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Objective 
 
This document is a high-level roadmap for addressing UQ capability challenges that are expected to be 
encountered in CASL. The UQ capabilities outlined in the roadmap will typically be delivered through 
CASL milestones, which might take the form of targeted UQ algorithm development, or be rolled into 
more comprehensive milestones that involve exercising specific VERA modules and/or CASL challenge 
problems. In all cases, the milestones will be aligned with the evolving needs and priorities of CASL. 
Thus, the roadmap is a working document, not a set-in-stone plan. 
 

Scope and Challenges 
 
This roadmap is not intended to cover the breadth of VUQ capabilities. Initially the roadmap will be 
restricted to uncertainty propagation through computational models. The technical scope will expand to 
include verification and validation/calibration (to include model-form error) in later versions. This 
document does explain what model-form error is, but it only describes the forms it takes and the 
challenges with handling it. Treatment of model-form error requires consideration of experimental data, 
which is not discussed. The current version of the roadmap describes the capabilities (for uncertainty 
propagation) that the VUQ Focus Area delivered in FY11 and has planned for FY12.  
 

                                                           
1 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia 

Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of 

Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. 
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A number of specific challenges exist with the propagation of uncertainties through CASL’s 
computational models. At the highest level, the challenges are in dealing with the multiphysics, 
nonlinear, time-dependent, high-dimensional (in dimensions of uncertainty) systems that need to be 
solved accurately, with confidence, by VERA. CASL’s multiphysics systems combine linear or nearly linear 
models having very large numbers of uncertain parameters with very nonlinear (and possibly 
nonsmooth) models having (relatively) few numbers of uncertain parameters. Moreover, these 
parameters can be any mix of aleatory and epistemic types, which present further algorithmic 
challenges. In general, we think of our systems as very high dimensional, requiring methods for 
propagating uncertainties that are efficient and scalable. Addressing this “curse of dimensionality” is 
one of the grand challenges in the UQ research and development community. 
 
The very heterogeneous nature of our multiphysics systems (i.e., mixed linear/nonlinear, varying 
dimensionality, different physical scales, etc.) requires a toolbox (i.e., hybrid) approach for delivering the 
most appropriate capability for the problem at hand. The toolbox must include a mix of capabilities 
spanning deterministic (adjoint) approaches and sampling-based approaches. Within this vast set, there 
is a continual need for development and improvement of capabilities that must be tailored to the CASL 
problems.  
 
Here is a summary of challenges that we face for uncertainty propagation in CASL: 
 

 Coupling 

o Single physics 

o Loosely-coupled multi-physics – interface coupling 

o Loosely-coupled multi-physics – overlapping volume 

o Tightly-coupled multi-physics (monolithic  system) 

 Fidelity 

o Hierarchical multifidelity models 

o Ensemble of models (lacking preference structure  model-form uncertainty) 

 Physical scale 

o Continuum/engineering scale models 

o Sub-continuum (lower-length scale) models 

o Coupled sub-continuum/continuum models 

 Validation hierarchy 

o Components to sub-systems to full systems 

 Mathematical model form 

o Linear vs. Nonlinear 

o Smooth (differentiable) vs. Non-smooth 

o Unimodal vs. Multimodal 

 Uncertainty characterization 

o Interface with data: assimilation, inference, inversion 

o Parametric vs. nonparametric distributions 

o Random fields and stochastic processes 

 Dimensionality 

o Input Parameter space: 
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 Few-to-moderate uncertain (input) dimensions [<O(10-100)] 

 High uncertain (input) dimensions [>>O(100)] 

o State space: High dimension > O(106) 

o Outputs: (few outputs vs. many outputs) 

 Uncertainty form 

o Aleatory (parametric) 

o Epistemic (parametric, model-form, numerical discretization, …) 

 Quantity of interest 

o Best estimate plus uncertainty for all models outputs used in support of design, analysis, 

safety, and operation 

o Risk assessment (tail probability) 

 Uncertainty Algorithms 

o Forward (including sampling-based) vs. Adjoint Methods 

o Surrogate-Based vs. Surrogate-Free Methods 

o Hybrid Forward-Adjoint Surrogate-Based Methods 

 
It is evident that CASL cannot address all of these challenges directly. We must leverage what we can, 
and invest smartly in those areas that deliver the most value to our mission. The FY11 and FY12 activities 
outlined in this roadmap begin to address some of the most critical challenges listed above. 
 

UQ Problem Description and Definition of Model Error 
 
This section describes the “model error” and the situations in which it arises. We do not address how 
model error is to be handled in CASL -- that topic will be addressed in a future version of the roadmap.  
 
