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Overview: 

 This activity aims to hybridize the state-of-the-art in uncertainty quantification, 
sensitivity analysis, and data assimilation techniques to enable their deployment in real-world 
engineering models. The literature is replete with many techniques that have been developed by 
researchers from various scientific and engineering communities, each with its own benefits and 
limitations. For example, on the one hand, the global sampling techniques have proved effective 
in treating strongly nonlinear model with generalized probability distributions for the input 
parameters. It is unfortunately limited by the number of input parameters that can be handled. 
Variational methods, on the other hand, have proven very effective in handling models with 
many input parameters. They are extremely capable in estimating first order derivatives of 
responses of interest with respect to all input parameters. The variational estimates are however 
only locally accurate. Moreover, the computational cost required to extend variational methods 
to higher order models becomes computationally intractable.  

 A hybrid variational-sampling approach is therefore introduced in this work to address a 
real-world engineering problem where the models are generally nonlinear and the number of 
parameters is very large. It is important to note here that nonlinearity and the explosion in the 
number of input parameters are two of several other issues that must be addressed when working 
with real engineering models. Other issues include: how to address models with several physics 
and scales models that are tightly or loosely coupled? How to account for models relying on a 
multi-fidelity modeling strategy? Under the same spirit, we recognize that several methods have 
been developed to address each of these challenges. Our overarching objective is to design a 
hybrid framework that can combine the advantages and circumvent the limitations of existing 
methods when applied to a general engineering model.  

 

Proposed Developments: 
 To achieve the hybridization objective, a multi-phased strategy will be implemented. 
When the various phases have been completed, a general framework will be proposed (estimated 
at the end of the second fiscal year) that can be applied to a general engineering model. The 
phases proposed are as follows: 
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1. The first phase, representing the outcome of the current work, the hybridization capability 
will be demonstrated using nonlinear models with many input parameters to complete 
uncertainty quantification, sensitivity analysis, and data assimilation. The goal is to provide 
an initial demonstration of the hybridization framework and highlight the advantages and 
possible limitations of its application. 

2. The second phase will extend the hybridization framework to facilitate the transfer of 
information across multi-physics models. This will be developed by the current PI in the 
second fiscal year in collaboration with to-be-designated personnel from the VUQ team. 

3. The third phase, representing another parallel activity to be completed by Dr. Mike Eldred of 
the VUQ team, will focus on multi-fidelity models.  

 
 The current milestone (L3.VUQ.SAUQ.Y2.01) will focus only on the first phase, that’s 
the hybridization of a global sampling method and a local variational method. In our 
nomenclature, a global sampling method refers to any method that relies on executing the 
forward model at a set of points in the input parameters space. The points are often selected 
randomly or according to some heuristic to optimally cover the parameters space, e.g. random 
sampling, stratified sampling, sparse-grid sampling, etc. The responses recorded from the various 
executions are then combined statistically, e.g. using methods like Analysis of Variance, Sobol 
indices, or via the use of a surrogate, e.g. response surface methods such as polynomial chaos, to 
capture the relationship between the input parameters and responses. This relationship could then 
be used to extract key sensitivities, propagate parameters uncertainties, and perform data 
assimilation. Variationl methods refer to any method that relies on the use of the adjoint model to 
calculate an adjoint function which can be used in conjunction with the forward solution to 
calculate first-order response variations with respect to general input parameters perturbations. 
The advantage is that response variations could be calculated cheaply without having to re-
execute the forward model. For higher order variations, additional number of adjoints must be 
evaluated. The goal of the current milestone is to avoid the numerous forward model executions 
required by global sampling methods to ensure proper coverage of the parameters space, and the 
additional adjoint model executions required by variational methods to account for higher order 
variations. 
 
In particular, we demonstrate the hybridization for three applications as follows: 
1. Hybridization of sampling and variational approach for sensitivity analysis. In this 

application, a response surface method is employed with polynomial functions as the basis 
for the response surface. First order variational methods are employed to reduce the 
dimensionality of the input parameters before the response surface method is applied. The 
idea is to employ variational methods to identify the parameters that have the most influence 
on all model responses. The degree of influence is determined via a user-defined error 
criterion. All parameters whose associated response variations are above this error criterion 
are considered influential. The influential parameters are described by a mathematical 
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subspace such that all parameters perturbations that are orthogonal to this subspace produce 
response variations that are below the user-defined error criterion. Once the influential 
parameters are determined, sampling methods are employed to build a surrogate in terms of 
the influential parameters. When the surrogate is identified, the relationship between the 
responses and the original parameters could be recovered.  
Details on the theory and implementation will be presented at the ANS winter meeting in 
Washington DC, 2011 under the title: “Response Surface Modeling with Subspace-Enhanced 
Regression Analysis”. The summary may be found in Attachment I of this document. 

2. Hybridization of sampling and variational methods for uncertainty quantification. In this 
application, we recognize that the propagated uncertainty for a given response is a composite 
of two different quantities: a) the uncertainty in the parameters, and b) the sensitivity of the 
response to the parameters. If variational methods are employed, one approximates the 
relationship between the responses and input parameters using first order derivatives. If the 
input parameters uncertainties are Gaussian, one can directly calculate the uncertainties in the 
responses, also expected to be Gaussian. One can also propagate higher order moments of the 
parameters probability distributions if so desired. If sampling methods are employed instead, 
one first identifies a surrogate (generally nonlinear) that approximates as accurately as 
possible the relationship between responses and parameters. This surrogate is then sampled 
using a variety of sampling techniques to propagate uncertainties. In both methods, the two 
different quantities (parameter uncertainty and response sensitivity to the respective 
parameters) which form the response uncertainties are treated separately, that is first one 
finds an approximate relationship between responses and parameters which represents 
sensitivity information, and then samples this relationship using uncertainty information. The 
proposed approach hybridizes these two methods by identifying a set of influential 
parameters. The notion of influence here implies that the identified parameters contribute to 
the responses uncertainties. For example, a parameter than has high sensitivity but very low 
uncertainty may be considered non-influential since it won’t contribute to the response 
uncertainty. To explain this, consider a simple model with three input parameters, one with 
high uncertainty and low sensitivity such that their product is below some user-defined error 
criterion, one with low sensitivity and high uncertainty with the product also below the 
criterion, and one final parameter with high sensitivity and high uncertainty above the 
criterion. With variational methods, one tries to approximate the sensitivities of the most 
dominant parameters. With sampling methods, one propagates uncertainties for the most 
uncertain parameters. With the new approach however, only one parameter is considered 
influential. The influential parameters are described by a mathematical subspace. This 
subspace aggregates all directions in the parameters phase space whose associated 
uncertainties give rise to responses uncertainties. All directions orthogonal to this subspace 
are associated with sensitivities and uncertainties whose products are smaller than some user-
defined error criterion and hence could be discarded from the variational analysis employed 
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to determine sensitivities or the sampling analysis employed to propagate uncertainties. The 
mathematical background is developed in this work to identify this subspace.  
Details on the theory and implementation will be presented at the ANS winter meeting in 
Washington DC, 2011 under the title: “On the Propagation of Uncertainties in High 
Dimensional Models”. The summary may be found in Attachment II of this document. 

