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ABSTRACT 

 

Model validation is the process of confirming that the predictions of a computer code 

adequately represent measured physical phenomena. This  work presents novel quantitative  

multivariate covariance, skewness and kurtosis metrics, constructed from model sensitivities combined 

with computational and experimental uncertainties,  for validating  results produced by large-scale 

nonlinear multi-scale multi-physics models.   These new validation metrics also provide indicators for 

quantifying deviations of the system under consideration from a multivariate normal distribution. 

Furthermore, the new validation metrics also indicate the consistency among parameters and 

responses, providing quantitative measures for acceptance or rejection of information. 
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I. INTRODUCTION 

 

It is well known that the true values of measured and computed data are impossible to know 

exactly because of various uncontrollable errors and uncertainties arising in the data 

measurement and interpretation reduction processes. Hence, all inferences, predictions, 

engineering computations, and other applications of measured and/or computed data are 

necessarily based on weighted averages over the possibly true values, with weights indicating 

the degree of plausibility of each value. Furthermore, combination of data from different 

sources involves a weighted propagation (e.g., via sensitivities) of all uncertainties, requiring 

reasoning from incomplete information and using probability theory for extracting optimal 

values together with “best-estimate” uncertainties from often sparse, incomplete, error-

afflicted, and occasionally discrepant data. A wide range of probability theory concepts and 

tools is employed in data evaluation and assimilation, from deductive statistics involving 

mainly frequencies and sample tallies to inductive inference for assimilating non-frequency 

data and a priori knowledge.  

 

If the results of separate measurements of the same quantity differ from one another, and the 

respective differences cannot be predicted individually, then the error stemming from this 

scatter of the results is called random error. Random errors can be identified by repeatedly 

measuring the same quantity under the same conditions. The scatter in results cannot be 

always tested in practice, particularly for large-scale modern experiments, where it may be 

impractical to provide sufficient repetition in order to satisfy the explicit needs for quantifying 

the random errors based on strict statistical requirements. Nevertheless, reasonable estimates 

of random errors can often be made, particularly when the nature of the underlying probability 

distribution can be inferred from previous experience. A subtle issue regarding random errors 

stems the fact that such errors may contain correlated components: whether an error 
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component is correlated or not within a particular data set depends upon the role that the 

associated random variable plays in the respective physical problem.  

 

In contradistinction to a random error, a systematic error is defined as a measurement error 

that remains constant or changes in a regular fashion when the measurements of that quantity 

are repeated. Such errors arise because of inherent flaws in the investigative process itself, 

and they lead to bias. Although systematic errors are difficult to distinguish from blunders, 

particularly when the impact of a blunder is small, the most reliable way to uncover 

systematic errors is by using a more accurate measuring instrument and/or by comparing a 

given result with a measurement of the same quantity but performed by a different method. 

Each distinct approach leads to results that differ somewhat from those obtained in other ways. 

These differences exhibit a pattern (i.e., are systematic) no matter how many times each 

approach is repeated because the inherent systematic deficiencies of each method cannot be 

avoided by mere repetition. When the errors are truly systematic, statistical regularity will 

emerge from the ensemble of all measurements. Such a statistical regularity will not emerge 

when the data sets are afflicted with blunders since blunders are generally one-time 

occurrences that can be detected if a particular procedure is repeated. Consequently, 

redundancy within a given investigative procedure is desirable not only to improve precision 

but also to clear the results of blunders and unintended mistakes (e.g., overlooking or 

miscalculating important corrections, equipment failure or improper calibration, bugs in 

computer codes, etc.) that can produce defective data. Although such defective data are not 

uncertainties, data points that exhibit atypical behavior need to be carefully scrutinized since 

outright rejection may not necessarily be appropriate. In nuclear data analysis and evaluation, 

for example, a differential cross-section point on an excitation curve might appear to be 

anomalous but could nevertheless be correct because of the effect of a previously unidentified 
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resonance. Such data points need to be well understood prior to subjecting the entire data set 

to extensive statistical analysis for quantifying the associated uncertainties. 

 

In practice, measurements are affected by both random and systematic errors. Typical systematic 

errors in the nuclear field, for example, can arise from cross sections used for neutron fluence 

determination, sample material standards, detector calibrations, shortcomings in deriving corrections 

(e.g., neutron multiple scattering, background) or nuclear decay properties. Once the sources of 

systematic error have been identified, it is necessary to estimate their respective magnitudes, 

corresponding to a consistent level of confidence. This is a very difficult task since the applicable 

probability distribution laws are often unknown, and only an estimate of the ranges of possibilities for 

the variables in question may be available. The issue of confidence is important because the various 

error components must ultimately be combined to generate covariance matrices, and if the specific 

errors conform to widely different confidence levels, their combination may lead to misleading results.  

 

The current state-of-the-art data assimilation/model calibration methodologies [see, e.g., D. G. Cacuci, 

and M. Ionescu-Bujor, (2010), ”Best-Estimate Model Calibration and Prediction through Experimental 

Data Assimilation: I. Mathematical Framework”, Nucl. Sci. Eng., 165, 18-44, 2010; and W. Lahoz, B. 

Khattatov, and R. Ménard (Eds.), “Data Assimilation: Making Sense of Observations”, Springer-

Verlag Berlin/Heidelberg, 2010] for large-scale nonlinear systems cannot take into account 

uncertainties higher-order than second-order (i.e., covariances) thereby failing to quantify the 

deviations of the problem under consideration from a normal (Gaussian) multivariate distribution. 

Such deviations would be quantified by the third- and fourth-order moments (namely: skewness and 

kurtosis) of the model’s predicted results (responses). These higher-order moments would be 

constructed by combining modeling and experimental uncertainties (which also incorporate the 

corresponding skewness and kurtosis information), using derivatives (sensitivities) of the model 

responses with respect to the model’s parameters. Notably, model calibration methodologies currently 

employed in large-scale nuclear engineering applications can quantify only the first-order predictions. 

Furthermore, none of the model calibration methodologies currently employed in large-scale nuclear 
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engineering applications can account for unrecognized modeling errors (omitting or incomplete 

modeling of physical phenomena).  Our ongoing research aims at addressing and overcoming all of 

these current shortcomings.  

 

This report is organized as follows: Section II introduces metrics for the a priori verification and 

validation of the covariance matrices for the measured responses and model parameters, 

respectively, taking also into account possible correlations between parameters and responses. 

