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Abstract

This document summarizes the results from a level 3 milestone study within the CASL
VUQ effort. It demonstrates the propagation of model form uncertainty that arises from the
presence of multiple turbulence models within the context of thermal hydraulics analyses. The
lack of knowledge associated with an inability toa priori identify an appropriate turbulence
model is modeled as discrete epistemic uncertainty. This approach provides an alternative to
model selection processes, for use when data is unavailable or inadequate for reducing the
model form uncertainty. In this case, the alternative is to propagate the model form uncertainty
and report UQ results that include this epistemic uncertainty source alongside other parametric
sources. The study calculates epistemic intervals on aleatory statistics for several quantities of
interest, where the epistemic intervals are computed using mixed continuous-discrete optimiza-
tion methods and the aleatory statistics are computed using polynomial chaos expansions. We
first investigate two simple algebraic test problems with multiple model forms and then deploy
the methods to the Drekar application. The Drekar study employs a set of Reynolds-averaged
Navier-Stokes (RANS) turbulence models, including Spalart-Allmaras and k-ε. Results high-
light the importance of efficient mixed continuous-discrete optimizers and the challenges in
employing surrogate emulators within mixed domains.
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1 Background

Uncertainty quantification (UQ)is the process of determining the effect of input uncertainties on
response metrics of interest. These input uncertainties may be characterized as either aleatory un-
certainties, which are irreducible variabilities inherent in nature, or epistemic uncertainties, which
are reducible uncertainties resulting from a lack of knowledge. Since sufficient data is available
for characterizing aleatory uncertainties, probabilistic methods are commonly used for comput-
ing response distribution statistics based on input probability distribution specifications. Con-
versely, for epistemic uncertainties, data is generally too sparse to support objective probabilistic
input descriptions, leading either to subjective probabilistic descriptions (e.g., assumed priors in
Bayesian analysis) or nonprobabilistic methods based on interval specifications (e.g., pure intervals
or Dempster-Shafer basic probability assignments).

In this milestone, we are interested in the propagation of a mixture of aleatory and epistemic
uncertainties, where the epistemic uncertainties include discrete parameterizations of model form.
A common approach to quantifying the effects of mixed aleatory and epistemic uncertainties is
to separate the aleatory and epistemic variables and perform nested iteration. From an algorith-
mic standpoint, this separation allows the use of strong probabilistic inferences where possible,
while employing alternative inferences only where necessary. From a conceptual standpoint, the
epistemic portion should capture uncertainty that is fully reducible (to constants) given perfect
information, and the aleatory portion should capture all of the irreducible variability. To perform
this separation rigorously, it may be necessary to separate aleatory and epistemic portions within
a single random source, e.g. by modeling an aleatory random variable that is parameterized by
an epistemic mean. Given this rigorous separation, the interpretation of the results of the nested
iteration becomes straightforward: any particular epistemic realization represents a possible state
of the full variability of the uncertain process. If the separation is not performed in this manner
and irreducible uncertainty is hidden within the epistemic parameterization, then the results are
more opaque: an epistemic realization is instead a partial expectation involving a subset of the
actual random variability. Statistics derived from these partial expectations can be misleading and
are easily misinterpreted; moreover, this mistake apears to be widespread due to the additional
sophistication required to perform a rigorous separation.

It can be argued that model form uncertainty readily conforms to a rigorous epistemic sepa-
ration in that we do not typically view it as having underlying stochastic variability; rather, in a
perfect state of information and modeling, we would reduce to a single correct model form. Since,
in reality, we do not have access to this perfect model form, we instead try to capture a represen-
tative range (i.e., an epistemic interval) of the possible model outcomes using the set of imperfect
models that we have available. This is of course not guaranteed to bound the perfect model case,
but rather provides a quantitative assessment of the uncertainty reflected within the current model
form ensemble when we lack the data necessary to perform an informed model down-selection.