3. Hybridization of sampling and variational methods for data assimilation. Data assimilation 
answers the following question: given input parameters uncertainties and measured 
responses, how can one adjust parameters to improve agreement between measurements and 
predictions for responses of interest. A parameter is adjusted based on three different factors: 
a) if it impacts the response of interest, i.e. has high sensitivity; b) if it has a noticeable 
uncertainty; and c) if it impacts a response whose associated measurement has low 
uncertainty. Condition (a) is important because if the parameter has weak sensitivity, it will 
have to be adjusted by very large amount to impact the response of interest, which is likely to 
be outside its uncertainty range. Condition (b) is necessary to ensure adjustments are 
statistically consistent within their prior uncertainties, i.e. a parameter whose prior 
uncertainty is very small implies that it is known very well and hence should not be adjusted 
by large amounts even if it has strong sensitivity. Finally condition (c) implies that responses 
associated with small measured uncertainties should have more impact on adjusting 
parameter as compared to measurements with high uncertainties. One can employ the ideas 
presented earlier to find a subspace of influential parameters where now an influential 
parameter represents a direction in the parameters space which is associated with high 
uncertainty, high sensitivity, and can vary a response with low uncertainties. Again a user-
defined criterion could be employed to determine the size of that subspace.  
Details on the theory and implementation will be presented at the ANS winter meeting in 
Washington DC, 2011 under the title: “Dimensionality Reduction in Global Nonlinear 
Optimization”. The summary may be found in Attachment II of this document. 
 

The above demonstrations have been applied to a real engineering model representing a PWR 
fuel assembly. The cross-sections uncertainties are propagated to calculate uncertainties in the k-
eigenvalue, the various reaction rates densities, the flux distribution, and the homogenized cross-
sections. While serving as a demonstration of the hybrid framework, these results will form the 
basis for future work focusing on the propagation of neutronics uncertainties in reactor core 
calculations. This will be an integral part when sources of uncertainties from the various physics 
are to be combined to address the CASL challenge problems. 
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INTRODUCTION  

 
Response surface methodology (RSM) is a 

mathematical technique employed to approximate the 
relationship between model’s output responses and input 
parameters, often done by treating the model as a black-
box [1]. RSM assumes a functional form for the response 
surface with some unknown coefficients. A minimization 
problem determines the coefficients that minimize the 
discrepancies between the surface’s predicted responses 
and original model’s responses generated from multiple 
model executions. If done properly, the response surface 
could be employed instead of the original computationally 
expensive model for engineering studies that require 
repeated model execution such as sensitivity analysis and 
uncertainty quantification. In that case, the response 
surface can be called as a surrogate model or a reduced 
order model (ROM).  

To construct a reliable ROM, the number of original 
model’s execution becomes dependent on the number of 
input parameters and the order of the surrogate. For very 
large scale models such as those employed in nuclear 
reactor calculations, the number of input parameter is 
often very large; thereby limiting the applicability of 
RSM to models with small number of parameters only.  

In this summary, we present an algorithm to reduce 
the number of original model’s execution in order to 
render practical the construction of ROM for models with 
large number of input parameters. We show that the 
computational cost is dependent on the size of the so-
called active subspace rather than the size of the input 
parameters. The new algorithm requires the local (first-
order) derivatives of the responses with respect to input 
parameters. By sampling the derivatives over several 
points in the input parameter space, one can identify an 
active subspace of size r that can be employed to capture 
all possible variations of responses of interest. 

 
MATHEMATICAL DESCRIPTION 

 
Consider a simple thk  order polynomial function 

which is assumed as unknown1

 

: 

( ) ( )
1

k iT
i

i
y x a x

=

= ∑    (1) 

                                                           
1 This special form for the polynomial is used to simplify the illustration. 
Application to general polynomial form could be demonstrated using a 
modified polynomial presentation (see Ref. [2]). 

where 1 Tn
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  and n  denotes the dimension 
of input parameters space. The derivative of Eq. (1) is 
given by: 
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This shows that all possible 
( )dy x

dx





 belong to a 

subspace spanned by the vectors { }ia . By evaluating 
derivatives at random points in the input parameters 
space, and building a matrix of the form:  

1 r
x x

dy dy
dx dx

 
 
  







 

, 

One can construct the same subspace spanned by the 
vectors { }ia . This idea was first introduced to build low 
rank approximation for first-order derivative operators in 
Ref. 3. It was later proved that the errors resulting from 
the low rank approximation could be controlled, see Ref. 
4.  

Note that any input parameters perturbations that is 
orthogonal to this subspace will not change the response, 
hence the notion of the ‘active’ subspace. After the active 
subspace is identified, an orthonormal basis { }iq  is 
constructed. By limiting input parameters perturbation to 
the active subspace, one can write x  as: 

 0 0
1

r

i i
i

x x q xα α
=

= + = +∑ Q      (3) 

where [ ]1
T

rα α α=  . Because both { }ia  and { }iq  
span the same active subspace, one can write: 

 1
1

r
i i i r ia a q a q a= + + = Q  

  
  (4) 

where 1 Tr
i i ia a a =  

 . Without loss of generality, 

0x  is assumed to zero for simplicity. Then, Eq. (1) can be 
written as: 

 ( ) ( )
1

k iT
i

i
y aα α

=

= ∑ 

  (5) 

Note that Eq. (5) is transformed into a function of α  
of only r  input parameters. If r n , RSM could be used 
to capture the functional form in Eq. (5) in a much more 
computationally efficient manner than the direct 
application of RSM to Eq. (1).  
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This approach can be extended for models with 
multi-responses. As an example, consider a model with 
two responses given by: 

 ( ) ( )1
1

k iT
i

i
y x a x

=

= ∑    (6) 

 ( ) ( )2 1 sin Ty x C b x=


   (7) 
Define a pseudo-response and its derivative by: 

 ( ) ( ) ( )1 1 2 2y x r y x r y x= +    (8) 
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where 1r  and 2r  are scalars which can be chosen 
randomly except zero.  