Consider a single model M (representing a single physics) that maps inputs x and p to outputs u as 
follows: 
 

0 = M(x, p; u) 
 
where x = {xi; i = 1, Nd} are the independent variables (e.g., spatial coordinates, angle, time), p = {pi; 
i=1,…,Np} are adjustable parameters of the model and/or physical environment, and u = {ui; i=1,Nu} 
represents the Nu unknowns of the problem. Note that M can be linear or nonlinear with respect to u. 
The uncertainties we consider are those of the Np parameters – these parameters can be any 
combination of aleatory and epistemic types. Specifically, we are interested in the propagation of the 
parameter uncertainties through M so that we can compute the uncertainty in u. The Nr responses Ri  
(i.e., the quantities-of-interest) are then computed as  
 

Ri =fi(u), i = 1, Nr. 
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In terms of UQ algorithms, situations where Np and/or Nr are large (e.g., >O(100), depending on the form 
of M) are challenging because these quantities (i.e., numbers of parameters and responses, respectively) 
also add to the dimensionality of the problem. Thus, scalable and efficient UQ algorithms are required.   
 
The model (M) itself is likely to have error with respect to the reality that it is attempting to represent. 
This is the model error and is denoted by em. It is handled in different ways depending on the context: 

 For calibration, em is modeled (sometimes referred to as the model discrepancy term); 

 For validation, em is measured (in the units of an accepted validation metric); 

 For prediction, em is estimated (for the purpose of model interpolation within the validation 
domain or model extrapolation beyond the validation domain). 

In all these situations -- modeling, measuring, or estimating -- em requires (single-effects) experimental 
data (which also has uncertainties). This scenario is depicted in Figure 1. 
 

 
 

Figure 1. A general computational model with uncertainties in outputs (due to uncertain input 
parameters) has an error em with respect to “reality.” The “reality” also has uncertainties due to 
the inherent uncertainties in the experimental data. 

 
Various layers of complexity can now be added to the model. A simple multi-physics model can be 
represented as 
 

0=Z[M1(x1, p1; u1), … , MNz(xNz, pNz; uNz)] 
 
where Nz is the number of physics and Z is the coupling model. Naturally we could generalize this further 
to show coupling of these multi-physics models in a hierarchical way (i.e., enumerate Z and combine two 
or more with higher-level coupling models, etc.). The models Mi individually can be linear or nonlinear. 
The added complexity in this structure can be realized in several ways. For example, the multiple physics 
can be mathematically coupled over the entire physical domain (i.e., volumetrically) or at a boundary. 
They can be coupled in a time-overlapping way or a time-sequenced way. The physics can exhibit 
radically different spatial and/or time scales. Finally, the coupling model Z can take many forms ranging 
from a single monolithic (tightly coupled) system to a fully staggered (loose) coupling that requires 
iterations (in one or all directions) across the individual physics.  
 
We could also parameterize Z but choose not to explicitly show that here. As with each of the single-
physics models Mi, Z has a model error ez that we are not addressing in Version 1 of the UQ Roadmap. 
Modeling, measuring, or estimating ez would require integrated-effects experimental data.  
 
A further layer of complexity is added when considering multiple model alternatives for an individual 
physics. This is a very common situation – for example in modeling turbulence we often have to choose 
among many model types (e.g., algebraic, RANS, LES, DNS). To account for this situation, we add a 
superscript index to our model M (going back to our single-physics model M): 
 

0 = Ma(x, pa; u); 1 <= a <= N 
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where N is the number of model choices. Note also that each model choice Ma will generally have a 
unique parameterization pa. The multiple model choices can appear in two forms. First, a set of model 
alternatives could have a clear hierarchy in terms physics fidelity -- we call this multiple model fidelity. In 
the turbulence modeling example above, we would have a hierarchy of four models (M1 is an algebraic 
model, M2 is a RANS model, and so on) that exhibit a sequentially higher resolution of the same physics. 
This scenario is depicted in Figure 2. Having a clear hierarchy of model fidelity allows one to adaptively 
control (i.e., reduce) the model error ea

m. If the model of highest fidelity (MN) is accurate enough (which 
would be an assumption), then one could compute a model error estimate as follows: 
 

ea
m (Est) = R(u)|M

N
 - R(u)|M

a, where a < N. 
 
 

 
 

Figure 2. Multiple model alternatives, where the model choices have a clear hierarchy of fidelity. 
Assuming the “fine” model is significantly more accurate than the lower-fidelity models, then 
reasonable model error estimates can be computed for the lower-fidelity models. This allows 
model error to be adaptively controlled. 

