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Summary

The purpose of this work is to demonstrate advanced solution verification (i.e.,
numerical error estimation) techniques on computational fluid dynamics
simulations of interest to CASL. The specific case chosen is the GTRF-related fluid
response of a detailed subchannel fluid flow computed with the CFD code Drekar.
For the full GTRF analysis, the necessary detail includes the time-dependent
fluctuating fluid evolution within the section of the rod bundle simulated. We do not
examine the structural-vibration response that is the ultimate objective of GTRF
simulations. The specific verification analysis will include both standard and
recently developed techniques for numerical error estimation, all based on the usual
power law error description. In particular, the newer techniques provide a self-
contained error and convergence analysis that includes confidence intervals for the
results derived. The methodology is described in detail in this report. In addition, we
will apply complementary techniques to the related issue of code verification of
Drekar.

This work builds upon the basic theory and workflow described earlier by the
authors in [Rid10,Rid11].

Introduction

Calculation or solution verification is a class of procedure where the discretization or
numerical error is estimated in simulations of problems of interest. Such analyses
constitute a specific form of uncertainty quantification. There are a number of
defined procedures by which numerical error estimates can be converted to
numerical uncertainty estimates. In this report we will review existing procedures
and describe a new one. We take the two terms calculation verification and solution
verification to be synonymous. Code verification is a related, but distinct process in
which the correctness of a software implementation of a numerical algorithm is
evaluated, typically by comparison against an exact solution. For the purpose of
comparison, the new verification procedure introduced will be applied
synergistically to code verification as well.
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Numerical methods that are used to obtain approximate numerical solutions of
continuum models unavoidably lead to errors in the computed results. These errors
are associated with the numerical method alone and have nothing to do with any
assumptions related to the physical correctness of the continuum models (e.g.,
model-form errors). The process of examining model-form error is known as
validation and is distinct from verification. The challenge of solution verification is
to help provide estimates of such numerical errors. These errors are of four general

types:

round-off errors,

sampling errors,

iterative (linear and nonlinear) solver errors, and
discretization errors.

B W=

Our sole focus in this work will be the last of these, the discretization error. Fully
verifying the veracity of our approach would require further study and additional
calculations that cannot be justified given the difficulty of obtaining full-scale
calculation for estimating discretization error. We fully acknowledge this as a
weakness of the present study. In our defense, these errors have been studied by
the Drekar team in the context of code verification and judged to be substantially
smaller than the discretization error under those (admittedly idealized)
circumstances [Shadid].

Discretization errors are a direct consequence of the numerical scheme used to
obtain a discrete approximation of the continuous model equations (e.g., finite
difference, finite element, or finite volume methods). The solution approach used on
those discrete equations and the nature of the solution itself determine the expected
behavior of the error. For time-dependent problems, both the spatial and temporal
discretizations enter into the evaluation of these errors (for radiation transport,
energy/spectral and angular discretization must be considered as well). Many
researchers contend that discretization error is often the dominant source of
numerical error in scientific computing simulations. This is consistent with much of
the authors’ experience, although nonlinear solver error can dominate strongly
coupled (stiff) problems. This error is related to how nonlinear aspects of an
implicitly defined temporal solution are approximated. Indeed, with respect to the
CFD calculations considered here, the large time step RANS modeling would be
expected to produce relatively substantial nonlinear solver error. For the LES
solutions, attention to the nonlinear error is less important; this is reflected in the
ability of semi-implicit methods (explicit advection-implicit pressure) to solve the
fluid problem.

Among the most important characteristics of discretization schemes is the order-of-
accuracy (also called the convergence rate), which is given by the exponent in the
power law relating the numerical truncation error to the value of a parameter
associated with the discretization, usually given by the size of the computational cell
(for spatial convergence) or time step (for temporal convergence). This is a
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standard property of the numerical method; however, it formally applies only when
the solution is continuously differentiable. The factor multiplying this term gives a
measure of the overall error of a given scheme; thus, two different schemes that
converge at the same rate may have different (absolute) discretization errors. The
standard method by which to estimate this accuracy is systematic mesh refinement
(or variation), although there are, other, less general approaches [Roy10a]. The
results of this approach are combined with error measurement to produce the
observed rate-of-convergence, which is compared with the ideal or theoretical rate-
of-convergence of the underlying algorithm. In solution verification, unlike code
verification, the use of an analytical or exact solution to a problem is not available as
an unambiguous fiducial solution. Instead, the comparisons are made between
solutions using different grid resolutions under the a priori assumption that finer
mesh resolution yields more accurate solutions.! This assumption is generally
regarded to be reasonable, given its fundamental character with regard to numerical
analysis.

To aid analysts in conducting solution verification analyses, the following workflow
for solution verification is proposed.

1. Starting with an algorithm implementation (i.e., code) that has passed the
appropriate level of software quality assurance and code verification, choose
the software executable to be examined.

2. Provide an analysis of the numerical method as implemented including

accuracy and stability properties. (This information should be available from

the code verification analysis.)

Produce the code input to model the problem(s) of interest.

4. Select the sequence of mesh discretizations to be examined for each problem,
and the input necessary to accomplish these calculations.

5. Run the code and provide the means of producing appropriate metrics to
evaluate the difference between the computed quantities of interest based on
numerical parameters within the control of the code user. This can also
include the numerical method chosen (order of approximation or scheme).

6. Use the comparison to determine the sequence of estimated errors
corresponding to the various discretizations and tolerances.

7. The error sequence allows the determination of the rate-of-convergence for
the method, which is compared to the theoretical rate. For iterative solver
errors, the error is a function of the stopping criteria and the discretization.

8. Using these results, render an assessment of the accuracy (level of error
estimated) for the simulation for a given set of numerical settings.

w

! Implicit in this assumption is the expectation that the quantity being measured is
sufficiently well behaved, numerically, that convergence is a sensible concept. For example,
in a turbulent flow, the value of the velocity at a particular location in the flow should not be
expected to converge, but the (integrated) turbulent kinetic energy of a specified volume of
the flow can reasonably be presumed to be convergent.
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9. Examine the degree of coverage of features in an implementation by the
verification testing.

The workhorse technique for estimating discretization error is systematic mesh
refinement (or de-refinement, i.e., coarsening), while the method for estimating
iterative error involves systematic changes in stopping criteria for the iteration. A
fundamental expectation for a numerical method is the systematic reduction in
solution error as, say, the characteristic length scale associated with the mesh is
reduced. By the same token, iterative errors are assumed to be smaller as the
stopping criterion is decreased in numerical value. For mesh refinement, in the
asymptotic limit where the mesh length scale approaches zero, a correct
implementation of a consistent method should approach a rate of convergence given
by numerical analysis (often obtained with the aid of Taylor series expansion). In
practice, however, a series of calculations might not be in the asymptotic range. This
circumstance does not obviate the need for some estimate of the numerical error,
however imprecise that estimate may be; in fact the necessity may be increased under
these conditions.

To conduct analysis using this approach, a sequence of grids with different intrinsic
mesh scales is used to compute solutions and their associated errors. The
combination of errors and mesh scales can then be used to evaluate the observed
rate of convergence for the method in the code on the given problem. In order to
estimate the convergence rate, a minimum of two grids is necessary (giving two
error estimates, one for each grid). The convergence tolerance for iterative solvers
can be investigated by simple changes in the value of the stopping criteria. Assessing
iterative convergence is complicated by the fact that the level of error is also related
to the mesh through a bounding relation in which the error in the solution is
proportional to the condition number of the iteration matrix. Most investigations of
iterative solver error only consider the impact of the stopping criteria alone.