As done before, all possible variations of 
( )dy x

dx





 

may be described by a subspace that is spanned by { }ia  

and b


. By sampling 
( )dy x

dx





 at multiple points in the 

input parameters space, the active subspace could be 
determined in a similar manner [2].  
 
NUMERICAL TEST  

 
Consider the following two responses: 
 ( ) ( )2

1 1 2
T Ty x a x a x= +      (10) 

 ( ) ( )3

2 3
Ty x a x=    (11) 

where 1a , 2a , 3a  and x  are 100 1× . Define a pseudo-
response by: 

 ( ) ( ) ( )2 3

1 2 3
T T Ty x a x a x a x= + +        (12) 

Then,  

 
( ) ( ) ( )2

1 2 2 3 32 3T Tdy x
a a x a a x a

dx
= + +



      



 (13) 

Note that 
( )dy x

dx





 is spanned by three vectors, 1a , 2a , and 

3a . Once the active subspace basis Q  is determined by 
range identification algorithm [4], the original equations 
can be transformed into: 

 ( ) ( )2

1 1 2
T Ty a aα α α= +  

   (14) 

 ( ) ( )3

2 3
Ty aα α= 

  (15) 

where 1a , 2a , 3a  and α  are 3 1× . A curve of ( )y α  for 
randomly sampled α  can be fitted by any regression 
method. Note that in Eq. (10) and Eq. (11), the 300 
coefficients should be determined by regression analysis. 
On the other hand, in Eq. (14) and Eq. (15), only 30 
coefficients are to be estimated. This implies that the 

regression analysis on the transformed equation requires 
less number of simulations.  

In this study, MATLAB built-in function nlinfit is 
used for nonlinear least squares data fitting. Once 1a , 2a , 
and 3a  are determined, the original equation can be 
obtained by changing variables; 1 1a a= Q

 , 2 2a a= Q

 , 

3 3a a= Q

 , and x α= Q  . The test results are shown in 
Figure 1 and Figure 2. First, 1a , 2a , and 3a  are selected 
randomly and the suggested method is implemented. The 
RMS (root mean square) error describing the discrepancy 
between the responses evaluated by the original model 
and those by the model estimated by the new method are 
found to be 4.4115E-10 and 1.9378E-09, respectively, for 
the two responses. These are numerically negligible 
considering the precision of the calculations. 
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Fig. 1 Response 1 Predicted Variations 
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Fig. 2. Response 2 Predicted Variations. 

 
 

CONCLUSION 
 

Computationally efficient RSM enhanced by 
aggregating first order derivatives in a subspace is 
presented. Before conducting a regression analysis, the 
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equation can be transformed into one with lower 
dimensions for the input parameters. The method can be 
easily extended to models with many responses via the 
use of pseudo responses. Numerical test demonstrates that 
the suggested algorithm significantly reduces the 
computational cost without loss of accuracy.  
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INTRODUCTION 

 

This summary focuses on the propagation of 

parameter uncertainties in models associated with many 

input parameters and many output responses. 

Fundamentally, there are two approaches that have been 

widely used in the literature to propagate input 

uncertainties: the forward approach and the adjoint 

approach [1]. The forward approach is effective for 

models with few input parameters and many output 

responses. Conversely, the adjoint approach has proven 

powerful for models with many input parameters and few 

responses. A recently introduced reduced order modeling 

(ROM) approach has hybridized the forward and adjoint 

approaches to reduce the computational overhead for 

models with many input parameters and output responses 

[2]. This summary employs these developments to 

introduce yet another approach to further reduce the 

computational overhead required to propagate 

uncertainties. The focus in this summary will be on 

linearized models. Extension to nonlinear models 

represents an ongoing activity and will be discussed in a 

future summary. 

  

MATHEMATICAL DESCRIPTION 

 

Let the given model by described by: 

( )y x= Θ
�� �

                 (1) 

where nx∈
�
ℝ  is a vector representing the n 

parameters and my∈
�
ℝ  the m responses. The prior 

uncertainties about x
�
 are described by a covariance 

matrix Cx. One can show using a first-order 

approximation that the responses uncertainties may 

also be described by a covariance matrix: 

T

y x=C ΘC Θ                (2) 

where Θ  is denoted as the sensitivity matrix whose 

elements are given by: 

[ ] i

ij
j

y

x

∂
=
∂

Θ  

Eq. (2) is often denoted as the sandwich rule as the 

covariance matrix is multiplied from right and left by the 

sensitivity matrix. There are fundamentally two 

approaches to evaluate Eq. (2). The first approach, 

denoted here as the explicit approach, evaluates the full 

sensitivity matrix using either forward or adjoint 

sensitivity analysis and then calculates the triple matrix 

product in Eq. (2). The premise is that the first order 

derivatives can be used to approximate the action of the 

original model, i.e., they act as a surrogate that 

approximates variations in the responses due to variations 

in input parameters.  

The second approach, denoted by the implicit 

approach, avoids the explicit formation of the sensitivity 

matrix by taking advantage of the low rank structure of 

the sensitivity matrix and/or the parameters covariance 

matrix. The most prominent approach here is the 

Karhunen-Loeve (KL) expansion, which expands the 

parameters covariance matrix using singular value 

decomposition [3]. Assuming the effective rank of the 

covariance matrix is rx, the KL approach requires only rx 

forward model executions to directly evaluate Eq. (2).  

Another implicit approach, presented in an earlier 

work, takes advantage of the low rank structure of the 

sensitivity matrix by employing a randomized approach 

to calculate a rank revealing decomposition for the 

sensitivity matrix [4]. This approach requires rΘ  adjoint 

and rΘ  forward model executions. This approach is 

similar to the surrogate-based approach described earlier 

but completed with less computational overhead. It is 

advantageous when ( )min , ,xr r m nΘ ≪ ; the physical 

rational behind it is to propagate uncertainties for 

parameters or combination of parameters that have strong 

sensitivities. This is sound since parameters with very low 

sensitivities do not affect the response and hence are not 

expected to affect the responses uncertainties. 