 

The above expression states that the estimated model error is the difference in responses between the 
finest model (MN) and any coarser model. An adaptive model-error control algorithm would involve 
switching to a finer model if the estimated error is higher than some tolerance.  

 
The second important case when considering multiple model alternatives is when a clear hierarchy of 
fidelity does not exist. In other words, there is no clear choice in terms of model accuracy that would 
drive the selection of one model versus the others. This leads to an (epistemic) uncertainty due to the 
model form. This scenario is depicted in Figure 3. One then could “sample” each model to create a finite 
set of possible solutions: 
 

{R(u)|M
1, … , R(u)|M

N}. 
 
Quantitative techniques for multiple model inference (MMI) can be developed and applied to determine 
the “best” model alternative. However, these techniques require the existence of experimental data. 
Moreover, MMI is still a research area, and different inference methods sometimes give inconsistent 

CASL-U-2011-0195-000



Consortium for Advanced Simulation of LWRs                                                                      

CASL Uncertainty Quantification Roadmap Page 6 
 

results as to what is the “best” model. Therefore, one must (usually) still account for the epistemic 
model-form uncertainty to get a complete characterization of the total uncertainty in a given simulation.  
 

 
 

Figure 3. Multiple model alternatives, where no clear hierarchy of model fidelity exists. In this 
situation, the range of models leads to an epistemic model-form uncertainty. Each model has a 
potentially different (and unknown unless validated) model error. 

 
There is another layer of complexity in each of the above situations that is due to the discretization of 
the models. Specifically, this is the numerical discretization error that must be estimated as part of the 
solution verification exercise. The discretization error is another component in the total uncertainty in a 
given simulation. Thus, there is an important coupling of verification to UQ (as well as to data 
assimilation) – this topic will be addressed in a future version of the UQ Roadmap. 
 
Finally, we have not discussed the problem of estimating em for the purpose of predictions. In general, 
estimating em for predictions (where “Reality” is not known) requires a systematic traversal through the 
validation hierarchy, where the model error for each piece of the hierarchy is measured through a 
validation process performed on that piece. The goal is to provide enough information about the model 
errors at the lower levels to enable the estimation of em (through some form of extrapolation and/or 
scaling) for the full-system quantity-of-interest. 
 

Roadmap for Uncertainty Propagation 
 
We now present how the VUQ Focus Area’s FY11 and FY12 milestones map to the situations described 
in the previous sections. At the time of this writing, the FY12 milestones have not been finalized, so this 
roadmap is subject to change.  
 

FY11 Roadmap 
 

 Title: Enable statistical sensitivity and uncertainty demonstrations for VERA (L2 milestone) 
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o Description: Deploy forward SA and UQ approaches by integrating DAKOTA with VERA 
modules in an evolutionary approach (initially loosely couple to LIME or individual VERA 
components). 

o Delivery date: 3/30/2011 
o Owner: Brian Adams 
o Model type: Single physics (VIPRE-W boiling model), nonlinear, steady-state 
o Uncertainties/responses addressed: Aleatory uncertainties, few parameters (Np < 

=O(10)), few responses (Nr <= O(10)) 
o UQ algorithms exercised: Latin Hypercube Sampling, Polynomial Chaos Expansions 
o Multiple model alternatives: No 

 
 

 Title: Uncertainty Management Hybridization Framework (L3 milestone) 
o Description: Develop a generalized framework that hybridizes stochastic and 

deterministic techniques for uncertainty management 
o Delivery date: 9/30/2011 
o Owner: Hany Abdel-Khalik 
o Model type: General coupled physics 
o Uncertainties/responses addressed: Aleatory uncertainties, many parameters (Np >= 

=O(100)), few responses (Nr <= O(10)) 
o UQ algorithms exercised: Combined global sampling method with local adjoint method 
o Multiple model alternatives: No 

 

 Title: Scalable UQ Algorithm Deployment (L3 milestone) 
o Description: Highlight development of scalable nonlinear UQ algorithms in DAKOTA and 

deployment of these techniques to probabilistic analysis of Crud. 
o Delivery date: 9/30/2011 
o Owner: Mike Eldred 
o Model type: Single physics (VIPRE-W boiling model), nonlinear, time-dependent 
o Uncertainties/responses addressed: Aleatory uncertainties, few parameters (Np < 

=O(10)), few responses (Nr <= O(10)) 
o UQ algorithms exercised: Adaptively refined stochastic expansions using generalized 

sparse grids 
o Multiple model alternatives: No 

 