As is well known, covariance matrices must be positive definite, since they represent physical 

uncertainties. Section II also addresses the fundamental issue of data consistency, and introduces 

quantitative indicators for assessing consistency among n  measurements and/or computations of the 

same (unknown) quantity μ , which yielded data 1 1 ,... nx ,x nσ σ± ± , where ix  denotes the measured 

or computed mean value of response i , and iσ  denotes the corresponding standard deviation for 

response i .  When the distance, i jx x−

)

, between any two values is smaller than or comparable to 

the sum ( i jσ σ+  of the corresponding uncertainties, the data is customarily considered to be 

“consistent” or to agree “within error bars”. However, if the distances j kx x−  are larger than 

( j )kσ σ+ , the respective data could be inconsistent (discrepant). Inconsistencies can be caused by 

unrecognized or ill-corrected experimental effects (e.g., background, dead time of the counting 

electronics, instrumental resolution, sample impurities, calibration errors, etc.). Although there is a 

non-zero probability that apparently discrepant data are actually not discrepant [e.g., for Gaussian 

sampling distributions with standard deviation σ , the probability that two equally precise 

measurements would yield a separation greater than 2i jσ σ σ+ =  is ( )1 0 157erfc . ], it is much 

more likely (about 84% probability) that apparently discrepant data actually indicate the presence of 

unrecognized errors jε . Section II recalls the recent procedure of Cacuci and Ionescu-Bujor (NS&E, 

165, pp 1-17, 2010) for combining consistent and possibly mildly inconsistent data to determine the 

 
CASL-U-2011-0196-000-a



marginal posterior distributions for unrecognized errors, if present, thereby recommending mean 

values and covariances for subsequent model validation. 

 

In practice, the exact first-order response derivatives (“sensitivities”) with respect to model 

parameters can be computed most efficiently for large-scale nonlinear systems by using the 

“adjoint sensitivity analysis procedure” (ASAP). However, the computation of the second-

order derivatives severely strains computational resources, while third- and higher-order 

response derivatives with respect to model parameters are practically unavailable for large-

scale systems. Section III presents, in premiere, explicit expressions for skewness and kurtosis 

of computed responses, thereby permitting quantification of the deviations of the computed 

response uncertainties from multivariate normality. This Section also presents a new and 

most efficient procedure for computing the second-order response derivatives with respect to 

model parameters using the “adjoint sensitivity analysis procedure” (ASAP).  

 

Loosely speaking, model validation means “Does the model represent physical reality?” More 

formally: “Validation is the process of confirming that the predictions of a computer code 

adequately represent measured physical phenomena”, or “Model validation is the process of 

determining the degree to which a model is an accurate representation of the real world from 

the perspective of the intended uses of the model”. Physical reality is represented by 

experiments, which are accompanied by experimental uncertainties. Computational results are 

also accompanied by uncertainties. Hence, model validation requires comparing computations 

to experiments, in the presence of both computational and experimental uncertainties. 

Validation experiments must be designed to allow conclusive quantitative comparisons of 

computations with experimental data for quantifying model fidelity and credibility. Section 

IV provides quantitative second-, third-, and fourth-order metrics (denoted as , 

for ), which combine experimental and modeling uncertainties with first- and 

kC metrics−

2 3 4k , ,=
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second-order response sensitivities, for determining the degree of validation and agreement 

(or disagreement) among the experimentally measured and computed parameters and 

responses, as well as quantifying the deviations from multivariate normality of the combined 

experimental-computational distribution functions. These kC metrics−  allow quantification 

of the validation domain and provide the basic elements for quantitative model extrapolation, 

namely the prediction of uncertainty in new environments or conditions of interest, including 

both untested parts of the parameter space and higher levels of system complexity in the 

validation hierarchy. Finally, Section V highlights the importance and wide applicability for 

model validation of the new high-order kC metrics−  introduced in this report.   
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II. A PRIORI DATA CONSISTENCY VERIFICATION AND VALIDATION:  

UNCERTAIN MODEL PARAMETERS AND MEASURED RESPONSES 

 

In general, a physical system and/or the result of an indirect experimental measurement is 

modeled mathematically in terms of:  

(a) A system of linear and/or nonlinear equations that relate the system's independent 

variables and parameters to the system's state (i.e., dependent) variables;  

(b) Inequality and/or equality constraints that delimit the ranges of the system's 

parameters;  

(c) One or several quantities, customarily referred to as system responses (or objective 

functions, or indices of performance), which are computed using the mathematical model; and 

(d) Experimentally measured responses, with their respective nominal (mean) values 

and uncertainties (covariance matrices). 

 

 

II.A. Verification of “A Priori” Measured Response Covariance Matrix: Consistent and 

Discrepant Measurements   

 

Consider that the model under consideration is used to compute  responses (or results), 

denoted generically by the vector 

rN

 

{ }1ir |i , ,N= =r … r .     (II.1) 

 

Consider also that measurements are available for the computed responses; these measured 

responses are characterized by mean values, denoted as 

 
CASL-U-2011-0196-000-a



 

{ }1m m m
i r ir |i , ,N , r r ,= = ≡r … i

r

    (II.2) 

 

 and by symmetric positive-definite covariance matrices  of dimension  of the 

form  

rrC rN N×

( )( )†rr m m≡ − −C r r r r ,     (II.3) 

comprising elements defined as m
ijc

( )( )m m
ij i i j jc r r r r≡ − − m .     (II.4) 

 

The covariance matrix  of measured responses must be positive definite (otherwise, it would 

not qualify as a bon-fide covariance matrix). This means that the measured response correlations must 

satisfy the Cauchy-Schwartz inequality 

rrC

1
m
ij

m m
ii jj

c

c c
1− ≤ ≤ ,     (II.5) 

while  must admit the Cholesky decomposition   rrC

 

( ) ( )† †rr rr rr rr rr= =C L L U U ,     (II.6)  

 

with rrL  (respectively ) being a nonsingular lower (respectively upper) triangular matrix 

with positive entries on its diagonal.  

rrU

 

If  is not positive definite or, worse, is singular, most Cholesky-decomposition algorithms 

will not perform the decomposition and will exit with a warning message. In such cases, it is 

imperative to examine the elements of  to quantify possible multi-colinearity among them. 

rrC

rrC
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Multi-colinearity occurs when the elements of  are moderately to highly correlated, and 

causes  to be ill-conditioned or singular (in case of linear dependence among its elements). 

As detailed in [B. G. Tabachnik and L. S. Fiddel, Using Multivariate Statistics, 4th Ed, Allyn 

and Bacon, Boston, 2001], multi-colinearity can be diagnosed by using either or all of the 

following quantifiers:  

rrC

rrC

rr

C

(i) variance inflation factors, which indicate whether there is a strong linear relation 

between a measured response and all of the remaining measurements;  

(ii) the so-called tolerance value, which quantifies the degree to which one measured 

response can itself be predicted by the other measured responses; and  

(iii) the so-called condition index in conjunction with the variance proportions, to 

assess the dependency of one measurement on the others.  

Highly correlated measurements must be combined to alleviate multi-colinearity, thereby ensuring 

that C  is a bona-fide, positive definite, covariance matrix.  