In this section, we examine the case of ideal asymptotic convergence analysis. The
axiomatic premise of asymptotic convergence analysis is that the computed
difference between the reference and computed solutions can be expanded in a
series based on some measure of the discretization of the underlying equations.
Taking the spatial mesh as the obvious example, the ansatz for the errorina 1-D
simulation is taken to be

|4, -4, ||=c,+Ch +o(n") (3)

In this relation, A, is the reference solution, which for solution verification is
computed on a refined mesh, A, ; is the computed solution, / is some measure of the
mesh-cell size, C, is the zero-th order error, C, is the first order error, and the
notation “o((h)?)” denotes terms that approach zero faster than (h)? as h—0*. For
consistent numerical solutions, Co should be identically zero; we assume this to be
the case in the following discussion. For a consistent solution, the exponent p of  is

4 CASL-U-2012-0133-000



the convergence rate: p =1 implies first-order convergence, p =2 implies second
order convergence, etc.

The error ansatz implies:
4,4, [[=c,+ch+... (4)

Let us further assume that we have computational results on a “fine” mesh 4,
(subscript k), where 0 < i, < h, , with h, ; / h, = o> 1. In this case, the error ansatz
implies:

4,4, ||=c7ch+... (5)

Manipulation of these two equations leads to the following explicit expressions for
the quantities p and C:

p= [log‘ ‘Ak - Ak—l‘ ‘— log‘ ‘Ak—l - Ak_z‘ H/Iogo (6)

¢ :HAk _Ak—l‘ |/hp HAk —Ak_1||/h” (7)

These two equalities are the workhorse relations that provide a direct approach to
convergence analysis as a means to evaluating the order of accuracy for code
verification.

For quantities of interest (QOIs) or figures of merit (FOMs), the above development
can be utilized without resorting to error norms. The quantity, 4, is defined without
the use of a norm with the following related error model,

A=A +Ch+... (8)

with the remainder of the development proceeding as above, if the approach toward
A, the mesh converged solution, is monotonic. In the case where a solution is not
monotonically approached, the above error model can still be utilized as long as the
error in absolute terms is diminishing monotonically.

Once the nature of the solution has been properly categorized, the numerical
uncertainty can then be estimated as part of the overall uncertainty estimate.? The
Grid Convergence Index (GCI) of Roach (see [Roa98, Roa09]) is perhaps the original
attempt to codify the numerical uncertainty associated with inferred convergence
parameters. Roache [Roa98] claims that there is evidence for the numerical
uncertainty based on the GCI method (with a safety factor of 1.25) to achieve a 95%
confidence level. This approach was extended to the Correction Factor (CF) method
of Stern et al. [Ste01] Xing and Stern [Xin10], however, take issue with both of these
approaches, stating, “...there is no statistical evidence for what confidence level the

2 The proceedings of the 1st, 2nd, and 3rd Workshops on CFD Uncertainty Analysis [Eca08]
provide an interesting reference on many aspects of uncertainty analysis for CFD.

5 CASL-U-2012-0133-000



GCI and CF methods an actually achieve” and, more specifically, that their analyses
“...suggest that the use of the GCI1 method is closer to a 68% than a 95% confidence
level.” As we describe below, Xing and Stern come to a different conclusion
regarding an approach that technically does meet the 95% confidence level
empirically, albeit with respect to a specific ensemble of simulations.

Eca and Hoeckstra [E¢a06] propose heuristics by which to estimate the numerical
uncertainty associated with fundamental behavior of a set of computed results.
These suggestions appear to be based on the assumption that the underlying
numerical scheme has a theoretical convergence rate of two; however, for many
multiphysics (and some single-physics) problems, the theoretical convergence rate
is unity, for which the specific prescription of [Eca06] should be modified. It is
worth noting here that the convergence rate is both a function of the scheme
employed and the nature of the solution sought itself. For example, a second-order
method applied to a problem with a discontinuous solution cannot produce a
second-order convergent result. Hence the expected theoretical convergence rate is to
be considered a function of both the method used and the solution sought.

We highlight the heuristic but simple estimation associated with Roache’s
procedure as defined by Oberkampf and Roy [Obe10]. The simplicity of this
estimate should be held in contrast to the more elaborate procedure described later.
For both procedures, the starting point is a regression given the results of the mesh
refinement (or coarsening) procedure. This produces a mesh-converged result, 4,
and convergence rate, p. From these values, one obtains the basic scale for the error
estimate,

_ A-AL 5

=A-A . 9)

60{ Gp—l k

This value is processed with the convergence rate to define a safety factor,

1.25(8, | if |p—p,,,.| /P, <01
3‘5a| otherwise '

(10)

Finally, the grid convergence index (GCI) is the ratio of Unum/A expressed as a
percentage. The safety factors in (10) were chosen on the basis of expert judgment
from extensive CFD experience.

Xing and Stern [Xin10] take a different, more complicated, but nevertheless still
empirical approach. To evaluate the numerical uncertainty associated with these
solution verification estimates, Xing and Stern performed a statistical analysis of 25
sets of computational data, covering a range of fluid, thermal, and structural
simulations, to arrive at various parameters for their estimations of simulation
uncertainty. The parameter values obtained by Xing and Stern provide
computational uncertainty estimates that demonstrably satisfy the 95% confidence
level for the data sets upon which that analysis is based. They contend that the
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formula below provides a safety factor with empirical, statistical support. We
suggest following this approach whenever the grid sequence provides a convergent
sequence.

(245-0.85P)8,].if0<P<1
(164P—1438)|8,].if P> 1

U,..=FS|8,|= (11)

where P = prg/pe, the ratio of the Richardson extrapolation based convergence rate
(pre) and the theoretical convergence rate (p:), defines whether the observed
solution is asymptotic in nature. The numerical error magnitude comes from the
Richardson extrapolation toward the monotonically mesh converged solutions as

A-A
o =tk k1L 12
e (12)
or the related error estimate for monotonically decreasing error as
A—-A
§ =k "k 13
e = Tor 1 (13)

In the case where the solution is not convergent, the numerical uncertainty should
nonetheless be estimated, however imprecise those estimates may be. It is the
authors’ experience that users of codes will generally move forward with
calculations and—absent guidance to the contrary—may offer no numerical
uncertainty estimates whatsoever. We maintain that this practice is potentially
more dangerous than providing a weakly justified estimate. We offer the important
caveat that this bound is not rigorously justified; it is perhaps more appropriately
viewed as a heuristic estimate, with documented provenance, that can be readily
generated given limited information. The simplest approach is to examine the range
of solutions produced and multiply this quantity by a generous safety factor,

u. :3(maxA—m1nA) (14)
The safety factor, set to 3 in (14), might assume different values in different
computational science applications. This heuristic approach is similar to that
advocated by Eca and Hoekstra [Eca06].

Detailed Workflow

Here, we reproduce the details of the proposed CASL solution verification workflow,
which this work will demonstrate. The proposed steps do, however, standardize a
solution verification workflow that can be conducted by a code team (developers
and testers) for the purpose of estimating numerical uncertainty. Ideally, the code
verification process should be conducted regularly (as well as on demand), so that
incorrect implementations impacting mathematical correctness are detected as
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soon as possible. The general consensus in software development is that the cost of
bugs is minimized if they are detected as close as possible to their introduction.

This procedure assumes that the code team is using a well-defined software quality
assurance (SQA) process, and that the code verification is integrated with this
activity. Such SQA includes source code control, regression testing, and
documentation, together with other project management activities. For consistency
and transparency, we recommend performing the code verification in the same
manner and using the same type of tools as other SQA processes.

1. Starting with an implementation (i.e., code) that has passed the appropriate
level of SQA and code verification scrutiny, choose the executable to be
examined. Solution verification can be a resource-intensive activity involving
substantial effort to perform. It is important that verification and validation
be applied to exactly the same code. Therefore, solution verification should
be applied to the same version of the code that analysts would use for any
important application. Indeed, this process should be applied to the specific
version of the code used throughout the entire V&V UQ activity.

2. Provide an analysis of the numerical method as implemented, including
accuracy and stability properties. The analysis should be conducted using
any one of a variety of standard approaches. Most commonly, the
von Neumann-Fourier method could be employed. For nonlinear systems,
the method of modified equation analysis can be used to define the expected
rate and form of convergence. The form and nature of the solution being
sought can also influence the expected behavior of the numerical solution.
For example, if the solution is discontinuous, the numerical solution will not
achieve the same order of accuracy as for a smooth solution. Finite element
methods can be analyzed via other methods to define the form and nature of
the convergence (including the appropriate norm for comparison).

