

We have delivered a preliminary verification analysis of CFD calculations conducted
with CFD codes Fuego, and Drekar. In both cases, the verification results indicate
that the need for greatly refined meshes to reduce computational errors to an
acceptable level. For GTRF the estimated error for the pressure drop is 30-50% of
the mesh converged value. Comparison with experimental data is currently pending.

The validation case with Drekar for vortex shedding at Re=100 is adequately
resolved with uncertainties of less than 5% of the correct experimentally observed
shedding frequency. For the Re=1000 case the spatial mesh needed to be refined
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considerably. The disrepency between the mesh converged result and the
experimental results need to be examined more completely to determine whether
modeling details are ultimately responsible. Potential causes of the differences may
be a truncated domain or suppressed three-dimensional features of the flow.

An assessment of our results here against our proposed workflow.

1.

Starting with an implementation (i.e., code) that has passed the
appropriate level of SQA and code verification scrutiny, choose the
executable to be examined.

This is true for Fuego, but not strictly for Drekar. It is a direct reflection
of the maturity of the respective codes.

Provide an analysis of the numerical method as implemented including
accuracy and stability properties.

With the available evidence both codes appear to be stable and accurate
as the developer assert.

Produce the code input to model the problem(s) for which the code
verification will be performed.

This has been completed and documented in other reports on the CFD
calculations themselves.

Select the sequence of discretizations to be examined so each solution.

A sequence of calculation using either three or four grids was computed
for each code.

Run the code and provide of means of producing appropriate metrics to
compare the numerical solutions. The solutions to the problem are
computed on the discretizations.

The code has been run on each grid and preliminary metrics have been
reported.

Use the comparison to determine the sequence of errors in the
discretizations.

These errors were estimated and discussed in the previous section of this
report.

The error sequence allows the determination of the rate-of-convergence for
the method, which is compared to the theoretical rate.

The rate of convergence was estimated above and for Fuego was greater
than the expected rate, and for Drekar was lower than the expected rate.
Using the results, render an assessment of the method’s implementation
correctness.

The codes appear to be correct insofar as the current results indicate.

Recommendations for Further Study

e More metrics produced from the calculations: velocity, TKE, dissipation,
turbulent statistics
e Determine the mesh requirements
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e Significant SA/UQ studies of modeling of GTRF, determine the relative
importance of various modeling parameters

e Test URANS on GTRF. Our current meshes are too coarse for LES, we have no
inertial range resolution

e LES needs significantly finer meshes, and/or a mesh that more biased
towards the boundary layers

e Numerical impact of spatial and temporal integration method

e Impact of the LES model and its parameters

e Test the applicability of ILES
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