FY12 Roadmap 
 

 Title: Two-way coupled-physics UQ in Baseline VERA (L1 milestone, joint with VRI and AMA) 
o Description: Demonstrate sensitivity and uncertainty analysis for CIPS-related 

phenomena with two-way coupled physics as available in VERA at time of execution.   
o Delivery date: 12/16/2011 
o Owner: Brian Adams 
o Model type: Two-way coupled physics (VIPRE-W, BOA), nonlinear, time-dependent 
o Uncertainties/responses addressed: Aleatory uncertainties, few parameters (Np < 

=O(10)), few responses (Nr <= O(10)) 
o UQ algorithms exercised: Latin Hypercube Sampling (others TBD) 
o Multiple model alternatives: No 
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 Title: Three-way coupled-physics UQ in  Baseline VERA (L3 milestone) 
o Description: Demonstrate sensitivity and uncertainty analysis for CIPS-related 

phenomena with three-way coupled physics as available in VERA.  This work is an 
extension of the planned Q1 L1 milestone. 

o Delivery date: 3/30/2011 
o Owner: Brian Adams and Hany Abdel-Khalik 
o Model type: Three-way coupled physics (VIPRE-W, BOA, ANC), linear/nonlinear, time-

dependent 
o Uncertainties/responses addressed: Aleatory uncertainties, moderate parameters (Np < 

=O(100)), few responses (Nr <= O(10)) 
o UQ algorithms exercised: Latin Hypercube Sampling (others TBD) 
o Multiple model alternatives: No 

 

 Title: Initial (single-physics) UQ hybridization (mixed stochastic/deterministic) framework 
demonstration for CIPS or WB-1, using Early Advanced VERA  (L3 milestone) 

o Description: Demonstrate the framework for a neutronics problem (likely solved with 
DeCART), where a deterministic approach is exercised. 

o Delivery date: 3/30/2012 
o Owner: Hany Abdel-Khalik 
o Model type: Single physics, linear, time-dependent 
o Uncertainties/responses addressed: Aleatory uncertainties, many parameters (Np >= 

O(100)), few responses (Nr <= O(10)) 
o Multiple model alternatives: No 

 

 Title: Algorithms for Model-Form Uncertainty Propagation (L3 milestone) 
o Description: Demonstrate uncertainty propagation associated with using multiple-model 

alternatives, for a CIPS problem. 
o Delivery date: 6/30/2012 
o Owner: Mike Eldred 
o Model type: Coupled physics (details TBD), linear/nonlinear, time-dependent 
o Uncertainties/responses addressed: Aleatory parameter uncertainties, epistemic model-

form uncertainties, few parameters (Np < =O(10)), few responses (Nr <= O(10)) 
o UQ algorithms exercised: TBD 
o Multiple model alternatives: Yes. Multiple model alternatives that possess a clear 

hierarchy of fidelity will be studied. Still to be determined is whether multiple model 
alternatives without a hierarchy of fidelity will be included in the milestone scope. 

 

 Title: Multi-physics UQ hybridization framework demonstration for CIPS (L2 milestone) 
o Description: Demonstrate the framework for a  couple neutronics/T-H problem, in which 

a deterministic approach and a stochastic approach are each exercised within the same 
problem (and appropriately combined across the physics within the framework) 

o Delivery date: 9/30/2012 
o Owners: Hany Abdel-Khalik and Mike Eldred 
o Model type: Coupled physics, nonlinear, time-dependent,  
o Uncertainties/responses addressed: Aleatory uncertainties, many parameters (Np >= 

O(100)), few responses (Nr <= O(10)) 
o Multiple model alternatives: TBD 
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Summary 
 
The scope of Version 1 of the UQ Roadmap is restricted to uncertainty propagation. It is important that 
future versions include treatment of the model error term em for all three contexts of interest: 
calibration, validation, and prediction. This will necessitate the inclusion of data assimilation capabilities 
in the roadmap. We note that the VUQ Focus Area has FY11 and FY12 milestones addressing data 
assimilation. By extension, the roadmap will also need to include the acquisition of experimental data if 
the capabilities for calibration and validation are to be exercised on the CASL challenge problems. The 
roadmap must also include solution verification since numerical discretization errors contribute to the 
overall simulation uncertainties. The priorities beyond FY12 will be strongly driven by the evolving needs 
of CASL. One of the primary objectives of VUQ is to provide a SA/UQ-driven process for guiding CASL’s 
R&D investments. Our FY11 and FY12 activities will provide the foundations for enabling sound 
investment decisions.  
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