Traditionally, the analysis of mixed aleatory and epistemic uncertainty has involved a nested
sampling approach, in which each sample drawn from the epistemic variables on the outer loop
results in a sampling over the aleatory variables on the inner loop. In this fashion, we generate
families or ensembles of response distributions, where each distribution represents the irreducible
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aleatory uncertainty. Plotting an entire ensemble of cumulativedistribution functions (CDFs) in a
“horsetail” plot allows one to visualize the upper and lower bounds on the family of distributions
(see Figure 1). However, nested iteration can be computationally expensive when it is implemented
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Figure 1. Example CDF ensemble.Commonly referred to as a
“horsetail” plot.

using two random sampling loops. Consequently, when employing simulation-based models, the
nested sampling must often be under-resolved, particularly at the epistemic outer loop, resulting in
an under-prediction of credible output ranges.

In [3, 4], a central goal was to preserve the advantages of uncertainty separation while ad-
dressing issues with accuracy and efficiency by closely tailoring the algorithmic approaches to the
propagation needs at each level. In particular, fast-converging stochastic expansion approaches
(nonintrusive polynomial chaos and stochastic collocation) are employed for aleatory propagation,
and optimization-based interval estimation is performed for the epistemic propagation. A signif-
icant amount of background information is provided in these references and is not repeated here;
please refer to [3, 4] for additional information on polynomial chaos and stochastic collocation
expansion methods for aleatory propagation and on interval-valued probability (IVP), Dempster-
Shafer, and second-order probability (SOP) approaches for mixed UQ. In this report, we focus
on the IVP formulation and build on the previous work to extend the optimization-based interval
estimation approaches to include discrete epistemic parameterizations of model form.
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2 Interval Estimation with Discrete Variables

In the IVPformulation, we seek the minima and maxima of aleatory statistical quantities of interest
(QoI) over the epistemic parameters, where we extend the formulation in [3, 4] to include a mixture
of continuous and discrete parameters:

minimize Qi(c,dr ,ds) (1)

subject to cL ≤ c≤ cU

dL ≤ dr ≤ dU

ds ∈ D

maximize Qi(c,dr ,ds) (2)

subject to cL ≤ c≤ cU

dL ≤ dr ≤ dU

ds ∈ D

whereQ denotes the vector of QoI,c denotes the continuous epistemic parameters which are
limited by real-valued bounds[cL,cU ], dr denote discrete range parameters that are defined by a
sequence of integers and are therefore limited by integer bounds[dL,dU ] on the sequence, andds

denote discrete set parameters that are defined by finite sets of admissible real or integer values,
one distinct admissible set per discrete parameter.

Since the QoI are nonlinear functions of the epistemic parameters in general, we require mixed-
integer nonlinear programming (MINLP) solvers to compute solutions to these types of optimiza-
tion problems. MINLP solvers are generally distinguished based on their support for categorial
versus noncategorical discrete parameters. In the noncategorical case, the restriction to discrete
values can be relaxed allowing the discrete parameters to take on continuous values during the
solution process. An example of this type of approach is the branch and bound algorithm, which
solves a series of continuous relaxation subproblems to compute bounds, prune branches, and ulti-
mately arrive at a final solution which satisfies the restrictions to discrete values. When applicable,
this type of approach is preferred due to computational efficiency, but it requires the ability to
evaluate the model at non-discrete intermediate values. Thus, the more challenging case algorith-
mically is the case of categorical discrete variables, for which relaxed values cannot be simulated
(e.g., 1.5 satellites in a constellation). The enumeration of model form choices generally falls into
the categorical discrete variable case, such that relaxation-based algorithms are not directly ap-
plicable. MINLP for categorical variables must rely on combinatorial techniques and tends to be
much more computationally expensive.

To enable MINLP with categorical variables to be applied for computationally expensive ther-
mal hydraulics models, we leverage our capability for surrogate modeling, in particular Gaussian
process (GP) modeling. In [3, 4], we utilize the prediction variance estimates of GPs to formu-
late approaches based on expected improvement. Continuous optimization based on maximizing

9
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expected improvement functions from GPs is commonly known as efficient globaloptimization
(EGO) [6], which can be a highly effective technique for balancing the competing desires toex-
plore regions where little is known andexploit regions where promising solutions have already
been found. Longer term, it is our intent to extend the EGO approach to support discrete parame-
ters through a generalization to the expected improvement formulation.

For initial demonstration of IVP with categorical discrete parameters, we have initially focused
on three algorithmic approaches for the interval estimation at the epistemic outer loop. First, as
a benchmark and sanity check, we have the simple approach of employing Latin hypercube sam-
pling [9] over the parameter setc,dr ,ds and then reporting the observed minimum and maximum
sample as the interval bounds. In this case, there is no adaptation or refinement, only a single
randomly generated sample set.