 

The covariance matrix  may also be affected by influential data points and/or outliers 

(which may be influential or not) which can affect or even falsify subsequent analyses 

involving . A value greater than unity for Cook’s distance, for example, would generally 

indicate an influential measurement [see, e.g., J. P.Stevens, Applied Multivariate Statistics for the 

Social Sciences, 4th Ed., LEA, Mahwah, NJ]. The identification of outliers usually relies on 

the assumption of an underlying model for the respective measurements, since a measurement 

value can considered to be an outlier only relative to some assumed model. There are several 

classical methods for identifying outliers [see, e.g., V. Barnett and T. Lewis, Outliers in 

Statistical Data, 2nd Ed., John Wiley & Sons, New York, 1984], although none of them are 

guaranteed to perform perfectly, particularly in the presence of masking or swamping caused 

my multiple outliers in multivariate data. A well-known robust criterion for detecting outliers 

rrC

rr
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in multivariate data is when the squared Mahalanobis distance, , exceeds some appropriate 

critical value ( . The Mahalanobis distance  is defined for N  observations in a 

2
iD

)2
i crit

D iD p -

variable data set  with mean ix Nx  and covariance matrix  as NC

 

( ) ( )
1 2

1
N x†

i i N i ND −⎡ ⎤≡ − −⎣ ⎦x x C x .    (II.7) 

 

Based on the asymptotic distribution of the Mahalanobis distance for large samples (i.e.,  

large ), an observation  can be considered to be an outlier if  N ix

 

( )2 2
1 0 1 largei p; / ND ; , Nαχ α−> ∈ =, ,    (II.8) 

 

where  denotes the  quantile of the2
1p; αχ − (1 / Nα−/ N ) 2

pχ  for a (large) sample of size , and 

typically 

N

1%α =  or 5%α = . For smaller samples (i.e.,  small ), the recommended critical 

value for (  is [see, e.g., C. Becker and U. Gather, “The Masking Breakdown Point of 

Multivariate Outlier Identification Rules”, J. Am. Stat. Assoc, 94, 947-955, 1999] 

N

)2

critiD

 

( )
( ) ( )

2
12

1

1
0 1 small

1
p ,n p ; N

i
p ,n p ; N

p n F
D ; ,

n n p pF
α

α

α− −

− −

−
> ∈

− − +
, N = ,  (II.9) 

 

If a measurement is grossly inconsistent with the rest, it should be eliminated from further 

consideration. However, if inconsistencies are mild, then the respective measurements should 

be combined with other appropriately chosen measurements, just as in the case of highly 

correlated measurements, in order to ensure that  is a bona-fide (physically and rrC
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mathematically) covariance matrix. For example, if the distance, i jr r− , between the nominal 

values of two measured responses is smaller than or comparable to the sum ( )i jσ σ+  of the 

corresponding standard deviations, the respective responses can be considered to be 

“consistent” or to agree “within error bars”. On the other hand, if the distances i jr r−  are 

larger than ( )j kσ σ+ , the respective measurements might be consistent (since about 17% of 

the members of the same normal distribution do lie outside an interval of two standard 

deviations) or might indicate the possible presence of unrecognized errors jε . A method for 

combining measurements has been recently presented by Cacuci and Ionescu-Bujor (2010.a), 

who consider n  measurements of the same unknown mean-value (i.e., “location parameter”) 

, such that each measurement yielded data r 1 1 nx ,...,x nσ σ± ± , where ix  denotes the 

measured mean value while iσ  denotes the corresponding measured standard deviation 

obtained in measurement (or computation) i . Considering both recognized and unrecognized 

errors, Cacuci and Ionescu-Bujor [D. G. Cacuci, and M. Ionescu-Bujor, 

”On the Evaluation of Discrepant Scientific Data with Unrecognized Errors”, Nucl. Sci. Eng., 

165, 1-17, 2010] employed the maximum entropy principle to derive optimal (under quadratic loss) 

mean values and marginal posterior distributions that are uniformly valid for the combined data. The 

unknown true variance of the unrecognized errors jε  was considered to be of the 

form ( ) 2 2
j j ivar sε ε τ= = , where 2

iτ  denotes an estimate of the unknown variance of iε  

(estimated, for example, from the accuracy of the techniques employed) and s  is an adjustable 

common scale parameter with a prior distribution ( )p s ds . If nothing is known about the adjustable 

common scale parameter s , Cacuci and Ionescu-Bujor (2010)  employed Jeffrey’s prior 

( )p s ds ds= s

, ,

 to obtain the following marginal posterior distribution for the location parameter r , 

given ( )1 nσ σ=σ … , ( )n1x , ,… x=x , and ( )n, ,1τ τ…=τ : 
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( ) ( )

( )
( )21

2

2 21 22 2 1

1

2

n
n

j
n / j j j

j j
j

r xs* s*p r | , , dr dr exp
s*s* σ τσ τ

−

=

=

⎡ ⎤−
⎢ ⎥∝ −

+⎢ ⎥+ ⎣ ⎦
∑

∏
σ x τ ,   (II.10) 

 

where  is the solution of the following nonlinear algebraic equation: s*

 

( ) ( )
( )

1222

22 2 2 2
1 1

2 2
n n

j jj

j jj j j j

r x
s* n , for n .

s* s*

τσ
σ τ σ τ

−

= =

⎡ ⎤−
⎢ ⎥= − + >

+⎢ ⎥+⎣ ⎦
∑ ∑   (II.11) 

 

On the other hand, it can be argued that the scale factor s  would be expected to be close to unity; 

since the values iτ  are the best available estimates of the uncertainties caused by unrecognized errors. 

In such a case, the mean value of  would also be expected to be close to unity, i.e., s 1s = , and the 

maximum-entropy argument can be used with the constraint 1s =  to obtain the exponential prior 

. This prior is almost as noncommittal as Jeffreys’ prior ( ) 0sp s ds e s−= <ds, < ∞ ( )ds s , 

decreasing also monotonically as increases, but gives less weight to the extreme values approaching 

the two ends of the positive real axis. For this (exponential) prior, Cacuci and Ionescu-Bujor (2010)  

have obtained the following marginal posterior distribution for the location parameter : 

s

r

 

( ) ( )

( )
( ) ( )2

2

2 21 22 2 1

1

11
2

n
n

j
n / j j j

j j
j

r xs*
p r | , , dr dr exp s* .

s*s* σ τσ τ =

=

⎧ ⎫⎡ ⎤−⎪ ⎪⎢ ⎥∝ − +⎨ ⎬
+⎢ ⎥⎪ ⎪+ ⎣ ⎦⎩ ⎭

∑
∏

σ x τ    

(II.12) 

 

where  that is the solution of the following nonlinear algebraic equation: s*
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( )
( )

1222

22 2 2 2
1 1

1 11 1
2 2 2

n n
j jj

j jj j j j

r xns* , for n .
s* s*

τσ
σ τ σ τ

−

= =

⎡ ⎤−
⎢ ⎥= + + >

+⎢ ⎥+⎣ ⎦
∑ ∑   (II.13) 

 

In view of the expectation that the scale factor  would be close to unity, a reasonable starting value 

for solving Eq. (II.11) or (II.13) iteratively, e.g., by Picard or Newton-like procedures, would be 

 Replacing this value in either Eq. (II.10) or (II.12) would yield a Gaussian of the form 

“starting expression” for the distribution the location parameter  

s

0 1s = .

r

 

( )

( )

( )

2

2 2
1

0 2

2 2
1

1
2

1
1
2

n
j

j j j

n
j

j j j

r x
exp

p r | , , ,s
r x

dr exp

σ τ

σ τ

=

∞

=−∞

⎡ ⎤−
⎢ ⎥−

+⎢ ⎥
⎣ ⎦= =
⎡ ⎤−
⎢ ⎥−

+⎢ ⎥
⎣ ⎦

∑

∑∫
σ x τ ,     (II.14) 

 

as the “starting expression” for the distribution the location parameter r . Using Eq. (II.14) would 

yield the following “starting” expressions for the mean, 
0 1s

r
=

, and variance, , of the 

unknown location parameter :  

( )
0 1s

var r
=

r

 
( )

( )0

12 2

1
1 12 2

1

n

k k k
k

ns

k k
k

x
r

σ τ

σ τ

−

=
= −

=

+
=

+

∑

∑
,   ( )

( )0 1 12 2

1

1
ns

k k
k

var r
σ τ

= −

=

=
+∑

.  (II.15) 

 

As the above expressions indicate, the initial estimate 0 1s =  (for the scale factor ) would give equal 

importance to both the recognized and unrecognized errors. Of course, subsequent iterations of Eq. 