Alternatively, the KL approach is more advantageous 

when ( )min , ,xr r m nΘ≪  which physically attempts to 

propagate uncertainties for parameters that have high 

uncertainty. The rationale here is that parameters with 

very small uncertainties will not affect the responses 

uncertainties since they are known with high precision. 

Note that in both of these approaches it is essential to 

select a large enough rank for the sensitivity matrix or the 

covariance matrix to avoid situations in which parameters 

have very small uncertainties and very strong sensitivities, 

or alternatively very small sensitivities and very high 

uncertainties.  

 In this summary, a new approach is proposed. 

Instead of building a surrogate to approximate all possible 

responses variations with respect to input parameters, the 

surrogate will be confined to predict variations in 

responses resulting from input parameters uncertainties. 

This implies that if a given response is very sensitive to 

input parameters variations but its uncertainty is zero or 
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below some user-defined tolerance, the surrogate will 

predict a zero variation in that response due to input 

parameters variations.  

 A recently developed ROM approach is employed to 

build the surrogate [2]. This approach hybridizes 

variational methods and sampling methods to identify a 

subspace in the input parameters space that is employed 

to construct the surrogate. The premise is that parameters 

variations that belong to this subspace give rise to 

uncertainties in the responses; whereas parameters 

variations that are orthogonal to this subspace do not give 

rise to uncertainties in the response of interest.  

 It is important to note that several hybrid 

methodologies have been proposed by other researchers 

but with different objectives. To avoid confusion, we note 

briefly the differences between these methodologies and 

the proposed approach. Methods like gradient-enhanced 

regression [5] and adjoint-based interpolation [6] build 

surrogates for the responses by assuming a response 

surface in the response space and employ derivatives to 

reduce the number of model runs required to approximate 

the surrogate. The surrogate is then used to propagate 

parameters uncertainties using a sampling method. In our 

approach, the derivatives are employed to identify a 

subspace in the input parameters space. The objective 

here is to identify the directions in the input parameters 

space responsible for the propagated uncertainties. 

Therefore the surrogate generated is pre-optimized for 

uncertainty analysis. 

Two variations of this ROM approach are introduced 

here. The first one emulates the KL-based approach; it is 

re-iterated here for comparison to the new algorithm [4]: 

re-write Eq. (2) as follows: 

( )( )2
T

T

y x x x x x x x
= =C ΘW Σ W Θ ΘW Σ ΘW Σ  

where 2

x x xW Σ W  is the SVD of xC . We assume that the 

rank of xC  is given by xr . Now, notice that: 

,1 ,1 , ,...
xx x x x x r x rw wσ σ =  ΘW Σ Θ

� �
 

These matrix vector products could be approximated 

using a matrix-free approach as follows: 

( ) ( ), , 0 , , 0    1,...,x j x j x j x j xw x w x j rσ σΘ + −Θ =Θ
� �� � � �
≃  

This of course assumes that the perturbations along the 

,x jw
�

 vectors, sometimes referred to as the principal 

directions of the covariance matrix, are small enough to 

ensure the linearity assumption is valid. This algorithm 

requires 
xr  forward model executions only. Notice that 

the sensitivity matrix Θ  is not constructed explicitly. 

 The second ROM-based algorithm which represents 

the contribution of this summary takes advantage of the 

fact that both the sensitivity matrix and the covariance 

matrix may be ill-conditioned.  

Before introducing the algorithm, we motivate the 

idea first. Consider a linear model with three input 

parameters: 
1x , 2x , and 3x  with normal distributions 

and uncorrelated standard deviations: 
1σ , 

2σ , and 
3σ . 

Assume that 
2 0σ =  and 

1 0y x∂ ∂ = . In this case, the 

propagated uncertainty in y  is only determined by: 

( )3 3y y xσ σ= ∂ ∂ . This implies that only the parameter 

3x  which has non-zero sensitivity and non-zero 

uncertainty impacts the response’s uncertainty. Such 

parameter from an uncertainty propagation point of view 

is considered influential. This is not to be confused with 

influential parameters from sensitivity analysis point of 

view. Identifying influential parameters for uncertainty 

propagation is important for data assimilation as well. 

This follows as any robust data assimilation procedure 

attempts to adjust parameters that have both high 

uncertainty and strong sensitivity. Adjusting parameters 

with weak sensitivity does not change the response of 

interest, and adjusting parameters with low uncertainties 

does not lead to a physical adaption. Therefore, it is the 

product of the two that is important for both uncertainty 

propagation and data assimilation.  

 

DETAILS OF IMPLEMENTATION 

 

We introduce below a hybrid ROM-based UQ 

algorithm to determine the influential directions in the 

parameters space. The algorithm proceeds as follows: 

1. Set 1k =  

2. Generate a random vector 
kα
�
 

3. Construct a pseudo response: T

pseudo ky yα= � � . A 

pseudo response is a linear combination of all 

model’s responses. This allows the algorithm to 

explicitly form an adjoint solution for each 

individual response. 

4. Employing the adjoint model, calculate: 
pseudoy

x

∂

∂
� . 

5. Update: 

1

...

k

pseudo pseudo n k
y y

x x
α α

×
 ∂ ∂
 = ∈

∂ ∂  
G

� �

ℝ� �  

6. Using range finding algorithm, calculate the rank rΘ  

of the sensitivity matrix Θ . The range finding 

algorithm identifies a low rank approximation for 

G  such that the matrix reconstruction error 

measured in an induced L2 norm meets some 

user-defined error tolerance. It is important to select 

this error tolerance to not exceed the accuracy of 

derivatives. For example, if the derivatives are 

accurate to only 5 significant digits, employing a 

tighter tolerance will not improve the accuracy of the 

low-rank approximation. Moreover, since forward 

sensitivity analysis is employed by this algorithm, 

the tolerance should be consistent with the accuracy 

expected for forward-based sensitivity analysis. This 

is often in the order of 2 to 3 significant digits. 
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7. If the rank has not been reached yet, increase k and 

return to step 2. 