3. Produce the code input to model the problem(s) for which the code
verification will be performed. Each problem is run using the code’s standard
modeling interface as for any physical problem that would be modeled. It can
be a challenging task to generate code input that correctly specifies a
particular problem?; e.g., special routines to generate particular initial or
boundary conditions that drive the problem may be required, and these
routines must be correctly interfaced to the code. It is advisable to consider
the complexities and overhead associated with such considerations prior to
undertaking such code verification analyses.

4. Select the sequence of discretizations to be examined so each solution.
Verification necessarily involves convergence testing, which requires that the

3 Trucano et al. [Tru06] refer to this concept as the “alignment” between a code and a
specific problem (either verification or validation).
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problem be solved on multiple discrete representations (i.e., grids or
meshings). This is consistent with notions associated with h-refinement,
although other sorts of discretization modification can be envisioned. The
mathematical aspects of verification are typically most conveniently carried
out if the discretizations differ by factors of two.

Run the code and provide of means of producing appropriate error metrics to
compare the numerical solutions. The solutions to the problem are computed
on the meshes corresponding to the different discretizations. Most
commonly and as discussed above, these metrics take the form of norms (i.e.,
p-norms such as the L; or energy norm). The selection of metrics is
inherently tied to the mathematics of the problem and its numerical solution.
The metrics can be computed over the entire domain, in subsets of the
domain, on surfaces, or at specific points. The domain over which the metrics
are evaluated and the analysis is to be conducted must be free of any
spurious solution features (due, e.g., to numerical waves erroneously
reflected from computational boundaries).

Use the comparison to determine the sequence of errors in the computed
solutions. Using the well-defined metrics for each solution, the error can be
computed for each discrete representation. Ideally, there will be a set of
metrics available (e.g., L1, L2, and Linfinity), providing a more complete
characterization of the problem and its solution.

The error sequence allows the determination of the rate-of-convergence for
the method, which is compared to the theoretical rate. With a sequence of
errors in hand, the demonstrated convergence rate of the code for the
problem is estimated. The theoretical convergence rate of a numerical
method is a key property. Verification relies upon comparing this rate to the
demonstrated rate of convergence. Evidence supporting verification is
provided when the demonstrated convergence rate is consistent with the
theoretical rate of convergence. This can be a difficult inference to draw,
because the theoretical rate of convergence is a limit reached in an
asymptotic sense, i.e., it cannot be attained for any finite discretization. As a
consequence, there are unavoidable deviations from the theoretical rate of
convergence, to which judgment must be applied.

Using the results, render an assessment of the method’s implementation
correctness. Based on the discrete solutions, errors, and convergence rate(s),
a decision on the correctness of a model can be rendered. This judgment is
applied to a code across the full suite of verification test problems.

a. The assessment can be positive, that is, the convergence rate is
consistent with the method'’s expected accuracy.

b. The assessment can be negative, that is, the convergence rate is
inconsistent with the method’s expected accuracy.
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c. The assessment can be inconclusive, that is, one cannot defensibly
demonstrate clearly either uniform consistency or inconsistency with
the method’s expected accuracy. For example, the convergence rate is
nearly the correct rate, but the differences between the expected rate
and the observed rate is unacceptably large, potentially indicating a
problem.

Figures 7a,b show the entire process in diagrams that conceptually expand the line
for code verification in Fig. 4. As previously stated, this process should be repeatable
and available on demand. As noted in the introduction to this section, having the
code verification integrated with the ongoing SQA activity and tools can greatly
facilitate this essential property. The solution verification process is not monolithic,
but, instead, should be flexible and should meet the needs of the specific application.
For this reason we include two versions of the flowchart to facilitate this mindset.
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Figure 1(a). The flowchart version of the list of activities is shown for code
verification, which can be interpreted as an expansion of the simple expression of
this activity.
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Figure 1(b). The flowchart version of the list of activities is shown for code
verification, which can be interpreted as an expansion of the simple expression of
this activity.

A New Solution Verification Methodology

The starting point for verification analysis is the definition of a postulated model for
the numerical error. The standard model is a power law,

A =A+Ch (15)

where Ay is the value computed on the kth mesh, 4 is the (estimate of the) mesh
converged solution, C is a proportionality constant, h is the mesh length scale (e.g.,
cell size in 1D), and p is the convergence rate. This ansatz is motivated by
conventional analysis (e.g., Richardson extrapolation). One should bear in mind,
however, that any such form is an assumption. Therefore, one could explore
alternative models, but we do not in this work. Often verification (in particular, code
verification) focuses on the convergence rate, p as the key result and its congruence
with theoretical expectations, pseo- In solution verification, the focus can be
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expanded to the overall error term, C h?, with specific application to error
estimation.

We repeat the important point that the theoretical convergence rate is dependent
not only upon the method used for computations, but also upon the nature of the
solution itself, the quantity whose convergence is being analyzed, and the metric
being considered. For example, a second-order method can be used to compute a
result, but the presence of a discontinuity can render the solution only first-order
convergent at best [Majda77]. Moreover, under these conditions the first-order
result can only be expected for an integrated quantity (e.g., in a hydrocode
simulation, the specific internal energy integrated over the domain), and a non-
integrated quantity (e.g., the specific internal energy at a point) might be expected
to be non-convergent.

This model works well under the proviso that the mesh converged solution is being
approached asymptotically in a monotone fashion. Quite often, in practice, this is
simply not the case. Under such circumstances the standard model does not work
and, instead, we might expect the error to decrease in a power law fashion,

|E,|=Ch (23)

where Eyis the error. Alternatively, one might find that the solution is diverging,
which would be characterized by p<0. Such a result is often viewed as a failure, but,
in fact, for verification, it is a success: important feedback for a set of calculations
has been achieved. We make particular note that the error form in (23) has use in
code verification where the errors are computed a priori given knowledge of the
analytical solution.

In the following development, we will first apply the standard error model in an
attempt to achieve a “best-case” result. When this result is available, the error
should be defined as the distance between the solution and the best estimate, where
the notion of distance will be made precise in the metric used. This is a divergence
from the current standard practice for defining “numerical error bars” that are
symmetric about the finest mesh used as data. We note that this procedure can only
be utilized under the circumstance where the behavior is ideal. Should the data be
congruent with the underlying assumptions associated with this model, then this
estimate using the standard error model will be termed as a “best-estimate” result. If
the best estimate is available, then we can also produce an error bound using the
second (error) model, which we shall describe. In either case, the error model can
be used to bound the error. These estimates provide the foundation by which to
define error bars in the currently accepted standard manner, with the error bars
associated with the values computed on the finest mesh.

Given a set of metrics computed on a sequence of mesh resolutions, the standard

practice is to utilize nonlinear least squares to solve for the parameters in the error
model, Eq. (15). Usually this step is completed with little consideration of the
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implications of this solution procedure. To help illuminate the significance of this
choice, we examine some basic properties of the least squares curve fit. First, the
least squares approach is directly associated with normal (Gaussian) statistical
assumptions regarding the errors in the parameter values [Bjork]. Specifically, the
nonlinear least squares fit is optimal if the errors in the parameters are normally
distributed about the optimal values. The least squares formulation has distinct
virtues for linear regression problem, because the solution is rendered linear by the
minimization of fit residual in the Lz norm. This property is lost when moving to
nonlinear models, such as those we will utilize here. Consequently, we lose little in
moving to a more general formalism for the regression.