(II.11) or (II.13), for obtaining improved estimates s  would lead to non-Gaussian 

distributions 

s

1 2k , ,...= ⎯→k ⎯⎯ s*

( )p r | , ,σ x τ .  
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In the limiting case when there are no unrecognized errors ( 0jτ = ), i.e., all the errors are known, both 

the distribution in Eq. (II.10) and that in Eq. (II.12) reduce to the well-known Gaussian that describes 

the evaluation of an unknown location parameter r  using known scale parameters (variances), 

namely: 

 ( )

( )
( )

( )

2

1 2

2

2

r r
exp

var r
p r | , , dr dr , r

var rπ

⎡ ⎤−
⎢ ⎥−
⎢ ⎥
⎣ ⎦→ = − ∞ < <

⎡ ⎤⎣ ⎦

τ=0

τ=0

τ=0

σ x τ 0 ∞ .    (II.16) 

characterized by the mean value r
τ=0

 and variance , ( )var r
τ=0

, of the form 

 

 
1

2 2

1 1

n n

k k k
k k

r x ,
−

σ σ− −

= =

⎞ ⎞⎛ ⎛
= ⎟ ⎟⎜ ⎜
⎝ ⎝⎠ ⎠
∑ ∑τ=0

  ( )
1

2

1

n

k
k

var r .σ
−

−

=

⎞⎛
= ⎟⎜
⎝ ⎠
∑τ=0

   (II.17) 

 

In the opposite limit when the recognized uncertainties are unimportant, 0jσ → , Eq. (II.10) reduces 

uniformly to a Student’s-distribution of the form 

 

( ) ( )( )

1
2 2

1 1

1
22 2 2

1 1

1 1

2
n n

i i i
i i

n n

i i i
i i

p r | , , dr St r r , n A, n dr;

r x , for n ;

A x r ,

τ τ

τ τ

−
− −

= =

−
− −

= =

→ ∝ − −

⎞ ⎞⎛ ⎛= >⎟ ⎟⎜ ⎜
⎝ ⎝⎠ ⎠

⎞ ⎞⎛ ⎛ ⎡ ⎤≡ −⎟ ⎟⎜ ⎜ ⎣ ⎦⎝ ⎝⎠ ⎠

∑ ∑

∑ ∑

σ=0

σ=0

σ=0

σ 0 x τ

  (II.18) 

 

with mean r
σ=0

 and variance  

( ) 3
3

Avar r , for n ,
n

= >
−σ=0

    (II.19) 
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It is noteworthy that the result shown in Eq. (II.18) is the same as would be obtained if the unknown 

location parameter μ  were estimated from a sample drawn from a Gaussian distribution with 

unknown variance (i.e., unknown scale parameter). 

 

The distribution in Eq. (II.12) also reduces uniformly to a Student’s-distribution when the recognized 

uncertainties are unimportant (i.e., 0jσ → ), namely   

 

( ) ( )( )1 1p r | , , dr St r r , n B, n dr;→ ∝ + +
σ=0

σ 0 x τ   (II.20) 

 

having the same mean r
σ=0

 as before, but with variance  

 

( )
11

22 2

1

1 2
1

n

j
j

Bvar r , for n ; B x x .
n

τ

−−

−

=

⎡ ⎤⎞⎛
⎢ ⎥= > ≡ + −⎟⎜− ⎢ ⎥⎝ ⎠⎣ ⎦
∑σ=0

  (II.21) 

 

Comparing Eqs. (II.20) with Eq. (II.18) indicates that the mean , r
σ=0

, for discrepant experiments 

obtained when using the exponential prior for the scale factor  is the same as the mean obtained by 

using Jeffreys’ prior for ; this mean is given by the sample average with weights proportional to 

s

s 2
jτ
− , 

and is valid already when two experiments are available. Comparing now the corresponding 

expressions for  in Eq. (II.20) and Eq. (II.18), respectively, indicates that the use of the 

exponential distribution for the scale factor s  brings in the additional term

( )var r
σ=0

1

2

1

n

j
j

τ
−

−

=

⎞⎛
⎟⎜

⎝ ⎠
∑ in Eq. (II.21), 

but extends the validity of the latter to two experiments (as opposed to minimum four experiments, as 

required when Jeffryes’ prior is used for the scale factor ). s
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II.B. Verification of “A Priori” Parameter Covariance Matrix  

 

In general, the model parameters are experimentally derived quantities and are therefore 

subject to uncertainties. Specifically, consider that the model comprises Nα  uncertain 

parameters nα , which constitute  the components of the (column) vector α of model 

parameters, defined as   

 

{ }1n |n , ,Nαα= =α … .    (II.22) 

 

In practice, the mean values of the model parameters are known together with uncertainties 

(correlations and standard deviations) computed about the respective mean values. The vector 

{ }0 0 1n |n , ,Nαα= =α …  of mean values of the model parameters has components denoted as  

 

( ) ( )0
i j , f f , p , d drα α≡ ≡ ∫ α r α r α ,     (II.23) 

 

where the angular brackets denote integration of a generic function ( )f ,α r  over the unknown 

joint probability distribution ( )p ,α r  of parameters and responses. The parameter correlations 

are defined as  

( )( )0
ij i i j jcα α α α α≡ − − 0 ,     (II.24) 

 

and constitute the elements of a symmetric, positive-definite parameter covariance matrix, 

denoted here as ααC , of dimension N Nα α×  defined as  
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( )( )0 0 †αα ≡ − −C α α α α  ,     (II.25) 

 

where the dagger denotes “transposition”.  Since the elements of ααC  are obtained, in practice, 

by a variety of experimental, empirical, and/or theoretical methods, it is imperative to ensure, at 

the outset, that the covariance matrix ααC  fulfills the physical and mathematical properties 

required of a covariance matrix. Thus, ααC  must be positive definite and the correlations 

must satisfy the Cauchy-Schwartz inequality ( ) 1 2/

ij ij ii jjc c cα α α αρ
−

≡

1 ij

ii jj

c

c c

α

α α
1− ≤ ≤ .     (II.26) 

 

As is well known, the trace, the determinant, and the principal minors of a positive definite 

matrix are positive, so that these properties must be satisfied, in particular, by ααC . As is also 

well known, an equivalent necessary and sufficient condition for ααC  to be positive definite is 

that it admit the Cholesky decomposition  

 

( ) ( )† †αα αα αα αα α= =C L L U U α ,    (II.27)  

 

where ααL  (respectively ααU ) is a nonsingular lower (respectively upper) triangular matrix 

with positive entries on its diagonal. It is very important to perform the Cholesky 

decomposition on a given covariance matrix at the outset, not only to ensure that the 

respective covariance data makes physical and mathematical sense but also to simplify and 

facilitate subsequent computations involving ααC .    
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It is very unlikely that higher-order (i.e., triple, quadruple) correlations among parameters 

would be available in practice; nevertheless, the skewness ( ) ( )30
3 i i iμ α α α≡ −  and kurtosis 

( ) ( )40
4 i i iμ α α α≡ −  for individual parameters iα  could be obtained if the forms of the 

corresponding individual probability distributions are known or can be approximately 

surmized.  