8. Decompose G using a rank revealing decomposition, 

e.g., QR factorization =G QR , where 
n rΘ×∈Q ℝ  

9. Re-write Eq. (2) as follows: 

( )( )

T T T T T

y x x

T

y x x x x

= =

= Σ Σ

C ΘQQ C QQ Θ ΘQC Q Θ

C ΘQW ΘQW

ɶ

ɶ ɶɶ ɶ
 

10. As done before, the last term can be evaluated as 

follows: 

( )

1 1

1

, 0 , 0

1 1

...

...     1,...,

x x r r

j j r j j

r r

j j k k j j k k

k k

w w

w q q w j r

w q x w q x

σ σ

σ σ

σ σ

Θ

Θ Θ

= =

 Σ =  

 = = 

 
= Θ + −Θ 

 
∑ ∑

ΘQW Θ

ΘQ Θ

Θ

� �
ɶ ɶ ɶ ɶ ɶ ɶ

� �� �
ɶ ɶ ɶ ɶ

� �� � � �
ɶ ɶ ɶ ɶ≃

 

This approach calculates an effective covariance matrix 

for the input parameters 
xCɶ  whose SVD (i.e. singular 

vectors, also referred to as principal directions) point 

towards the directions that have both strong sensitivities 

as determined by the matrix Q  and high uncertainties as 

determined by 
xC . Based on user-defined tolerance, the 

rank of this matrix is determined as r. Notice that in this 

approach the adjoint model is executed in the order of r 

times to identify the matrix Q  (the exact value is r + s, 

see below for the range-finding algorithm); the full 

sensitivity matrix Θ  is however never explicitly 

calculated.  

Employing arguments from linear algebra, one 

can show that the effective range for 
xCɶ  has a 

dimension r that satisfies [7]: ( )min , xr r rΘ≤  due to the 

following identify, valid for any general matrices A and B: 

dim(R( )) dim(R( ))≤AB A . 

 Finally, for the sake of a complete discussion, we 

describe briefly the range-finding algorithm employed to 

find an effective rank/decomposition for the matrix G  

[8]. 

1. Given user-defined tolerance ε  
2. Given matrix n k×∈G ℝ  

3. Given a small number s, e.g., s =10 

4. Evaluate the derivatives s extra times to form:  

,  1,...,

i

pseudo

i

y
f i s

x
α

∂
= =

∂ �

�

� . 

Note that these vectors, denoted as oversamples, are 

generated once and are independent of the k vectors 

in the matrix G ; they are employed to verify if the 

user-defined tolerance is met. 

5. Calculate: =G QR  

6. Let 0r  be initial estimate of the rank. 

7. Let ( )
0 0

:,1:
r

r=Q Q ; this matrix contains the first 

0r  of the matrix Q . 

8. Calculate: ( )
0 0

T

i r r i
z f= −I Q Q , 1,...,i s=  

9. If the condition 
1,..,

10 2 max
i

i s
zπ ε

=
≤  is not satisfied, 

increase r0 and go back to step 7. If the condition is 

satisfied, one can show that with probability 1 10 s−−  

that the matrix reconstruction error is bounded by:  

( )
0 0

T

r r
ε− ≤I Q Q G . 

The total cost for this algorithm is r + s adjoint model 

evaluations. 

 

CASE STUDIES 

 

The first case study is employed as a sanity check to 

compare the uncertainties evaluated by the various 

approaches. Note that employing an adjoint algorithm for 

a single response would require a single adjoint and a 

single forward model evaluation. Thus, clearly if only the 

uncertainty of a single response is required, the 

adjoint-based UQ would be the most suitable approach. 

This case study employs a TSUNAMI-2D cell model [9] 

with 132 input parameters representing the fission cross 

sections of U234, U235 and U238 with 44 energy groups. 

The responses are defined as follows:  

g

jg

j g

j

R
ϕ

ϕ
=
∑

 

where g

jϕ  denoted as the total flux in mixture j and 

group g is defined by1: 

   j

g g cell

j i i

i mixture

Vϕ φ
∈

= ∑  

and g

iφ  is the flux in cell i and group g and cell

iV  is the 

volume of i
th
 cell.  

A manufactured covariance matrix 132 132

x

×∈C R  with 

rank 50xr =  is employed. The first ROM-based UQ 

approach is employed with machine precision tolerance to 

propagate all 50 principal directions of the covariance 

matrix. In this case, 50 forward model executions are 

required. Table I compares the k-eigenvalue uncertainty 

calculated by the ROM-based algorithm, the conventional 

adjoint-based algorithm and also a sampling-based 

approach. Results are within a few pcm of each other, 

which is within the accuracy of the first-order 

approximation.  

 

Table I.  Comparison of Uncertainty Propagation 

Method Std. Dev. [pcm] 

Adjoint UQ (Sandwich Rule) 461.9848 

ROM-based UQ 458.9782 

Sampling (1000 samples) 460.4756 

Sampling (500 samples) 461.0369 

Sampling (100 samples) 467.9175 

  

                                                        
1 In SCALE, a mixture refers to all regions in the space that have the 

same composition. 
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The purpose of the second case study is to show that 

the rank of the effective covariance matrix is less than the 

minimum of the ranks of the sensitivity matrix and the 

parameters covariance matrix which is the reason behind 

the power of the proposed approach. This case study 

employs an HTGR infinite prismatic lattice modeled by 

the deterministic package NEWT/TRITON [10,11]. The 

model was depleted to 40 GWd/MTHM to ensure all 

actinides are present in the model. The input parameter 

space was of dimension n = 1584 representing the fission 

cross-sections of several actinides in 44 group energy 

format. Numerical tolerances for forward calculations 

were set to 10-6 for both k-eff and the flux. The 

covariance matrix was manufactured with singular values 

graphed in Fig 1 (legend ‘Cx’).  

 

 

Fig. 1. Singular Value Spectra. 

 

 

For comparison, the first 100 singular values of the G  

matrix are graphed as well (legend ‘Model’). Finally, the 

singular values of the effective covariance matrix 
xCɶ  

are plotted on the same figure. Notice that the singular 

values for 
xCɶ  drop off much quicker than those of xC  

and G ; explaining the potential savings realized by the 

proposed approach. Based on the selected tolerances, the 

rank of the sensitivity matrix is 20rΘ = , and the rank of 

prior covariance matrix is 90xr = . The rank for the 

effective covariance matrix is 10r = , implying 10 + s 

adjoint and 10 forward model executions. 