The field of robust statistics has been developed to reduce the sensitivity of
regression procedures to outliers in a given data set. The simplest robust regression
approach is to minimize the L; norm of the residual. In distinction to the least-
squares approach mentioned above, the L1 regression has a different statistical
connection. For L1 regression, the fit is optimal if the errors are distributed by
Laplace’s (double-exponential) distribution [Bjork]. The double-exponential
distribution is sharply peaked at the mean and has longer tails than the normal
distribution. At the other end of spectrum is the minimization of the Linfiity norm of
the residuals (also known as Chebyshev or minimax approximations). Unlike
minimization of the L1 norm, Linsiity -based regression is minimally robust because it
can be greatly influenced by outliers; nevertheless, this form of regression is indeed
optimal if the errors are distributed uniformly. There are other robust regression
procedures, such as least median deviation; we do not utilize such approaches here,
but they may prove useful for more general work. More broadly, there is an infinite
class of regressions defined by the norm that is chosen for minimization.

For the case we are considering, i.e., a set of metrics computed on a sequence of
mesh resolutions, the distribution of errors is unknown and, most likely, does not
correspond to any particular analytical probability distribution. There is no reason
to favor one distribution over another; that is, that the ensemble of errors should be
consistent with some particular distribution is not supported by existing theory or
empirical evidence. In particular, there is no reason that the Gaussian distribution
associated with standard least-squares regression should be favored, despite its
widespread use in applications, including verification.

Finally, we can provide an improvement in the regression via the application of
weighting the data. We do have the prior expectation that the results computed on
finer grids (i.e., with smaller mesh spacing) are “better.” This presumption is
essentially a restatement of our belief, ultimately, of convergence under mesh
refinement. To reflect this assumption quantitatively, the data can be weighted
inversely proportional to the mesh spacing (i.e., by 1/h)* That is, we judge a priori
as more “important” the values computed on the finer meshes. This weighting, while

4 Of course, this weighting could be modified to be inversely proportional to the mesh
spacing to some positive power, i.e., 1/h4, where q > 0.
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usually plausible, is not associated with any particular analytical statistical
distribution, but nevertheless provides an alternative, rational approach to data
analysis.

Another approach based on prior information would be to utilize the expected
(theoretical) convergence rate in the regression. For example, the assumption that

the error model for a second-order method is 4, = ]1+Ch,f would produce a linear

regression problem. Based on this prior knowledge, the observed convergence rate
could reasonably be expected to lie in a certain range, so that a model can be solved
using the bounds of this range. Such a line of thought can be extended to the general
regression problem by appealing to constrained regression using the above-stated
bounds as constraints to the regression problem in the chosen minimization norm.

Robust statistics offer a set of models and regression techniques with which to form
estimates of the error and, consequently, of the converged solution. The values of
the parameters vary depending on the method used, and the level of variation in the
inferred parameters is a direct measure of how the values are distributed. Results
may be largely the reflection of outliers in the data set, in which case the parameters
themselves may be outliers. The conventional statistics for characterizing a set are
the mean and standard deviation, the latter of which is implicitly associated with a
Gaussian distribution. These measures are known to be susceptible to the presence
of outliers [Huber]; that is, a single outlier can produce a substantial change in these
statistics. Of course, the determination of what constitutes an outlier depends upon
the statistical assumptions made (often implicitly) in the data analysis.

We contend that such sensitivity is not an appropriate characteristic for a “"best
estimate” of the result. We make this assertion based on our experience that
apparent outliers in the results of numerical calculations of computational science
and engineering are far from unknown. To help address this issue, we choose
instead the median of our estimates as the measure of central tendency. Unlike the
mean, the median of a data set is substantially more robust to outliers [Huber]. The
variation in the data can likewise be measured by the median deviation (analogous
to the standard deviation), which is the median of the deviation from the median
across the ensemble. Our procedure will regress the data using the error model and
a number of regression techniques elucidated above, and we will then apply median
statistics to identify the best estimate.

Another novel element of our approach it is the ability to examine the results in a
manner that does not assume the symmetry of the estimates. The primary analysis
is a best estimate of the mesh converged result, 4, which should not necessarily be
symmetric, but rather potentially have a bias. To accomplish this analysis we first
compute the median of A and then divide the list of estimates into two lists of
estimates: those less than than the median value and those greater. We subtract the
median(4 ) from each element of these sets and then compute the median deviation
for each list. These values are signed, and provide an estimate of the negative or
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positive bias in the analysis. On the other hand, the error estimate, |E| is symmetric
by construction and should be interpreted as such.

Finally, our approach possesses a number of characteristics of the statistics
technique known as bootstrapping. In the bootstrap, small data sets are resampled
to provide a better basis for statistical inference. In the case of verification, typically
a (very) small number of data points is available. In our analysis, the different
regressions provide the set of different statistical views of the data. By using
differing regressions and subsets of the data, a bootstrap of a sort is applied. If the
data are completely consistent with a certain convergence rate (i.e., the solutions
are all in the asymptotic range for the method), then the results of this ensemble will
be self-consistent. This will have the effect of producing accurate error estimates
with intrinsically small uncertainty. Conversely, if the data are not consistent, then
the error estimate will vary significantly, and a large uncertainty will be indicated.
Such behavior is ideal for the purposes of solution verification analysis. Our
examples will demonstrate this property.

Our New Solution Verification Algorithm

Given this background we will define a sequence of steps to produce our overall
error estimates. These estimates will produce a best estimate if the data supports
this, and an estimate of the bounds of the error. While the procedure is congruent
across the possibilities of under-, exactly- or over-determined regression there are
subtle differences that must be acknowledged. At a high level, the overall algorithm
is expressed below:

1. Produce an analysis of the numerical method used and the problem solved to
establish a theoretical rate of convergence with lower and upper bounds for
the convergence rate, piower and pupper -

2. Screen the data for the basic character (i.e., whether the convergence is
monotonically convergent, convergent, or divergent).

3. If the data is monotonically convergent (even weakly, using the end points of
the data sequence). Chose a data set starting with the finest mesh values
S1=[( hn-1,An-1), ( hn,An)]j=1.

4. Using the subset of the data, S;, produce the following steps.

a. Using the data pairs (hxAx) produce a set of constrained regressions
using several techniques L1, Lz, Linfinity, weighted Lz, ptheo L2, Plower L2,
and pupper Lo.

b. Examine the results to see whether the computed estimates of p
match either the lower or upper bound. This is a warning sign that
probably precludes the completion of a “best estimate” of A .

c. Work through the data points from the finest resolution, adding
additional (coarser) data points and producing new regression fits for
each set of data. This aspect of the procedure is predicated upon the
assumption that finer grids produce more accurate results. Thus, for
each part of the full data set, one obtains a set of regressions, with the
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results biased toward the finer grids. Return to step 4a until the data
is exhausted.

d. Find the median of the Anedian estimates, the median deviation, > median-
The estimate of the mesh converged solution is Amediant3 Y median. Here,
the value 3}’ nedian provides a bound analogous to the 95% confidence
interval sought with other solution verification procedures.

e. Conduct the asymmetric analysis of the results by separating a sorted
list of the A into two equal lists, one with elelements less than Apmedian
and the other greater than Amedian. Compute the median of each of
these sets and subtract Amedian, which provides a negative and positive
bias, 3Y- and 33, in Apmedian.

f. For all results, one can produce a “GCI-like” result in terms of
percentage as GCI=3Y /A * 100.

(This overall procedure is implemented as a Mathematica scriptin
Appendix A).
5. If the absolute value of the error is monotonically convergent (this includes
the monotonically convergent case):

a. Compute the absolute difference between the solutions at adjoining
meshes, (hi,hi-1,/Ak-Ak-1]) (define AAkk-1:= [Ak-Ak-1|.

b. Produce a set of regressions using the data above L, Lz, Linfinity,
weighted L2, piheo L2, Plower L2, and pupper L2) for the error model, C|hi? -
hi-1P| where the additional constraint that C>0 is used.

c. Screen the results of the regression for anomalous behavior in
convergence rates. Return to step 5a until the data is exhausted.

d. For the best estimate of error, use the median of the error model, C h,?
regressions evaluated at h,, where n is the finest grid available. This is
the best estimate of the error bar.

e. Additionally find the max(C hn?) to produce the bound of the
numerical error at the finest grid.