 

 

II.C. Verification of “A Priori” Parameter - Response Covariance Matrix 

 

Finally note that in the most general case, the measured responses may be correlated to the 

parameters through response-parameter uncertainty matrices of dimension  denoted 

as 

rN Nα ×

( )( )0 †rα ≡ − −C α α r rm ,    (II.28) 

comprising elements r
ijcα defined as 

( )( )r m
ij i i j jc rα α α≡ − − mr ,    (II.29) 

Note that the matrix rαC  is not a bona-fide variance-covariance matrix, since it is generally 

rectangular and the elements on its main diagonal (if it happens to be square) are correlations 

rather that variances.   
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III. COMPUTATION OF HIGH-ORDER MODEL RESPONSE SENSITIVITIES AND 

UNCERTAINTIES 

 

When the numerical and/or modeling errors are not explicitly taken into account, but are 

considered to be amenable to treatment via uncertain model parameters that are included 

among the components of α , the most general representation of a the vector of responses, , 

as a function of the parameters, ,  is  

r

α

 

( )c=r r α ,     (III.1) 

 

where  denotes the computed response value for a given, but otherwise arbitrary, set of 

numerical values for the parameters  .  

( )cr α

α

 

III.A. Computation of Model Response Uncertainties: Covariances, Skewness, and Kurtosis 

 

The deterministic methods for propagating uncertainties in model parameters to computed 

responses rely on expanding formally the computed response in a Taylor series around . In 

practice, first-order response derivatives (“sensitivities”) with respect to model parameters can 

be computed most efficiently using the “adjoint sensitivity analysis procedure” (ASAP), but 

the second-order derivatives are seldom available for large-scale systems since they severely 

strain computational resources; third- and higher-order derivatives are practically unavailable. 

Reflecting these practicalities, only second-order derivatives of responses to model 

parameters will be explicitly taken into account in this work, implying a Taylor-series 

expansion of the form 

0α
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( ) ( ) ( )( ) ( ) ( )30 0 0 0c r Oα= + − + − + −r α r α S α α α ψ α α α α0 .  (III.2) 

 

In the above expansion,  denotes the ( )rαS α rN Nα×  dimensional matrix of response 

sensitivities (to the model parameters) , with components defined as 

( )
( ) ( )

( )
( ) ( )

( ) ( )

( )

( ) ( )

1 1

1

11 1

1

1

r r

r r

Nr r
N

ir r
ij

jr r
N N N

N N

N

r r

s s
r

s
s s

r r

α

α

α

α

α α

α α

α α

α α

α

α α

⎞⎛ ∂ ∂
⎟⎜

∂ ∂ ⎟⎜
⎞⎛ ⎟⎜ ∂⎟⎜ ⎟⎜≡ ≡⎟⎜ ⎟⎜ ∂⎜ ⎟ ⎟⎜⎝ ⎠ ∂ ∂ ⎟⎜

⎟⎜ ∂ ∂⎝ ⎠

α α

α α
α

S α α
α α

α α

…

…
.            (III.3) 

 

As generally shown by Cacuci [Sensitivity and Uncertainty Analysis: Theory, Volume 1, 

Chapman & Hall/CRC, Boca Raton (2003); see also D.G. Cacuci, M. Ionescu-Bujor, and M.I. 

Navon, Sensitivity and Uncertainty Analysis: Applications to Large Scale Systems, Volume 2, 

Chapman & Hall/CRC, Boca Raton (2005)], the exact computation of the above first-order 

response sensitivities for large-scale nonlinear systems is performed most efficiently by using 

the adjoint sensitivity analysis  procedure (ASAP). 

  

Furthermore, the -dimensional vector  rN

 

( ) ( ) ( )0 0
1 r

†

N,...,ψ ψ⎡− = − −⎣ψ α α α α α α0 ⎤⎦ ,     (III.4) 

 

represents the second-order terms in ( )0−α α , with components  defined as follows: 
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( ) ( ) ( ) ( )

( ) ( ) ( )

2 0
0 0 0

1 1

0 2 0 0

1
2
1 1
2

N N
k

k i i j j
i j i j

†

k r

r

r , k ,...,N ,

α α

ψ α α α α
α α= =

∂
− = − −

∂ ∂

⎡ ⎤= − ∇ − =⎣ ⎦

∑∑
α

α α

α α α α α

    (III.5) 

 

where  denotes the Hessian matrix of the response  evaluated at , i.e.,   ( )2 0
kr∇ α kr

0α

 

( ) ( )2 0
2 0 k

k
i j

r
r

α α

⎡ ⎤∂
∇ = ⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦

α
α ,    1 1 ri , j ,...,N ; k ,...,N .α= =   (III.6) 

 

The expected values, covariances, and higher-order correlations characterizing the computed 

responses can be obtained by formally integrating Eq.(III.2) over the unknown joint 

probability distribution ( )p ,α r  . Thus, the expected value, ( )kE r , of the response  is 

obtained as  

kr

( ) ( ) ( ) (
2 0

0

1 1

1
2

N N
kc

k k i j
i j i j

r
E r r cov ,

α α

)α α
α α= =

∂
= +

∂ ∂∑∑
α

α .   (III.7) 

 

The  covariance matrix of the computed responses, denoted here as , with 

elements  defined as  

rN N×

( rcC

r rcC

)
ij

( ) ( ) ( ) 1rc
i i j jij

r E r r E r ; i , j , ,N ;⎡ ⎤≡ − − =⎡ ⎤⎣ ⎦ ⎣ ⎦C … r    (III.8) 

 

can obtained from Eqs. (III.2) and (III.7) by recalling the definitions   

 

( ) ( )0 3 4
n

n i i i , n , ,μ α α α≡ − =     (III.9) 
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and neglecting parameter cross-correlations of order higher than covariances. Carrying out the 

respective algebra leads to the following expressions for the elements ( )rc

ij
C : 

 

( ) ( ) ( ) ( )

( ) ( )

( )