Second, we can start from an initial random sample, and then evolve this population of can-
didate optima using a mixed-integer evolutionary algorithm. Here we apply the EAminlp solver
from COLINY [5] directly to the simulation model, with no surrogate emulation.

Third, we combine the LHS and EAminlp solvers with adaptive surrogate emulation. We
have implemented an adaptive surrogate-based global optimization (SBGO) approach that takes
an initial LHS sample, forms a set of GP models for the epistemic QoI, and then iteratively adapts
each GP while computing approximate minima and maxima using EAminlp. In particular, the
SBGO approach involves the following steps:

1. Perform LHS over the range of the parameter setc,dr ,ds and form initial GP models for the
quantities of interestQ at the epistemic outer loop. Each epistemic realization involves an
aleatory UQ propagation.

2. Apply a categorical MINLP solver (in this case, EAminlp) to minimize the GP prediction to
compute an approximate minimum. This solution is tested for soft convergence in terms of
change in solutionc∗,d∗

r ,d
∗
s and change in approximate QoI minimum. If converged, skip to

step 4; else, continue to step 3.

3. the approximate minimum is validated with an aleatory analysis and the GP is updated with
these truth model results. Return to step 2.

4. The MINLP solver is now applied to maximize the prediction of the adapted GP. Note that
the previously-adapted GP can be fully reused, only the sense of the optimization is changed.
This MINLP solution is tested for soft convergence; if converged, advance to the next QoI
and return to step 2 (or stop if no more QoI); else, continue to step 5.

5. the approximate maximum is validated with an aleatory analysis and the GP is updated with
these truth model results. Return to step 4.

Relative to the EGO approach for successive adaptation of GP models, SBGO strictly exploits
regions with good solutions, and does not support global exploration beyond the initial GP con-
struction in step 1.

10
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3 Computational Experiments

Two simplealgebraic tests are included to demonstrate algorithm behavior and relative perfor-
mance in greater detail. For these problems, distinct model forms are drawn from previously
published multifidelity examples; although all fidelities are treated as model form peers in this
context. We conclude with the targeted thermal hydraulics application using Drekar, demonstrat-
ing the approach for CASL-relevant physics.

3.1 Rosenbrock example

We start with a simple example of two model forms for the Rosenbrock polynomial, originally
published in [2]:

Form 1 : f1 = 100(x2−x2
1)

2 +(1−x1)
2 (3)

Form 2 : f2 = 100(x2−x2
1 + .2)2 +(0.8−x1)

2 (4)

where form 1 is the traditional polynomial and the small offsets in form 2 are sufficient for it to
differ from form 1 in function, gradient, and Hessian values. The two variables are independent
standard normals, and aleatory metrics include the mean and standard deviation off .

If only the model form were epistemic, then the interval optimization could be performed by
simple enumeration of two aleatory analyses, one for each model form. In this case, the epistemic
intervals for aleatory mean and standard deviation off using an aleatory sparse grid level of two
are[365.64,402.00]and[997.52,1050.0], respectively. To make the example more interesting, we
add continuous epistemic variables that define the means of the aleatory random variablesx1 and
x2. In particular,x1 ∼ N(µ1,1),x2 ∼ N(µ2,1) with µ1 ∈ [−1,1],µ2 ∈ [−1,1]. These results are
reported in the following two sections.

3.1.1 UQ Results: LHS

Table 1 shows Latin hypercube sampling results for the Rosenbrock example, again using an
aleatory sparse grid level of two. It is evident that the intervals are converging (lower bounds
from above and upper bounds from below), but only appear to be accurate to a few digits after
extensive sampling (105 outer loop samples with greater than two million total evaluations).

3.1.2 UQ Results: EA

Table 2 shows results for mixed-integer evolutionary optimization with the population size set
to 100 and the maximum number of population cycles for each QoI bound set to 5, 10, and 25

11
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Table 1. UQ results using LHS for Rosenbrock example.

Outer Evals Total Evals µ f σ f

10 210 [346.152, 1153.31] [1005.22, 2552.71]
100 2100 [303.160,1385.31] [796.943, 2861.09]

1000 21000 [302.098, 1524.23] [789.075, 3005.77]
10000 210000 [301.680, 1579.54] [777.004, 3097.92]

100000 2100000 [301.656, 1602.87] [776.399, 3122.45]

Table 2. UQ results using EA for Rosenbrock example.