The third test case demonstrates the ability to 

propagate parameters uncertainties to estimate all 

responses uncertainties. This case employs an assembly 

model; it is an OECD/NEA benchmark of a stand-alone 

single assembly mini-core model [12]. The scattering, 

fission, (n,2n), and capture cross-sections of four uranium 

isotopes are employed as 704 input parameters. The 

responses are defined as in the first test case. A total of 

396 responses are calculated in 9 different mixtures. The 

reference responses are shown in Fig. 2. Each section on 

the graph represents the responses in 44-group in the 

respective mixture. The absolute standard deviations 

propagated by the new approach are compared in Fig. 3 to 

those calculated by the sandwich rule where the 

sensitivity matrix is explicitly determined. 

For this case, the rank of the effective covariance 

matrix is found to be r = 28 based on a tolerance of 10-2 

for the range finding algorithm for the matrix G . 
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Fig. 2. Reference Responses 

 

This tolerance implies the derivatives will be 

reconstructed to two significant digits, which is the same 

accuracy expected with forward-based sensitivity 

analysis. 
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Fig. 3. Responses Absolute Standard Deviations 

 

 The associated computational cost is 28+s adjoint 

and 29 forward model evaluations. Note that, for the 

adjoint-based approach, 396 adjoint model evaluations 

and a single forward model evaluation would be required 

to propagate uncertainties for all 396 responses and, for 

the KL-based approach, the computational cost would be 

704 forward model evaluation assuming a full rank prior 

covariance matrix. 
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CONCLUSIONS 

 

A new ROM-based UQ approach is employed to 

exploit the ill-conditioning of both the covariance matrix 

and sensitivity matrix in order to reduce the number of 

adjoint and forward model executions required to 

propagate uncertainties for all model responses. When 

xr rΘ≪  ( xr  the effective rank of the prior covariance 

matrix, and rΘ  effective rank of the sensitivity matrix), 

it is shown that only xr  forward model evaluations are 

needed. When rΘ  is less than or of the same size as xr , 

one can reduce the number of model executions by 

finding an effective covariance matrix xCɶ  that captures 

directions in the input parameters space that contribute 

the most to the propagated uncertainties. This requires 

executing the adjoint model r times and the forward 

model r times, where r is the rank of xCɶ , another matrix 

that is defined by the proposed algorithm. This matrix is 

denoted as the effective prior covariance matrix, it 

captures directions in the input parameters space that give 

rise to the propagated responses uncertainties. The 

principal directions of this matrix are associated with 

parameters that have both strong sensitivities and high 

uncertainties. Using linear algebra, one can show that 

min( , )xr r rΘ≤ . Three prototype models are used in this 

summary to demonstrate the proposed approach. Future 

work will focus on applying the proposed methodology to 

typical reactor calculations to propagate multi-group 

cross-sections through lattice calculations to the 

few-group cross-sections. Moreover, the proposed 

algorithm will be extended to nonlinear models where the 

first-order approximation is no longer acceptable to relate 

responses and input parameters variations. We believe 

this is possible as the algorithm employed for ROM 

construction is applicable to nonlinear models as shown 

in previous work [2]. 
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INTRODUCTION

Numerical optimization plays a key role in a broad
range of science and engineering problems, both in re-
search and in industry. An important challenge that faces
many of the state-of-the-art techniques is the so-called
curse of dimensionality. Two classes of methods can
be identified: gradient-based methods and forward ex-
ploration methods. Gradient methods employ the gradi-
ent of the objective function to advance the search [1],
whereas forward exploration methods employ only the
forward model and use a predetermined criterion to ad-
vance the search. Under the forward exploration cate-
gory, two methods are widely used: heuristic search meth-
ods and random search methods [2]. As an example of
heuristic methods is the Nelder-Mead simplex algorithm,
well-known to the Applied Mathematics community as
the algorithm that powers MATLAB’s fminsearch [3], but
which is only reliable for a small number of variables [4].
As an example of random search methods is the Markov-
Chain Monte Carlo method popularized by data assimi-
lation applications requires many model executions even
with a few number of input parameters [5]. For exam-
ple, to optimize only 10 input parameters, it is common to
require on the order of 104 model executions.

To solve optimization problems with many input
parameters (> 106) forward exploration methods have
proved to be the most practical - an example is the simu-
lated annealing approach which employs the Metropolis-
Hasting algorithm to explore the input space. Although
not guaranteed to find the global minimum, simulated an-
nealing has been employed in many engineering fields
with considerable success, in particular in the nuclear en-
gineering community [6]. Given the huge number of for-
ward model executions required, a reduced order model-

ing (ROM) approach is often employed to find another
model of reduced complexity that is inexpensive to run. If
the fidelity of the inexpensive model is acceptable, it can
be used with confidence to search the input space with a
manageable computational cost.

This summary proposes a new approach in which
an ROM philosophy is employed to find a reduced input
space rather than a model with reduced complexity. The
reduced input space is then explored using a user-defined
optimization algorithm. The idea is to identify all direc-
tions in the input space that change the objective func-
tion by values that are less than a prescribed tolerance,
most obviously chosen to match machine precision. By
eliminating these directions from the input space, a sig-
nificant reduction in the effective dimensionality of the
input space could be achieved. The algorithm establishes
a strong error bound on the maximum change in the ob-
jective function resulting from the reduction of the input
space. The benefit of this approach is that the original
model is still employed instead of a lower-fidelity approx-
imation, but with a constrained search space.

The new algorithm employs derivative information
to find the reduced input space. Unlike gradient-based
methods, derivative information is not used to advance the
search; it is only used to identify a subspace in the input
space to which the random samples are constrained.

Despite their widespread use, theoretical results re-
garding the behavior of heuristic methods like Nelder-
Mead have proven elusive [7]. The behavior of many
heuristic methods in more than two dimensions is scarcely
understood, thus we limit our discussion in this sum-
mary to random search methods only. This is due to
their widespread use and reliable performance for a range
of engineering models, namely simulated annealing and
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MCMC algorithms.
The reduced input space is identified via a hybrid al-

gorithm that statistically samples sensitivity information
and aggregates it in a subspace that is subsequently used
to reduce the dimensionality of the minimization problem.
Notably different from other reduction algorithms, recent
developments in random matrix theory are employed to
set an upper bound on the error resulting from the dimen-
sionality reduction [8]. By matching this error bound to
the numerical precision of the function evaluation, an ap-
propriate size for the subspace can be determined.