1 1

2 2 2 2

3 42 2 2 2
1 1

2 2

1

1 1
2 4

1
4

N N
k

k k k i j
i j i j

N N
k k k

i i
i ii i i i i i

N
k

i j
i j

r rcov r ,r r E r r E r cov ,

r r r r r r

r rcov ,

α α

α α

α

ν μ ν

α α
α α

μ α
α α α α α α

α α
α α α α

= =

= =

=

⎞⎛ ∂ ∂
≡ − − =⎡ ⎤ ⎡ ⎤ ⎟⎜⎣ ⎦ ⎣ ⎦ ⎜ ⎟∂ ∂⎝ ⎠

⎞ ⎞⎛ ⎛∂ ∂ ∂ ∂ ∂ ∂
+ + +⎟ ⎟⎜ ⎜∂ ∂ ∂ ∂ ∂ ∂⎝ ⎝⎠ ⎠

⎞⎛ ⎛∂ ∂
− ⎟⎜⎜ ⎟∂ ∂ ∂ ∂⎝ ⎝⎠

∑∑

∑ ∑

∑ ( )
1 1 1

N N N

i j

cov , ;
α α α

μ ν
μ

α α
= = =

⎞
⎟⎜⎜ ⎟
⎠

∑∑∑

μ α     (III.10) 

In particular, Eq. (III-10) indicates that the variance, ( )kvar r , of a response has the 

expression   

kr

( ) ( ) ( ) ( )

( ) ( )

2
2

32
1 1 1

222 2

42
1 1 1

1 1
4 4

N N N
k k k k

k k k i j
i j ii j i i

N N N
k k

i i j
i i ji i j

r r r rvar r r E r cov ,

r r cov , .

α α α

α α α

iα α μ
α α α α

μ α α α
α α α

= = =

= = =

⎞⎛ ⎞⎛∂ ∂ ∂ ∂
≡ − = +⎡ ⎤ ⎟⎜ ⎟⎜⎣ ⎦ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

⎡ ⎤⎞⎛⎞⎛ ∂ ∂
+ − ⎢ ⎥⎟⎜⎟⎜ ⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∑∑ ∑

∑ ∑∑

α

    (III.11) 

The third- and fourth-order moments ( )3 krμ  and ( )4 krμ  can also be obtained from Eqs. (III.2) 

and (III.7). Neglecting parameter cross-correlations of order higher than covariances leads to 

the following expressions:  

( ) ( )

( ) ( )

( ) ( )

3
3

22 2 2

42 2
1 1 1

2 2 2

3 2
1 1

1 33
2 4

3
2

k k k

N N N
k k k k

i
i i i i

N N
k k k k

i
i i i i

r r E r

r r r r cov ,

r r r r cov ,

α α α

α α

μ ν
μ ν μ ν

μ ν
μ ν μ ν

μ

μ α α α
α α α α α

μ α α α
α α α α α

= = =

= =

≡ −⎡ ⎤⎣ ⎦

⎡ ⎤⎞⎛⎞ ⎞ ⎞⎛ ⎛ ⎛∂ ∂ ∂ ∂
⎢ ⎥= − ⎟⎜⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎝ ⎝⎠ ⎠ ⎠ ⎝ ⎠⎣ ⎦

⎞⎛⎞ ⎞⎛ ⎛∂ ∂ ∂ ∂
+ − ⎟⎜⎟ ⎟⎜ ⎜ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎝⎠ ⎠ ⎝ ⎠

∑ ∑∑

∑ ∑

( ) ( )

( )

1

2

1 1 1 1

3
2

1 1

3
2

1
4

N

N N N N
k k k

i j
i j i j

N N
k

r r rcov , cov ,

r cov , ;

α

α α α α

α α

μ ν
μ ν μ ν

μ ν
μ ν μ ν

α α α α
α α α α

α α
α α

=

= = = =

= =

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤ ⎡⎞ ⎞⎛ ⎛∂ ∂ ∂
− ⎢ ⎥ ⎢⎟ ⎟⎜ ⎜⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥ ⎢⎝ ⎝⎠ ⎠⎣ ⎦ ⎣

⎡ ⎤⎞⎛ ∂
+ ⎢ ⎥⎟⎜⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

∑

∑∑ ∑∑

∑∑

⎤
⎥
⎥⎦

   (III.12) 

and 
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( ) ( )

( ) ( )

( )

( )

4
4

24 22 2

4 2
1 1 1

2 2 2

2
1 1

3
1

3
8

3

k k k

N N N
k k k

i
i i i

N N
k k k

i i

N

i
i

r r E r

r r r cov ,

r r r cov ,

α α α

α α

α

μ ν
μ ν μ ν

μ ν
μ ν μ ν

μ

μ α α α
α α α α

α α
α α α α

μ α

= = =

= =

=

≡ −⎡ ⎤⎣ ⎦

⎧ ⎡ ⎤⎞⎛⎞ ⎞⎛ ⎛∂ ∂ ∂⎪= + ⎢ ⎥⎟⎜⎨ ⎟ ⎟⎜ ⎜ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎝⎠ ⎠⎪ ⎝ ⎠⎣ ⎦⎩
⎫⎡ ⎤⎞⎛⎞ ⎞⎛ ⎛∂ ∂ ∂ ⎪− ⎢ ⎥⎟⎜ ⎬⎟ ⎟⎜ ⎜ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎝⎠ ⎠ ⎪⎝ ⎠⎣ ⎦⎭

+

∑ ∑∑

∑∑

( )

( )

( )

2

1 1

22 2

2
1 1

4
2

1 1

3 2
2

3
16

N N
k k

i

N N
k k k

i i

N N
k

r r cov ,

r r rcov ,

r cov ,

α α

α α

α α

μ ν
μ ν μ ν

μ ν
μ ν μ ν

μ ν
μ ν μ ν

α α
α α α

α α
α α α α

α α
α α

= =

= =

= =

⎡ ⎤⎞⎛⎞⎛ ∂ ∂
×⎢ ⎥⎟⎜⎟⎜ ⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

⎧ ⎫⎡ ⎤⎞⎛⎞ ⎞⎛ ⎛∂ ∂ ∂⎪ ⎪× −⎢ ⎥⎟⎜⎨ ⎬⎟ ⎟⎜ ⎜⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎝⎠ ⎠⎪ ⎪⎝ ⎠⎣ ⎦ ⎭⎩

⎡ ⎤⎞⎛ ∂
− ⎢ ⎥⎟⎜⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑∑

∑∑

∑∑

  (III.13) 

 

 

III.B. An Efficient New Procedure for Computing Second-Order Response Derivatives and 

Uncertainties 

 

Note that all of the derivatives appearing in the above expressions are evaluated at the 

nominal parameter values . The quantity  0α

 

( ) ( ) ( ) ( )2 0 2 0

1 1 1 1

N N N N
k k

k ij i j ij i j
i j i ji j i j

r r
q cov , ,

α α α α

α α ρ σ σ
α α α α= = = =

∂ ∂
≡ =

∂ ∂ ∂ ∂∑∑ ∑∑
α α

  (III.14) ρ

 

where ijρ  denotes the correlation between parameters iα  and jα , while iσ  and jσ  denote the 

standard deviations of the respective parameters, appears repeatedly in the expressions of 