6. Ifthe errors diverge, compute the rate of divergence and exit.*
7. lIf there are unused coarse grid data points j:=j+1 ;(if j<N-1), S;=[( hn;An),
..( hnAn)]; and return to step 3. This algorithm is given in Appendix A.

* For under-determined (2 grid) cases, this cannot be explicitly determined.

It is worthwhile to make a few comments on the procedure. Expert judgment is
added to the process in several key places: the determination of the expected
convergence, the screening of the data (with potential rejection of anomalous
solutions, and the screening of the regression results). The use of robust statistics
can provide some relief from this step, but expert opinion remains a necessary
element in this activity. If the data are very well behaved, one produces both a best
estimate with a numerical error bar that is not symmetrically placed with regard to
the finest solution, and a bounding estimate that is congruent with existing practice.
Finally, the procedures eliminate the use of an empirical safety factor, rather instead
upon the diversity of estimates and the use of a maximum over those estimates to
provide safety in the estimations.
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For code verification the basic procedure is the same except no error estimate is
needed, as it is explicitly available. We use the same basic error form as before, Ex =
C hip. There are only two unknowns, the constant and the convergence rate. The
procedure we use is otherwise no different than that used for solution verification.
The actual script used for the analysis is reproduced in Appendix B.

Example: First-order ODE integration

To clearly demonstrate these techniques we apply both the code and solution
verification methodology to a simple problem as an example. To this end, we will
solve a classical linear ODE, dA/dt = -A, with initial condition A(0) = 1, for the
solution at time t = 2, using the first-order accurate forward Euler method, A™*1 = A"
- h An. The analytical solution is A(2) = 0.135335. By utilizing the exact solution, we
demonstrate our code verification methodology, and by ignoring the exact solution
we demonstrate (and quantify the accuracy of) the solution verification techniques.

Being a simple problem we can compute the results in any number of ways, namely
code, Mathematica, Excel, etc.; in this case, we use Excel. We solve the problem at a
number of time step sizes as given in Table 1 below. Using the exact solution we can
compute errors to enable code verification, and ignoring these results, errors can be
estimated.

Time Step Size | Solution at t=2 | Exact Error at t=2
0.4 0.0777600000 | 0.057575283
0.25 0.1001129150 | 0.035222368
0.2 0.1073741820 | 0.027961101
0.1 0.1215766550 | 0.013758628
0.08 0.1243642870 | 0.010970996
0.04 0.1285121570 | 0.005449489
0.02 0.1326195560 | 0.002715727
0.01 0.1339796750 | 0.001355608
0.008 0.1342511570 | 0.001084126
0.005 0.1346580430 | 0.00067724
0.004 0.134793581 | 0.000541702

Table 1. First order forward Euler solution of an ODE for varying time step sizes.

The code verification results can be computed using the standard techniques with a
single linear regression (including a standard deviation computed using Gaussian
statistics). In this case, the data in Table 1 gives a convergence rate of 1.03150 *
0.0029816. Our new methodology provides very nearly the same result, but, by
applying a range of regressions on subsets of the data, uncertainty in the
convergence rate is also estimated, with the result: 1.00436 + 0.003465, based on
77 different regression fits. Our procedure provides a result that focuses upon the
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fine grid results and provides great confidence that the integrator is implemented
correctly.

The same sequence of actions can be applied while ignoring the exact solution to
produce numerical error estimates. Using the simplest case of Roache’s estimator
and standard regression produces the following estimates for the error and
convergence rate. In contrast the new procedure provides a more self-contained
error estimate with uncertainty together with a convergence rate and uncertainty.
Roache’s estimate produces a numerical error of 0.0005178 (GCI £0.0517851%
does not properly bound the error, and neither does the standard deviation of the
extrapolated mesh solution £0.0000420147), and a rate of 1.0378 (GCI
+(0.00328027). Xing and Stern’s estimator produces a numerical uncertainty of
0.0009263 (CGI £0.0926339%). Our procedure, on the other hand, produces a
median convergence rate of 1.0219+0.0154 with a median extrapolated solution of
0.135316+0.000138247 (£0.102166%). Applying the asymmetric analysis to these
results reveals more texture. with the bias in the estimated results being large and
slightly negative, 3)- =-0.000451116, 3):* = +0.0000447998 (GCI- = -0.333378%,
GCI+ = +0.0331074%). Here, we have constrained the convergence rate to lie in the
interval 0.5 < p < 1.5 in the analysis. The new procedure is clearly more accurate for
this well-behaved case, where the older ad hoc approaches are not properly
bounding the error in one case. The analysis uses 121 different regression fits to
subsets of the data, providing a broad basis for statistical inference utilizing our
bootstrap-like approach described above. Figures 1 and 2 provide a snapshot
picture of the sample provided by our procedure. On the other hand, our bounding
error estimate is 0.0005351+0.0000154, which is extremely accurate given the
exact value for the error given in Table 1.
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0.1351 0.1352 0.1353 0.1354 0.1355 0.1356

Figure 1. Calculated histogram (i.e., the effective PDF) of the estimated mesh
converged result A for the ideal case in our ODE example verification example. Note

that the histogram is non-symmetric and biased toward values less than the peak.
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The exact solution is contained in the bin associated with the peak of the PDF. This
bias is well described by the difference in the computed median deviation values )"
and )'*, where the negative deviation is ten times larger than the positive deviation.
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Figure 2. The ensemble of the 99 different solution models derived for the ODE case.
Most of the models lie at the upper part of the plot, which strongly influences the
estimates and uncertainty. The corresponding historgram (i.e., the effective PDF) is
definitely not Gaussian in shape, as shown in Figure 1, the values for which the
quantities shown on the ordinate of this plot, i.e., the values for h(4t)=0.

This is an almost ideal case that should be a “slam dunk” for almost any reasonable
methodology. We can make this problem more realistic—and difficult—by simply
analyzing the four coarsest data points given in Table 1. Such a small data set more
closely resembles the applied CFD examples in the following sections and situations
often encountered in real-world engineering simulations. In the case of code
verification, standard regression applied to these four values provides a
convergence rate of 1.03851 (+0.00223336), while the new procedure gives a
similar value of 1.02712 + 0.00403. Using the same data in solution verification
mode, we produce an estimate of the mesh converged solution A= 0.13462 +
0.001159 with a convergence rate of p=1.06202+ 0.009148. The new estimate
captures the exact solution due to the effective bounding procedure, in which the
inclusion of the lower and upper bounds on the convergence rate is essential. On the
other hand, the bounding error estimate, Unum= 0.001359, captures the error in the
solution nicely. Roache’s estimate is A= 0.13462 (x0.0000643967), with Unum=
0.016304, and Xing and Stern’s approach gives A= 0.13462, with Unum= 0.03411.
Both of these uncertainty estimates are greater than that of the new method by
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approximately an order of magnitude, while the estimated converged solutions are
nearly identical to several significant figures.

An interesting observation from our example is the significant difference between
the standard errors computed from the linear regression in the standard approach
augmented by the ad hoc error estimation procedures of either Roache or Xing and
Stern. We believe that the differences are most significantly due to the reliance of
the standard estimates on a single nonlinear regression as compared with multiple
regressions on multiple subsets of the data. For this reason our analysis is more
complete (and much more computationally intensive in the analysis phase). The
regression standard errors implicitly assume Gaussian statistics and generally
under-estimate the actual error, while the numerical uncertainty estimates over-
estimate the error. In defense of these estimates, the necessity of over-estimation
appears to be a built-in “feature.” The only concern would the magnitude of the
over-estimation of the uncertainty estimates, and its basis in the statistically biased
regression that is used to drive the process. We believe that the new approach
removes much of the intrinsic bias in regression, replacing it with elements of
robust statistics.