BACKGROUND

This approach is based on the Efficient Subspace
Method as outlined in [9, 10], henceforth abbreviated as
ESM. We use the algorithm described in [9] to construct a
matrix Q that describes the active subspace, S, of the ob-
jective function such that Range(Q) = S. Q can then be
used to constrain the search path of the chosen optimiza-
tion algorithm to lie only along the directions that pro-
duce a change in the objective function. Q is constructed
via evaluating the derivative of the objective function at a
randomly generated set of points in the input space. Prior
work (see [9]) has shown that some common engineer-
ing models can achieve significant reduction in problem
dimensionality with a very high probability that the re-
duced function still spans the full range space of the origi-
nal function ([8] has some discussion on this probability).
Additionally, it is only necessary to construct this basis
once, after which it can be reused with any new runs of
an algorithm that might benefit from reducing the dimen-
sionality of the objective function1.

One of the appeals of simulated annealing is that it
does not require derivative information to perform the op-
timization. If derivative information is available, however,
it is not easily able to take advantage of the added infor-
mation. The ESM-based approach introduced here hopes
to remedy this; given a small number2 of gradient eval-
uations we can construct an approximation for the origi-
nal function that is of reduced dimensionality but which
closely approximates the range space of the original func-

1Provided, of course, that the objective function does not change.
2”Small” being equal to the dimension of the active subspace of the

original objective function, determined within a given error tolerance
using an order-statistics based framework.

tion. This will be most beneficial when the dimension of
the active subspace is significantly smaller than the input
space of the original model as a relatively small number
of gradient evaluation can provide a large reduction in the
number of direct function evaluations required.

METHODOLOGY

We base our demonstration on Rosenbrock’s func-
tion, which is commonly used for benchmarking numeri-
cal optimization algorithms [11], given as3

R ([ x y ]ᵀ) = (1− x)2 +100(y− x2)2 (1)

The novelty of (1) lies in the difficulty of finding the min-
imum, which is easily shown to occur at (0,0,0), but lies
in a thin banana-shaped valley. To reach this valley is triv-
ial but to find the minimum once there proves difficult for
many algorithms. We wish to extend this problem to a
higher-dimensional one, but we want to maintain an ac-
tive subspace that is of dimension 2. We will adopt the
approach presented in [10], namely we will consider 2
vectors x̄ and ȳ, with x̄, ȳ∈Rr and two constant vectors β̄1
and β̄2 whose entries are randomly drawn from the stan-
dard normal distribution and β̄1, β̄2 ∈ Rr. We then substi-
tute into (1) as follows:

f ([ x̄ ȳ ]) = R
([

β̄
ᵀ
1 x̄ β̄

ᵀ
2 ȳ

]ᵀ)
(2)

= (1− β̄
ᵀ
1 x̄)2 +100(β̄ᵀ

2 ȳ− (β̄ᵀ
1 x̄)2)2

to obtain our objective function, f ([ x̄ ȳ ]). Simply from
observing (2) it should be clear that f only has two effec-
tive degrees of freedom, which lie in the directions paral-
lel to β̄1 and β̄2. Thus, the dimension of the active sub-
space of f is only 2 and we can fully characterize f with
a lower-dimensional function f ∗ that is a function of two
(scalar) variables using a basis Q for the active subspace
of f , such that f ∗(α1,α2) = f (Qᾱ), where ᾱ = [α1 α2]

ᵀ.
For the following experiments we chose r = 6, implying
that f is a function of 2r = 12 scalar variables in total, but
with an active subspace which is still only 2 dimensions.

3Here we have written Rosenbrock’s function somewhat differently
from what is typical, representing x and y as the components of a vector.
This is to avoid an inconsistency in notation for the objective function
defined later on.
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The rationale behind the choice of Rosenbrock’s
function may not be clear as its relevance to nuclear mod-
els is not immediately apparent. In part, we chose it to
demonstrate the approach because it proves difficult to op-
timize for many optimization algorithms, which become
trapped in the valley surrounding the minimum. This
demonstrates that the method presented in this summary
is not sensitive to the actual model form - if the chosen
optimization algorithm is capable of reaching a minimum
in the full variable space it will also reach a minimum by
searching the reduced space. In truth, the given analysis
can be applied to almost any functional form to yield a
suitable objective function. In this context, Rosenbrock’s
function can also be considered as a stand-in for an ar-
bitrary high-dimension function that has strongly corre-
lated inputs. Other work has shown that application of
a related approach to methods for uncertainty quantifica-
tion and sensitivity analysis yields excellent results [9],
the goal is to develop a similar approach for problems in
nonlinear optimization. In future work, it is desired to ex-
amine the application of this method to reactor models, in
particular fuel loading optimization.

This extension brings some extra challenges, the first
of which is that the problem no longer has a unique solu-
tion for the global minimum. Instead of the global min-
imum being at the origin as is the case with the normal
Rosenbrock function, it now lies on the curve along which
β̄
ᵀ
1 x̄ = 0 and β̄

ᵀ
2 ȳ = 0. However, it can be seen that the

points that lie on this curve do still achieve the condition
that f ([ x̄ ȳ ]) = 0, so they still produce the same mini-
mum value as the original function. We also note that
as stated, this method provides a solution in the reduced
space and it is necessary to find the corresponding solu-
tion in the original input space. The full variable space
optimum is given in the same way as the search points,
namely by forming the product Qᾱ∗, where ᾱ∗ represents
the reduced space solution, yielding the full-space solu-
tion corresponding to the reduced-space solution. Note
that in the following demonstration section we verify that
all solutions found by exploring the reduced space and
then projecting into the full space are indeed true minima
of the objective function.

Trivially, we could construct Q using the β-vectors
since they are known, (they are generated at random a pri-
ori in our experiment) but in general the various β̄’s are
unknown as they represent the coefficients in a special ex-

pansion of f , as shown in [10]. Instead, we determine
Q by taking the QR decomposition of a matrix G, whose
rows are the gradient of f evaluated at random points in
the input space, and then discarding the R matrix. We note
that this algorithm will only require 2 evaluations of ∇̄ f
since random sampling from the active subspace S ⊆ R2

can yield no more than 2 linearly independent vectors.
For an arbitrary model, the number of necessary gradi-
ent evaluations is set according to a user specified level of
confidence that the full variation of the function has been
captured. For more elaboration on the theoretical under-
pinnings and practical implementation of this, see [8] and
[12].