Outer Evals Total Evals µ f σ f

2380 44457 [302.003, 1605.00] [778.958, 3124.36]
4360 69283 [301.998,1605.00] [776.052, 3124.36]

10300 99869 [301.638, 1605.00] [776.109, 3124.36]

(corresponding to 2380, 4360, and 10300 total outer loop evaluations, respectively). It is evident
that the intervals are converging more rapidly than for LHS, as would be expected when using
directed optimization techniques. The EA intervals after approximately 105 total evaluations are
more converged than those after 2.1 million total LHS evaluations. However, even after a reduction
of a factor of 20, the EA function evaluation counts are still unacceptably high for use in expensive
CASL applications.

3.1.3 UQ Results: SBGO

Table 3 shows results for surrogate-based global optimization for two different initial sample sizes:
10 and 20 random initial LHS points (corresponding to 26 and 47 outer loop evaluations after
refinement). The first result (26 outer loop evaluations) starts from the same data as the 10 outer

Table 3. UQ results using SBGO for Rosenbrock example.

Outer Evals Total Evals µ f1 σ f1
26 525 [301.642, 1485.04] [776.044, 3027.57]
47 945 [301.998,1605.00] [813.394, 3121.79]

loop sample case in Table 1, and it is evident that the optimization-drivenrefinement significantly
improves the accuracy of the bounds with relatively few additional evaluations. With the exception
of the lower bound forσ f , the second result (47 outer loop evaluations) has comparable accuracy
to 105 outer loop samples, after a reduction of a factor of 2700 in evaluation cost. These evaluation
counts become much more practical for use with Drekar.

12
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Taking a 50 iteration EA result as a reference solution, we plot the convergence rates for each of
the three techniques in Figure 2. Errors are averaged over the four QoI and the two SBGO results
are shown relative to their LHS initial sample starting points (10 and 20 outer loop evaluations).
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Figure 2. Convergence of MINLP approaches for Rosenbrock
example.

3.2 Short column example

Relative to the previous example, this test problem increases the aleatory dimension from two to
five, increases the number of model form alternatives from two to four, and replaces polynomials
with rational functions. It involves the plastic analysis and design of a short column with rectan-
gular cross section (widthb and depthh) having uncertain material properties (yield stressY) and
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subject to uncertain loads (bending momentM and axial forceP) [7]. The model forms for the
limit state are:

Form 1 : f1 = 1−
4M

bh2Y
−

(

P
bhY

)2

(5)

Form 2: f2 = 1−
4P

bh2Y
−

(

P
bhY

)2

(6)

Form 3: f3 = 1−
4M

bh2Y
−

(

M
bhY

)2

(7)

Form 4: f4 = 1−
4M

bh2Y
−

(

P
bhY

)2

−
4(P−M)

bhY
(8)

where Form1 is the traditional form and Forms 2–4 were published in [8]. The distributions of the
random variables are uniform forb andh ([5,15] and[15,25], respectively), normal forP andM
(nominallyN(500,100)andN(2000,400), respectively), and lognormal forY (nominally(µ,σ) =
(5, .5)). P andM are correlated with a correlation coefficient of 0.5 (uncorrelated otherwise).

We again augment the discrete epistemic model form variable with continuous epistemic vari-
ables that define the means of the aleatory random variablesP, M, andY. In particular,P ∼

N(µP,100),M ∼ N(µM,400),Y ∼ logN(µY,0.5) with µP ∈ [400,600],µM ∈ [1750,2250],µY ∈

[4,6]. The aleatory metrics are again the mean and standard deviation off , where the aleatory
moments are evaluated using a polynomial chaos expansion with a sparse grid level of two (requir-
ing 85 evaluations for five variables).

3.2.1 UQ Results: LHS

Table 4 shows Latin hypercube sampling results for the short column example. Three of the four

Table 4. UQ results using LHS for short column example.