Drekar Code Verification

We now apply these techniques to a more complex set of applications specific to the
CFD code Drekar. The Drekar team has conducted an extensive set of tests of the
basic methods in the code on a set of analytical problems to achieve code
verification. These are documented in a separate report [Weber]. We reproduce
their results in terms of convergence rates via standard linear regression and
augment these findings with an analysis using our methods. The objective is to
compare and contrast the approaches and highlight the differences. The overall set
of results is shown in Table 2. The raw data is found in the report by Weber
[Weber] and broadly confirms the analysis found therein.

We note that the standard convergence rate computed via regression could also
produce a convergence rate uncertainty via standard regression uncertainty (with
its implicit Gaussian assumption). These results are structurally different from the
uncertainty estimated with the multi-regression technique. We have included this
uncertainty explicitly, although we note the lack of technical congruence. For
Gaussian data, the median deviation is known to be approximately two-thirds the
size of a standard deviation [Hoaglin]. The implied errors in the multi-resolution
convergence rates are quite different from the standard approach. This might lend
credence to a conclusion that the errors are not Gaussian in their distribution.
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Problem and Method Standard Convergence Multiregression

Rate convergence rate and
uncertainty

Ethier problem - 1storder | 2.57966 * (0.0249506) | 2.31359 + 0.200897

velocity

Ethier problem - 1storder | 1.44939 + (0.107549) 2.11666 + 0.334036

pressure

Ethier problem - 2nd 2.61285%(0.026739) 2.26233+0.103723

order velocity

Ethier problem - 2nd 1.41537 + (0.104975) 2.05999 £ 0.153634

order pressure

Rayleigh Stokes 3.18457 £ (0.0417715) | 2.28853 + 0.09844

Velocity 2nd order Space

Rayleigh Stokes 1.85993 + (0.0178102) | 2.14265 £ 0.0351

Pressure 2nd order Space

Rayleigh Stokes 0.942179 £ (0.0452008) | 1.06296 = 0.0876819

Velocity 1st order BDF

Rayleigh Stokes 0.914665 * (0.0871837) | 0.984202 + 0.0342315

Pressure 1st order BDF

Rayleigh Stokes 1.81754 + (0.0681741) | 2.22645 + 0.263049

Velocity 2nd order BDF

Rayleigh Stokes 1.41964 + (0.23145) 2.06041 + 0.252824

Pressure 2nd order BDF

Rayleigh Stokes 3.05312 £ (0.0553349) | 3.45639 + 0.225857

Velocity 3rd order BDF

Rayleigh Stokes 2.07431 £ (0.401757) 3.38106 £ 0.237769

Pressure 3rd order BDF

Rayleigh Stokes 5.07765 + (0.10723) 4.50769 + 0.186318

Velocity 4th order BDF

Rayleigh Stokes 4.19662 * (0.526929) 4.47046 + 0.377723

Pressure 4th order BDF

Rayleigh Stokes 5.51404 + (0.243056) 5.69981 + 0.180669

Velocity 5th order BDF

Rayleigh Stokes 4.58911 + (1.07952) 4.47046 £ 0.377723

Pressure 5th order BDF

Table 2: Comparison of simple regression-based code verification results (2nd
column) and the more complex robust multi-regression approach (3rd column) to
the Drekar problems.

The overall character of the convergence rates given by both analyses produces a
significant degree of confidence in the numerical methods in Drekar. The

convergence rates are consistent with a correct implementation. The new multi-
regression technique produces convergence rates that are generally closer to the
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design order of accuracy for the methods used to integrate the equations. We assert
that our method provides an improved degree of confidence in the solutions.

Drekar Solution Verification

We finish our demonstration with an examination of quantities from the LES
simulation of the rod bundle applicable to GTRF. The simulations were computed on
grids containing 0.67, 1, 3, 6, and 12 million-mesh cell on both Sandia and Oak Ridge
National Lab supercomputers by the Drekar team.

Mesh Elements Pressure Drop (Pa) | Kinetic Energy Kinetic Energy
(m2/s?) Flux (m>/s3)
671572 23,4000 0.000674912 0.022413413
1049228 26,7810 0.00079494 0.03032245
2663920 23,8040 0.000821644 0.03014121
5832718 22,0400 0.000822519 0.027973748
12522644 20,7450 0.000823244 0.027696077

Table 3. The raw data obtained from the Drekar Team and used to conduct the
analysis of the convergence of the CFD calculations. The calculations used the WALE
LES model for all calculation.

One notable feature of the raw data shown in Table 3 is the large change in the
results from the coarsest to the second coarsest mesh. For this reason we will
examine the convergence including and then excluding the data from the 671572
elements mesh. Often expert judgment typically used in verification analysis would
make this choice based on observation of the data. To a very large extent our
analysis technique makes this unnecessary. A second preliminary result of our
analysis is the inability of standard linear regression to produce sensible results. In
every case, the linear regression without explicit constraints produces nonsensical
results while the constrained regression does (0.5 < p < 2).

[t is notable that our analysis technique provides results that are more consistent
between the two data sets although the removal of the coarse grid data does
improve the kinetic energy analysis. The same can be said for the mesh converged
solution estimate and the convergence rates when comparing the standard solution
verification estimates, and our new RMR methodology. Using the new RMR
technique the Drekar results are consistently first order accurate (estimated)
although the uncertainty in the rate is far too large for comfort. In most case the
bounding estimate is larger than the error estimate for the mesh converged
estimate (as it should be). The one exception is the pressure drop with the coarse
grid removed, which ought to worry anyone examining the data. Nevertheless, the
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estimates for the converged mesh solution are well within the uncertainty and quite

consistent.
Quantity | Standard Standard Standard | New Mesh | New Error New rate New
Mesh Error Rate Converged | Estimate estimate Bounding
converged | estimate Estimate | estimate Estimate
estimate
Kinetic 0.998404 | 0.530279 0.666595 | 0.845081 0.0620357 1.0904 0.1304874
Energy (53.1127%) (7.3408%) +1.69147 +0.118864
X 1000
Kinetic 0.907559 0.255119 0.655946 | 0.828684 | 0.0138698 1.17092 0.0484734
Energy (28.1105%) (1.67372%) | £1.37471 +0.0438504
X 1000
(no
coarse)
Pressure | 23258.4 1636.65 0.500142 | 16496.1 5436.54 0.529202 11853.3
Drop (7.0368%) (32.9565%) | +0.0876066 +3722.57
Pressure | 16469.3 6963.34 1.05876 16280.3 7060.3 1.08384 3471.66
Drop (no (42.2807%) (43.3671%) | +0.273453 +636.095
coarse)
Kinetic 0.0308953 | 0.00226234 | 1.13835 0.026029 0.005745 1.31946 0.00605988
Energy (7.32261%) (22.0715%) | £2.04143 +0.0017706
Flux
Kinetic 0.0218677 | 0.0183182 0.501886 | 0.0256497 | 0.00443447 | 1.00248 0.00651942
Energy (83.7685%) (17.29%) +1.50744 +0.0034585
Flux (no
coarse)

Table 4: Comparison of error estimates and convergence rates for several

quantities of interest to LES using Drekar. Comparison of error estimates and
convergence rates for several quantities from different data set from Drekar, with
the standard results in columns 2-4 and new results in columns 5-7. Note: The
kinetic energy has been multiplied by 1000 so allow a more direct comparison with
the Hydra results in Table 5.

Overall the Drekar metrics are well behaved although the size of the solution
uncertainty and bounding error is worrisome. This certainly provides stern
evidence that the mesh is far from converged. The exception is the kinetic energy,
which appears to be close to mesh converged, while the pressure drop probably
needs at least two halving of the mesh spacing to achieve less than 5% error (this
estimated mesh would be on the order of one billion elements using uniform
refinement.