, , ,  and ( kE r ) co ( )kv r ,r ( )kvar r ( )3 krμ ( )4 krμ . In general, the computation the mixed second-

order response-derivatives 2rk i jα α∂ ∂ ∂  would require  large-scale computations using (O N )2
α
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the original (forward) model for every response ( )0
kr α . In the special case when the 

parameters  are fully correlated (i.e., all α 1ijρ = ), however, the quantity  can be 

computed very efficiently by following the following novel procedure. by considering the (column) 

vector of standard deviations  

( 1k ijq ρ = )

 

( )α1 2, , ,σ σ … Nσ≡σ ,     (III.15) 

 

( )0α σ2
k∇ rand by noting that the Hessian-vector product  can be quantified most efficiently by 

using two computations of the gradients ( )kα r

)

∇ , as follows:  

 

( ) ( ( ){ } ( )2 0 1 0 0
k k k kb b , k− ⎤∇ ≅ ∇ − ≡⎦r α σ r α σ y α0⎡∇ ⎣r α 1,...,N .=

( )kα∇ r

rα α⎡ ⎤+⎣ ⎦     (III.16) 

 

where is a small scalar quantity. As already mentioned, the gradients  can be 

computed most efficiently using the ASAP (one adjoint model computation per response, 

yields all of the gradients  with respect to the parameters α ). Thus, the vector 

b

( )kα∇ r ( )0
k αy

( )2Nα

 

defined above can be obtained using two adjoint-model computations instead of  large-

scale computations using the original (forward). Once ( )0
ky α  has been obtained, the quantity 

 can be obtained by an additional vector scalar-product computation of the form  (k iq ρ )1j =

 

( ) ( )0
k1 †q = = σ .y α      (III.17) k ijρ

 

In practice, however, the model parameters α  are extremely unlikely to be fully correlated. 

More likely, they are partially (positively or negatively) correlated or uncorrelated. In such 
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cases, it is still possible to reduce the number of computations required for obtaining the 

quantity ( )k ijq ρ ,  from  to at most ( )2O Nα ( )1kn Nα≤ +  operations for each response ( )0
kr α , 

where  is a number to be determined as discussed below, by using Hessian-vector products 

of the same form as shown in Eq. (III.16).  

kn

 

For each response , , the new  proposed procedure is as follows:   ( )0 1k =kr α r,...,N

 

(i) Note from Eq. (III.11) that the main contribution to the variance ( )kvar r of a 

response ( )0
kr α  is provided by the quantity  

 

( )
2

2

11 1 1

N N N
k k k k k

i j i ij i j
i i j ii j i i j

r r r r rcov ,
α α α α αN N

i j

α α σ ρ
α α α α α= = = = ≠

⎞ ⎞⎛ ⎛⎞⎛∂ ∂ ∂ ∂ ∂
= +⎟ ⎟⎜ ⎜⎟⎜⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎝⎠ ⎠
∑ ∑∑ σ σ∑∑ .  (III.18) 

 

(ii) Since a value of 2 0iσ = would imply that the respective parameter is perfectly 

known, it is clear that all variances are positive, i.e., 2 0iσ > . Hence, each of 

the terms in the first sum on the rights side of Eq. (III.18) is positive, unless 

some response sensitivity happens to vanish, e.g., 0k ir α∂ ∂ = . However, even 

when 0k ir α∂ ∂ =  for some parameter iα , the other sensitivities are non-zero 

(i.e., 0ik jr α ≠∂ ∂ ≠ ), unless the response happens to be computed at a critical 

point critα . In such a highly unusual case, Eqs. (III.10) through (III.13) indicate 

that only terms containing second (and higher) order response derivatives 

would contribute to the response covariances, skewness and kurtosis. In this 

(highly unusual) case, the number kn  --to be used in the sequel-- would be set 
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to kn Nα=  since all of the second-order response derivatives would need to 

computed in order to quantify the response moments.  

(iii) On the other hand, in the highly likely situation when 0 crit≠α α , not all of the 

sensitivities k ir α∂ ∂  would vanish. For the non-vanishing sensitivities, rank 

the relative sensitivities ( ) ( ) ( )0 0r
ki k i i
α α α 0 0

kt r r⎡ ⎤ ⎡≡ ∂ ∂ ⎤⎣ ⎦ ⎣α α ⎦α  in decreasing 

order of absolute magnitudes ( )0r
kit α α . This ranking will also indicate the most 

important parameters iα  in contributing to the uncertainties in the response 

( )0
kr α . 

(iv) Compute the quantities ( ) ( ){ }2
0 0 0k r

ii ki i k ic t rα α σ⎡ ⎤≡ ⎣ ⎦α α  and rank them in 

descending order of their magnitudes. As Eq.(III.18) indicates, k
iic   represents  

the contribution to ( )kvar r  stemming solely from uncertainties in parameter 

iα .  

(v) Based on the rankings of the partial variances k
iic , rank the standard deviations 

iσ  in order of importance in contribution to ( )var kr , thus constructing the 

vector sequence ( )1 2 kn, , ,σ σ σ… , with ( )1kn Nα≤ + , where 
knσ denotes a user-

defined cut-off value corresponding to a negligible (from the user’s point of 

view) contribution to ( )kvar r . 

(vi) For each of selected variance in the sequence ( )1 2 kn, , ,σ σ σ… , construct the  

kn -dimensional column vectors ( )0, , i ≡σ1 1 0, ,σ≡σ … …, i , …  

)kn ,σ  and use each of these, in turn, in conjunction with one 

( )0 0, , , ,σ… …

(0 0, ,… …σ
kn , ,≡
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adjoint-model computation, to obtain the kn -dimensional vector 

) defined as ( 1 k

†ki ki ki
nt , ,t≡t …

( )

 

( ) ( )

( )

1

2 0

†ki ki

k i

t , ,t
α

( ) ( )

2 0 2 0

1

1 0 0 1

†

k kki
n i

i n i

k i k

r r
, ,

b b ; i , ,n ;

α

{ }

i

α α α

σ σ
α α α α

−

⎞∂ ∂
⎟

⎜ ⎟∂ ∂ ∂ ∂ ⎠

⎡ ⎤ ⎡ ⎤∇ + −∇ =⎣ ⎦ ⎣ ⎦

α α
t

r α σ r α

… …

…

⎛
⎜≡ ≡
⎝

= ∇ ≅r α σ

i ,=

( 1 k

†ki ki ki
nt , ,t≡t …

     (III.19) 

 

(vii)  For each 1 k,n ,…  multiply the first component, 1
kit , of the vector 

)  obtained in Eq. (III.19)  by the  correlation coefficient 1i ,ρ the 

second component of this vector by the  correlation coefficient 2iρ , and so on, 

until the last component 
k

ki
nt ,which is to be multiplied by 

kinρ , in order to 

construct the sequence of vectors 

 

( ) ( ) ( )2 0 2 0

1 1 k k

†ki ki
i n int , ,tρ ρ 1

1

1
k

k k
i i i k

i n

r r
, , ; i , ,n ;σ ρ σ ρ

α α α α

⎛ ∂ ∂
⎜= =
∂ ∂ ∂ ∂⎝

α α
… … …

k

†

in
i

⎞
⎟

⎜ ⎟
⎠

 (III.20)  

 