Outer Evals Total Evals µ f σ f

10 850 [-4.53457, 8.40151] [0.306464, 4.90532]
100 8500 [-6.91096,8.25776] [0.292929, 6.75695]

1000 85000 [-7.16286, 8.42517] [0.286231, 6.95294]
10000 850000 [-7.17142, 8.56947] [0.285428, 6.95959]

100000 8500000 [-7.17298, 8.59563] [0.285359, 6.96081]

results appear to be converging monotonically, with approximately twoor three digits of accuracy
after 105 outer loop samples. The convergence of the upper bound forµ f is non-monotonic and its
accuracy is less certain.
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3.2.2 UQ Results: SBGO

Table 5 shows results for surrogate-based global optimization with initial samples set at 10 and
100 and the maximum number of refinement iterations for each QoI bound set to 10.

Table 5. UQ results using SBGO for short column example.

Outer Evals Total Evals µ f σ f

50 3825 [-4.53457, 8.40151] [0.285353, 4.90532]
140 11815 [-6.91096,8.49273] [0.292929, 6.75695]

Results for SBGO are disappointing for this problem, as the refined intervalsonly differ from
the corresponding LHS intervals in two cases: theσ f lower bound started from 10 LHS samples
and theµ f upper bound started from 100 LHS samples. Upon closer examination of the iteration
history (not shown), it is evident that significant inaccuracy is present in the extrema prediction
from the GPs, as the validations of the predicted extrema often differed in order and sign. Modifi-
cations that provided some benefit included restricting the number of model form alternatives and
reordering the model forms for each QoI (aleatory mean and standard deviation, in this case) to
allow monotonicity in their epistemic variation. However, none of the options investigated were
fully satisfactory in taming the accuracy issues with the GP models. This difficulty provided the
original motivation for adding the direct EA option to this study, in order to provide an alternative
with greater robustness.

3.2.3 UQ Results: EA

Table 6 shows results for mixed-integer evolutionary optimization with the population size set to
100 and the maximum number of population cycles for each QoI bound set to 5, 10, and 25. It is

Table 6. UQ results using EA for short column example.

Outer Evals Total Evals µ f σ f

2380 197350 [-7.17299, 8.22448] [0.285353, 6.96081]
4360 329610 [-7.17299,8.46808] [0.285353, 6.96081]

10300 527825 [-7.17299, 8.60743] [0.285353, 6.96081]

evident that direct application of the mixed-integer EA without the GPsurrogate indirection results
in much more reliable interval estimation. However, the total number of evaluations is prohibitive
for use with thermal-hydraulics codes such as Drekar. Compared to LHS, the EA results with 104

outer loop samples can be seen to be more converged than those for 105 outer loop LHS samples.
Thus, the optimization approach still demonstrates savings, albeit not nearly as significant as with
effective surrogate emulation.

15

CASL-U-2012-0080-000  



3.3 Thermal Hydraulics with Drekar

Fuel rods withinlight-water nuclear reactors are cooled from water flowing through the core. Tur-
bulence within these fluid flows has a significant effect on cooling effectivness, yet the modeling of
turbulence is not a mature science; significant uncertainty exists in turbulence model formulations
and a relatively large family of candidates exist.

In this study, RANS turbulence models are explored within the framework of the Drekar sim-
ulation code. At this time, two models were viewed as being sufficiently mature and robust with
respect to parameter variations for this study: the Spalart-Allmares (SARANS) model and the k-ε
(KERANS) model with Neumann boundary conditions for the turbulent kinetic energy (TKE).

In this study, we consider flow in a 3D channel as shown in Figure 3. The mesh is much
finer along the top and bottom boundaries to efficiently resolve the near-wall region. We enforce a
pressure drop in the x-direction via a source term in the Navier Stokes equations. No-slip bound-
ary conditions(u = 0) are enforced along the top and bottom boundaries, while the remaining
boundaries are chosen to be stress-free. In Figure 4 we plot the x-velocity for a typical realization
computed using a SARANS model, and in Figure 5 we plot the profile of the x-velocity along the
outflow boundary.

Figure 3. The steady-state x-velocity for typical realization com-
puted using a RANS model in Drekar.