Hydra Solution Verification

We have also applied our techniques to previously published results from Hydra
[Hydra]. The general assessment of the results was negative in that report and
attributed to the quality of the meshes used for the results. Our analysis would
seem to support the conclusions drawn by the Hydra team, although we can shed
little more light on the reasons for the poor results. The summary of the analysis is
provided in Table 3. We analyze three quantities (kinetic energy, pressure drop,
and rod surface force) for two of the methods employed by Hydra: the detached
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eddy simulation (DES) and the implicit large eddy simulation (ILES). The analysis is
completed using the standard GCI methodology and our new approach.
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Quantity Standard Standard Standard New Mesh | New Error | New rate New
Mesh Error Rate Converged | Estimate estimate Bounding
converged estimate Estimate estimate Estimate
estimate

Kinetic 0.73749 0.03005 0.500125 0.74188 0.01200 0.50042 0.01560

Energy (4.074%) (1.6174%) | +0.00126 +0.02400

(DES)

Kinetic 3.60657 8.50371 0.00536 0.785852 0.01898 1.07051 0.01163

Energy (235.78%) (2.4152%) | +1.71125 +0.02010

(ILES)

Pressure 9957.35 4882.94 0.500131 9979.36 2349.14 0.5+0.0 955.407

Drop (49.0386%) (23.54%) +1182.28

(DES)

Pressure 192689 5544386. 0.003780 10096.2 2686.53 0.5+0.0 1865.78

Drop (287.76%) (26.609%) +312.03

(ILES)

Rod -1.5008 6.74502 0.003480 0.0001013 | 0.0003041 | 1.84908 0.006835

Surface (449.42%) (300.%) +0.4528 +0.000297

Force

(DES)

Rod 1.87773 5.63305 0.001455 0.09883 0.06793 0.50002 0.0006986

Surface (299.99%) (68.73%) +0.000059 | £0.00120

Force

(ILES)

Table 5: Comparison of error estimates and convergence rates for several quantities
from different turbulence closure models in Hydra, with the standard results in
columns 2-4 and new results in columns 5-7.

Overall, the kinetic energy is the best-behaved quantity, while the surface force is
the worst behaved. The kinetic energy is the only quantity where the robustly
estimated convergence rate is inside the pre-defined bounds. The other
convergence rates are below these bounds for the CGI case or at the bounds for the
RMR approach. This result alone casts a great deal of doubt on the quality of the
results. Nonetheless, the RMR estimates are reasonable for the pressure drop,
although the magnitude of the estimated uncertainty is troubling. More concern is
raised by the size of the bounding error estimate, which is smaller than the best-

estimate uncertainty. It is a bit more reassuring to observe that adding the

uncertainty on the bound does indeed bound the best-estimate uncertainty. Finally,
the surface force errors are so large as to completely discount the viability of the
calculations for reliably estimating this quantity.

The possibility that the metrics chosen are themselves the problem should not be
discounted.

One of the greatest impacts of our analysis is to introduce substantially greater

robustness in regression through the use of well-chosen constraints for the

regression problem. For example, for positive-definite quantities (e.g., kinetic
energy) this property should be maintained in the analysis. The same can be said
for the rates of convergence, which are bounded as 0.5< p <2.0. Furthermore, the
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quality of the solutions is poor and the robust regression with constraints provides
a set of realizable estimates. Finally, we would comment that the results here
probably fall outside the experience of the CFD expertise used in the determination
of the safety factors for either the GCI or Xing and Stern’s procedure, implicitly
calling into question the appropriateness of those approaches for this analysis..

Conclusions

This report has provided both description and basic demonstration of advanced
verification techniques applied to GTRF relevant CFD-LES simulations. We
reviewed fundamentals of solution verification and the workflow associated with
such analyses. The standard approaches to evaluating numerical uncertainty related
to discretization error in computed results were discussed. We described a novel
method for verification analysis that combines the use of robust statistical methods,
asymmetric error estimation, and prior knowledge about the computed results (by
weighting fine-mesh results higher and bounding allowed convergence rates). The
algorithmic approach to this new method is described in detail. Applying this
approach to a simple ODE problem gave results that are comparable to standard
approaches of Roache and Xing & Stern. By reducing the number of computed
results, i.e., samples, in this case, the new method was shown to have “tighter”
uncertainty estimates that the standard techniques.

Analyzing a set of turbulent flow simulations from the CASL-supported Drekar code
provides good confidence in the code’s result (numerically speaking), and the new
solution verification analysis technique (RMR). Further confidence in the analysis
technique has been gained by also analyzing the results from Hydra. In both case

the contrast between the standard verification techniques and our RMR approach is
rather profound in many cases. Using this approach to analyze turbulent flow
properties computed by both codes is an extremely taxing application of verification.
The fluctuating time-dependent nature of LES makes the results rough and difficult
to analyze.

The results from the two different CFD codes can be contrasted. All-in-all the results
are broadly consistent although the convergence rate behavior from Drekar is better,
the error estimates from Hydra are smaller with troubling rates of convergence.
Because the meshes are the same some degree of conclusion can be drawn; however,
the methods in the codes are different as are the subgrid models. This certaintly
limits the degree to which firmer conclusions may be drawn. The Hydra team has
highlighted the poor quality of the meshes generated and used in these studies, and
our results do nothing to blunt this criticism. Future studies should hopefully lay
these concerns to rest.

We believe that the new techniques have significant advantages as compared with

the standard techniques for verification analysis. The first advantage is the more
self-contained nature of the methodology. The second advantage is the more
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pervasive uncertainty, which in addition utilizes robust statistical techniques to that
end.
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Appendix A: Mathematica Script for Code Verification

edata = {{0.250000000000, 0.000001808043}, {0.200000000000,
0.000000985836}, {0.175000000000, 0.000001439814}, {0.150000000000,
0.000000444679}, {0.100000000000, 0.000000136837}, {0.075000000000,
0.000000053570}, {0.050000000000, 0.000000009514}, {0.037500000000,
0.000000006435}, {0.025000000000, 0.000000012165}, {0.012500000000,
0.000000014661}, {0.006250000000, 0.000000015001}, {0.003125000000,
0.000000015046}};

pth=3,;

emodel = b h”c;

emodel2 = b h”*pth;

lcons =b >=0.0;

m = FindFit[edata, {emodel}, {b, c}, h, Method -> Newton]; emodel /. m
0.0000329286 h*2.07431

h1l=,;h2 =; mod = {}; rate = {};

For[k = 1, k < Length[edata], k++, Print[k];
ldata = edata[[Length[edata] - k ;; Length[edata]]];
Print["local data = ", Idata];

m = Check[FindFit[ldata, {emodel2, Icons}, b, h, Method -> NMinimize],
err];
[f[m == err, m = Check[FindFit[ldata, {emodel2, Icons}, b, h], err]];

[f[m == err, Print["Error 0 ", m, " ", 1data], ,
AppendTo[mod, emodel2 /. m]];

Print["'m0 =", emodel2 /. m];
b0 =b /. m; cO = pth;

m = Check|

FindFit[ldata, {emodel, Icons}, {{b, b0}, {c, c0}}, h,
NormFunction -> (Norm[#, 2] &)], err];

[f[m == err,

m = Check|

FindFit[ldata, {emodel, Icons}, {b, c}, h,

NormFunction -> (Norm[#, 2] &), Method -> NMinimize], err]];

[f[m == err, Print["Error 2 "],,
AppendTo[mod, emodel /. m];
AppendTolrate, c /. m]];

Print["'m2 =", emodel /. m];

31 CASL-U-2012-0133-000



m = Check|

NonlinearModelFit[ldata, {emodel, Icons}, {{b, b0}, {c, c0}}, h,

Weights -> (1/# &)], err];

[f[m == err,

m = Check|

NonlinearModelFit[ldata, {emodel, lcons}, {b, c}, h, Weights -> (1/# &),
Method -> NMinimize], err]];

[f[m == err, Print["Error 2w1"],,
AppendTo[mod, m["BestFit"]];
AppendTo|rate, c /. m["BestFitParameters"]]];

Print["'m2w1 =", m["BestFit"]];

m = Check|

NonlinearModelFit[ldata, {emodel, Icons}, {{b, b0}, {c, c0}}, h,
Weights -> (1/#"2 &)], err];