(viii) Sum up the corresponding components of the vectors in Eq. (III.20) to 

construct the column vector  

 

( ) ( )2 0 0

1
1 1

k

k k k

†† n
k k

in i i i in
i i

, , ;ρ σ ρ σ ρ
α α α=

2

1

k

k

n

ii n

r r
α=

1 1
1 1

k kn n
ki ki

i n
i i

t , , tρ
= =

⎞⎛ ∂ ∂⎞⎛
⎟⎜=⎟⎜ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ∂ ⎠

∑ ∑ ∑… … ∑
α α

 (III.21) 
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(ix) Form the scalar product of the above vector with the row-vector 

)( 1 2 kn, , ,σ σ σ…  to obtain, finally, the sum of the retained first-order 

contributions to ( )var kr , namely:  

( ) ( )2 0

1 2 1 1
1 1 1 1

k k k

k k k

†n n n n
kki ki

n i n in ij
i i i j i j

r
, , , t , , t

α

i jσ σ σ ρ ρ ρ σ σ
α α= = = =

∂⎞⎛
=⎟⎜ ∂ ∂⎝ ⎠

∑ ∑ ∑∑
α

… … ;    (III.22) 

 

Thus, the sum 
( )2 0

1 1

k kn n
k

ij i j
i j i j

r
ρ σ σ

α α= =

∂

∂ ∂∑∑
α

, which comprises the major first-order contributions to 

the variance  can be computed most efficiently by needing only (large-scale)  ( )kvar r

1kn Nα+ ≤   adjoint model computations, as opposed to at least , as would be needed 

to compute the second-order derivatives of  via forward large-scale model computations. 

( )2
kO n

kr

 

Note that the second-order derivatives 2
kr

2
iα∂ ∂ of the response  can be computed by 

dividing each of the components of  

kr

( )1 k

†ki ki ki
nt , ,t≡t …  through iσ ,  as follows: 

 

( ) ( )2 0 2 0
1

1

1k

k

††kiki
k kn

k
i i i n i

r rtt , , , , ; i , ,n
σ σ α α α α

⎞⎛ ∂ ∂⎞⎛
⎟⎜=⎟⎜⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

α α
… … .= …   (III.23)  

 

Recall that the third-moment (skewness) and fourth-moment (kurtosis) of the standard 

Gaussian-distribution have values ( )3 0Gaussianμ = and ( )4 3Gaussianμ =

(3 rμ

, respectively. 

Hence, comparing these moments to the third- and fourth-order moments  and )k ( )4 krμ  

computed in Eqs. (III.12) and (III.13), respectively, provides a quantitative indicator of the 

non-Gaussian characteristics of the possible distribution of the response .   kr
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IV. QUANTITATIVE  MODEL VALIDATION METRICS: kC METRICS− for k=2,3,4 

 

Model validation is customarily defined as “the process of confirming that the predictions of a 

computer code adequately represent measured physical phenomena.” This definition clearly 

indicates that the difference ( )0m c⎡ ⎤−⎣ ⎦r r α  between measured responses, and the 

corresponding nominally computed responses, 

m ,r

( )0cr α , must play a fundamental role in 

model validation, a fact that has been recognized by several authors [  ]. 

 

IV.A. Model Validation Covariance Metric:      2C

 

IV.A.1. Computed/Measured Responses Validation Metric ( )0rrM α  

 

 The difference  between the measured and the corresponding computed  

responses can be considered to be a multivariate vector quantity. It therefore follows that the  

covariance matrix of this multivariate vector quantity is, by definition, the ( ) -

dimensional covariance matrix : 

( )0m c⎡ −⎣r r α ⎤⎦

r rN N×

( )0rrM α

  

( ) ( ) ( )0 0 †rr m c m c ,⎡ ⎤ ⎡≡ − −⎣ ⎦ ⎣M α r r α r r α0 ⎤⎦        (IV.1) 

with components  

 

( ) ( ) ( )0 0 0 1rr m c m c
i i j jij

r r r r ; i , j , ,N⎡ ⎤ ⎡ ⎤ ⎡ ⎤≡ − − =⎣ ⎦ ⎣ ⎦ ⎣ ⎦M α α α … r .  (IV.2) 
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Consistent with the assumption that full triple and quadruple parameter correlations are 

practically unavailable, except possibly for the skewness ( ) ( )30
3 i i iμ α α α≡ −  and kurtosis 

( ) ( )40
4 i i iμ α α α≡ −  of single-variate parameters, triple correlations between responses and 

parameters of the form ( )( )( )0 0 m
i i j j k kr rα α α α− − −  would also be unavailable in practice 

and will therefore not be taken into account in this work. Consistent with these considerations, 

therefore, the expression of  can be determined from its definition in Eqs. (III.1) to 

obtain   

( )0rrM α

( ) ( ) ( ) ( )0 0 0
2 3 4

rr rr rr rr= + +M α D α D α D α0 ,    (IV.3) 

where 

( ) ( ) ( ) ( )0 0 0 0
2

†rr rr rc r r r rα α α α⎡ ⎤≡ + − − ⎣ ⎦D α C C α S α C S α C ,  (IV.4) 

 

( ) ( ) ( )0 0 0 †rc r r ,α αα α⎡ ⎤≡ ⎣ ⎦C α S α C S α      (IV.5) 

 

( ) ( ) ( ) ( )
2 2

0
3 3 3 32 2

1

1
2r r

N
j jrr rr rr i i

mij ijN N m m m m m

r rr rD ; D
α

μ α
α α α α× =

⎞⎛ ∂ ∂∂ ∂⎡ ⎤≡ ≡ + ⎟⎜⎜ ⎟⎣ ⎦ ∂ ∂ ∂ ∂⎝ ⎠
∑D α ,    (IV.6) 

 

 ( ) ( ) ( ) ( )
22

0
4 4 4 42 2

1

1
4r r

N
jrr rr rr i

mij ijN N m m m

rrD ; D
α

μ α
α α× =

⎞⎛ ∂∂⎡ ⎤≡ ≡ ⎟⎜⎜ ⎟⎣ ⎦ ∂ ∂⎝ ⎠
∑D α .          (IV.7) 

 

It can be readily verified that each of the rN Nr× -dimensional matrices  is 

symmetric, which of course confirms that 

( )0 2 3 4rr
i ; i , , ,=D α

( )0rrM α  is also a symmetric matrix of dimensions 

. TO BE CONTINUED rN N× r
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IV.A.2. Consistency Indicator of Computed and Measured Responses in the -Metric 2C

IV.B. Model Validation Covariance Metric:     3C

IV.C. Model Validation Covariance Metric:     4C

 

V. CONCLUDING REMARKS  

 

This work has presented has presented quantitative validation metrics for model validation. 

This work is part of ongoing research which will be published in peer reviewed journals; until 

so published, however, this work is to be referred to as: 

D.G. Cacuci, High-Order Quantitative Model Validation Metrics Integrating Experimental 

and Computational Data for Large-Scale Time-Independent Nonlinear Systems, DOE/CASL 

Report #489: L3: VUQ.VVDA.P4.05 (VUQ.P4.02), December 31, 2011. 
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