We consider the molecular viscosity (denoted byν) and the source term for the x-momentum
equation (denoted byf ) to be aleatoric uniform random variables with epistemic upper bounds:
ν ∼ U(1E−5,ην) and f ∼ U(10,η f ) with ην ∈ [5e−5,5e−4] andη f ∈ [20,40]. Our simula-
tion quantities of interest are the spatially averaged x-velocity and the spatially averaged pressure.
The aleatory statistics of interest are the stochastic means of these simulation QoI, and we seek
epistemic intervals on these aleatory statistics computed over model form,ην andη f .
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Figure 4. The steady-state x-velocity for typical realization com-
puted using a RANS model in Drekar.

Figure 5. The profile ofof the steady-state x-velocity along the
outflow boundary for a typical realization computed using a RANS
model in Drekar.

3.3.1 UQ Results

We start with 10 Latin hypercube samples on the epistemic outer loop, and employ 5th-order ten-
sor quadrature (4th-order tensor polynomial chaos expansions) within each inner loop aleatory
propagation. SBGO adapts this initial sample based on sequential application of the EA to a GP
emulator. Table 7 summarizes the results for these two methods. As for the short column test
problem, SBGO performance is disappointing: it shows improvement in two of the bounds, but
fails to identify a better upper bound forµux or a better lower bound forµpressure. As for the short
column test problem, accuracy issues with the predicted GP optima were again the issue. Direct
application of the EA without GP emulation would be expected to provide much more accurate
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Table 7. UQ results for Drekar channel flow problem

Method Outer Evals Total Evals µux µpressure

LHS 10 250 [0.727604, 2.78150] [32.6109, 282.237]
SBGO 22 550 [0.723086, 2.78150] [32.6109, 292.450]

intervals, but was cost prohibitive without deployment to more substantial computerresources.
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4 Observations

Deployment ofdiscrete epistemic parameterizations for propagating model form uncertainty has
led to the following primary observations:

• In the algebraic examples, clear benefit was shown in utilizing optimization approaches rel-
ative to LHS sampling. In the Rosenbrock example, a cost reduction of a factor of 20 was
observed for the EA, which rose to a factor of 2700 for SBGO.

• It is evident that the application of standard emulation techniques, such as Gaussian process
modeling, to discrete domains is challenging. In the short column and Drekar examples,
SBGO results were disappointing, leaving us the expensive option of MINLP optimization
without emulation. Fortunately, internal LDRD projects and external academic collabora-
tions have been focusing on the discrete emulation challenge, such that a number of di-
rections are possible for improving discrete GP performance within our interval estimation
techniques.

• Given an effective discrete variable GP modeling capability, extensions to the adaptive re-
finement machinery are also needed. Unlike the EGO-based approach for continuous epis-
temic parameters, the SBGO algorithm for mixed epistemic parameters is purely exploitative
and lacks any adaptive refinement pressure for exploring regions that may contain good solu-
tions. The SBGO approach must rely on the initial LHS sample for exploration of the space.
For this reason, SBGO was not as reliable in identifying global optima as EGO is in [3, 4],
presumably due to cases in which the region of the global extrema are not adequately ex-
plored. Extension of the EGO-based approach to support discrete epistemic parameters is of
interest in future work.

• In this study, we have enumerated different model form options from a single modeling
source. However, it is for more complex multi-component simulations (e.g., multiphysics
simulation of reactor cores) for which manual enumeration becomes impractical and the
automation and greater efficiency within these approaches can provide the greatest benefit.
To fully realize this potential, additional improvements such as those discussed above are
needed to tackle this combinatorial growth in complexity.

In addition, the following algorithmic details are noted:

• The order of GP trend functions was an issue when the number of model alternatives was
small. In particular, use of a quadratic trend was problematic when only two model alterna-
tives were present.

• EA performance was not carefully optimized for direct application without emulation. For
example, initial population sizes were large and could be better optimized for efficiency.

Given an effective emulator-based IVP capability, the following additional directions could be
pursued:
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• The gradient-enhanced kriging (GEK) capability could be employed at the outer epistemic
loop to incorporatesensitivies of the aleatory statistics with respect to the continuous epis-
temic parameters, as enabled by the underlying stochastic expansions [1, 4].

• Extension from IVP to Dempster-Shafer is straight-forward, but has not been explored in
this work. Greater efficiency per cell is needed before supporting combinatorial growth in
cell counts.

• The Drekar::CFD team expressed interest in exploring the intervals of the statistic for the
case where the parameters of each turbulence model are uncertain. This can be explored in
the future using the tools developed in this study.
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