It is important to remark here that the proposed
methodology does not offer any guarantees regarding the
convergence of the search algorithm to the global min-
imum; it only provides a means to reduce the effective
dimensionality of the search space. Qualitatively, one can
describe the reduction algorithm as follows: for a given
user-defined tolerance, reduce the effective dimension-
ality of the input space by excluding all directions that
change the function by amounts smaller than the specified
tolerance. Clearly, for functions that are sufficiently com-
plex excluding any direction in the phase space could lead
to missing the global minimum. For practical problems,
however, one is often limited by the numerical precision
of the function evaluation procedure. One can therefore
take advantage of this by setting the tolerance to be equal
to the numerical precision of the function evaluation. We
address this issue in the demonstration section by apply-
ing the given approach to Rosenbrock’s function, a com-
mon benchmark for optimization algorithms.

DEMONSTRATION

We demonstrate this approach using Mathematica’s
built-in command NMinimize, which encloses 4 separate
algorithms: Nelder-Mead, differential evolution, simu-
lated annealing and random search4, and examine the
number of steps required by each algorithm when opti-
mizing f directly versus when using the reduced model
f ∗. Nelder-Mead, differential evolution and random
search are only included for reference; we do not wish to

4”Random search” is Mathematica’s terminology for a method that
begins at a collection of random starting points and employs local opti-
mization techniques at each point to find a global minimum.
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make any predictions about the effect of the dimensional-
ity reduction on these algorithms. We note that all results
were verified to minimize f . Table 1 summarizes these
results5:

Algorithm Steps ( f ) Steps ( f ∗)
Nelder-Mead 109 82
Differential Evolution 84 105
Simulated Annealing 1654 224
Random Search 359 63

Table 1: Number of function evaluations required by each
algorithm to find a minimum

Figure 1 shows a comparison of the path taken by the
optimization for simulated annealing. Note the difference
in scale between figures 1(a) and 1(b); with the subspace
constrained function we do not see the large jumps oc-
curring as the method explores the input space that we do
when optimizing the objective function directly.

Figure 2 shows a comparison of the number of func-
tion evaluations required by the simulated annealing rou-
tine to find a minimum when searching the full input space
versus searching the constrained space as the number of
input variables is increased. We observe that the number
of evaluations required for the full space search increases
rapidly while the required evaluations for the constrained
search is more or less constant as the input dimension in-
creases.

5Note that these methods are random in nature and give a varying
number of steps; results shown are representative of several runs.
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CONCLUSIONS

We can see in table 1 that we achieved an improve-
ment in the number of objective function evaluations re-
quired of almost 750%. Using random search we also
realized an improvement of approximately 570%. Inter-
estingly, for the other methods we did not see any signif-
icant improvement; in fact, differential evolution seems
to have actually performed appreciably worse. We prefer
not to offer any comment on these methods as we have not
undertaken any analysis of these results, though we note
that further experiments with Nelder-Mead and differen-
tial evolution that are not shown in this exhibited very un-
usual behavior. The algorithms both gave erratic results
for experiments with more than 10 variables, leading us
to suspect that they may not be able to cope with so many
variables for the particular objective function under study.

The results from these exploratory experiments are
very promising, at least for the Metropolis-based meth-
ods, and the next logical step would be to test this ap-
proach with a realistic physical model. While the objec-
tive function in this experiment was constructed expressly
to demonstrate the effect of this method, we believe that
the same approach will work well with realistic models as
well. Simulated annealing showed exceptionally promis-
ing results and is common in nuclear engineering, thus
pairing ESM with a simulated annealing-based reactor
core model optimization problem is clearly the next step.

ACKNOWLEDGEMENTS

This work was supported by a professional develop-
ment grant funded by the Nuclear Regulatory Commis-
sion.

REFERENCES

[1] Bertsekas, D. (1999). Nonlinear programming.
Athena Scientific Belmont, MA.

[2] Lewis, R., Torczon, V., and Trosset, M. (2000). Direct
search methods: then and now. Journal of Computa-
tional and Applied Mathematics, 124(1-2):191207.

[3] fminsearch, MATLAB R2011a Documentation, The
MathWorks, Inc. 3 Apple Hill Drive Natick, MA
01760-2098. USA.

[4] Olsson, D. and Nelson, L. (1975). The Nelder-Mead
simplex procedure for function minimization. Tech-
nometrics, 17(1):4551.

[5] W. R. Gilks, S. Richardson and D. J. Spiegelhalter.
(1996). Markov chain Monte Carlo in practice. Chap-
man & Hall/CRC.

[6] Jung, W. and Cho, N. (1993). Determination of design
alternatives and performance criteria for safety sys-
tems in a nuclear power plant via simulated annealing.
Reliability Engineering & System Safety, 41(1):7194.

[7] Lagarias, J. C. et. al. (1998). Convergence proper-
ties of the Nelder-Mead simplex algorithm in low-
dimensions. Siam Journal of Optimization, 9(1):112-
147.

[8] Halko, N., Martinsson, P., and Tropp, J. (2009). Find-
ing structure with randomness: Probabilistic algo-
rithms for constructing approximate matrix decompo-
sitions. Arxiv preprint arXiv:0909.4061.

[9] H. Abdel-Khalik. (2011). On nonlinear reduced order
modeling. Int. Conf. Math. Comp. Nucl. Sci. Eng.,
Brazil, (2011).

[10] H. S. Abdel-Khalik and J. M. Hite, Reduced order
modeling: tensor-free expansion for nonlinear fea-
tures identification. (2011). Trans. Am. Nucl. Soc.,
Hollywood FL, June, 104, 2011

[11] H. Rosenbrock. (1960). An automatic method for
finding the greatest or least value of a function. The
Computer Journal, 3(3):175.

[12] J. M. Hite and H. S. Abdel-Khalik. (2011). Heuristic
Approach for ESM-based Reduced Order Modeling.
Trans. Am. Nucl. Soc., Washington DC, Oct, 2011.
Accepted for publication.

CASL-U-2011-0193-000

AbdelK
Text Box
ATTACHMENT III


	CASL_MS_coversheet.pdf
	CASL-U-2011-0193-000
	Attachments_Sept30_2011.pdf
	Binder1.pdf
	4739_BangKennedy_InteractionUQSA.FINAL
	4631_Hite_DimensionalityReduction