[f[m == err,

m = Check|

NonlinearModelFit[ldata, {emodel, Icons}, {b, c}, h,

Weights -> (1/#"2 &), Method -> NMinimize], err]];

[f[m == err, Print["Error 2w2"],,
AppendTo[mod, m["BestFit"]];
AppendTolrate, c /. m["BestFitParameters"]]];

Print["m2w2 =", m["BestFit"]];

m = Check|

FindFit[ldata, {emodel, Icons}, {{b, b0}, {c, c0}}, h,

NormFunction -> (Norm[#, 1024] &)], err];

[f[m == err,

m = Check|

FindFit[ldata, {emodel, Icons}, {b, c}, h,

NormFunction -> (Norm[#, 1024] &), Method -> NMinimize], err]];

[f[m == err, Print["Error 1 "],,
AppendTo[mod, emodel /. m];
AppendTo([rate, c /. m]];

Print["'m1024 =", emodel /. m];
If[k==0,,
m = Check|

FindFit[ldata, {emodel, Icons}, {{b, b0}, {c, c0}}, h,
NormFunction -> (Norm[#, 4] &)], err];
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[f[m == err,

m = Check|

FindFit[ldata, {emodel, Icons}, {b, c}, h,

NormFunction -> (Norm[#, 4] &), Method -> NMinimize], err]];

[f[m == err, Print["Error 4 "],,
AppendTo[mod, emodel /. m];
AppendTolrate, c /. m]];

Print["m4 =", emodel /. m];

m = Check|

FindFit[ldata, {emodel, Icons}, {{b, b0}, {c, c0}}, h,
NormFunction -> (Norm[#, 16] &)], err];

[f[m == err,

m = Check|

FindFit[ldata, {emodel, Icons}, {b, c}, h,

NormFunction -> (Norm[#, 16] &), Method -> NMinimize], err]];

[f[m == err, Print["Error 16 "],,
AppendTo[mod, emodel /. m];
AppendTolrate, c /. m]];

Print["'m16 =", emodel /. m];

m = Check|

FindFit[ldata, {emodel, Icons}, {{b, b0}, {c, c0}}, h,
NormFunction -> (Norm[#, 64] &)], err];

[f[m == err,

m = Check|

FindFit[ldata, {emodel, Icons}, {b, c}, h,

NormFunction -> (Norm[#, 64] &), Method -> NMinimize], err]];

[f[m == err, Print["Error 64 "],,
AppendTo[mod, emodel /. m];
AppendTo(rate, c /. m]];

Print["'m64 =", emodel /. m];

m = Check|

FindFit[ldata, {emodel, Icons}, {{b, b0}, {c, c0}}, h,

NormFunction -> (Norm[#, 256] &)], err];

[f[m == err,

m = Check|

FindFit[ldata, {emodel, Icons}, {b, c}, h,

NormFunction -> (Norm[#, 256] &), Method -> NMinimize], err]];
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[f[m == err, Print["Error 256 "], ,
AppendTo[mod, emodel /. m];
AppendTolrate, c /. m]];

Print["'m256 =", emodel /. m];

I;
I;

h=0.02;

mmed = Median|mod]; meddev = MedianDeviation[mod];

Print[ "median error estimate = ", mmed]; Print["median deviation error \
estimates = ", meddev];

mave = Mean|[mod]; msdev = StandardDeviation|[mod];

Print[ "mean error estimate = ", mave]; Print["standard deviation error \
estimates =", msdev];

rmed = Median[rate]; rdev = MedianDeviation[rate];

Print["median convergence rate = ", rmed]; Print["median deviation \
convergence rates =", rdev];

rave = Mean[rate]; rsdev = StandardDeviation[rate];

Print["mean convergence rate = ", rave]; Print["standard deviation \
convergence rates =", rsdev];

Print["length of model vector =", Length[mod]];

Print["All error estimates ", mod];

Print["rates ", rate]; h =;

Histogram[mod] Histogram[rate]
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Appendix B : Mathematica Script for Solution Verification

data = {{1.141920333977, 0.762400000000}, {0.984109390844,
0.759500000000}, {0.721372541475, 0.766500000000}, {0.555532758565,
0.772000000000}, {0.430627065018, 0.774800000000}};

edata = {{1.141920333977, 0.984109390844, 0.002900000000}, {0.984109390844,
0.721372541475, 0.007000000000}, {0.721372541475, 0.555532758565,
0.005500000000}, {0.555532758565, 0.430627065018, 0.002800000000}};

pth=1.; pL=0.5; pH =2.0;

model =a + b h”c;

model2 = a + b h”pth;

modelL = a + b h*pL; modelU =a + b h*pH;

cons ={a >0, pL <= c<=pH};

Icons = {a > 0};

(* GCI estimate *)

m = FindFit[data, {model}, {a, b, c}, h, Method -> Newton];
uf =data[[1, 2]];uh=a /. m;p=c /. m;

delta = Abs[uf - uh]; Fs = If[Abs[(pth - p)/pth] <= 0.1, 1.25, 3];
Print["model =", model /. m];

Print["Fs =", Fs];

Print["Unum =", Fs delta];

FindFit::cvmit : "Failed to converge to the requested accuracy or precision \
within _100_ iterations. é60ButtonBox["@",
Appearance->{Automatic, None},

BaseStyle->"Link",

ButtonData:>"paclet:ref/message /FindFit/cvmit",
ButtonNote->"FindFit::cvmit"]é"

SequenceForm|["model =", -1.5008407724075412" +
2.256659294898729 h"0.0034866632502479388]
SequenceForm|["Fs =", 3]

SequenceForm|["Unum =", 6.775922317222624]

(*Stern 1 %)

m = FindFit[data, {model}, {a, b, c}, h, Method -> Newton];
uf =data[[1, 2]];uh=a /. m;p=c/. m;

h1 =data[[1, 1]]; h2 = data[[2, 1]]; sig = h2/h1;

delta = Abs[uf - uh]; Fs = (sig"p - 1) /(sig”pth - 1);
Print["model =", model /. m];

Print["Fs =", Fs]; Print["Unum =", Fs delta];
FindFit::cvmit : "Failed to converge to the requested accuracy or precision \
within _100_ iterations. é60ButtonBox["@",
Appearance->{Automatic, None},

BaseStyle->"Link",
ButtonData:>"paclet:ref/message/FindFit/cvmit",
ButtonNote->"FindFit::cvmit"]é"
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SequenceForm|["model =", -1.5008407724075412" +
2.256659294898729 h"0.0034866632502479388]
SequenceForm|["Fs =", 0.0037514002976742236']
SequenceForm["Unum =", 0.00847306566594879]

(* Xing and Stern *)

m = FindFit[data, {model}, {a, b, c}, h, Method -> Newton];
uf =data[[1, 2]];uh=a /. m;p=c/. m;

theta = p/pth;

delta = Abs[uf - uh]; Fs =

[f[theta < 1, 1.6 theta + 2.45 (1 - theta), 1.6 theta - 14.8 (1 - theta)];
Print["model =", model /. m];

Print["Fs =", Fs]; Print["Unum =", Fs delta];
FindFit::cvmit : "Failed to converge to the requested accuracy or precision \
within _100_ iterations. é60ButtonBox["@",
Appearance->{Automatic, None},

BaseStyle->"Link",
ButtonData:>"paclet:ref/message/FindFit/cvmit",
ButtonNote->"FindFit::cvmit"]é"

SequenceForm|["model =", -1.5008407724075412" +
2.256659294898729 h"0.0034866632502479388]
SequenceForm|["Fs =", 2.4470363362372893"]
SequenceForm|["Unum =", 5.526976040588311]

h =; mod = {}; rate = {}; sol0 = {};

For[k = 0, k < Length[data] - 1, k++, Print[k];
For[i =1, i< Length[data] - k, i++, Print][i];
ldata = data[[i;;i+ 1 +Kk]];

Print["local data =", Idata];

m = Check[FindFit[ldata, {model2, Icons}, {a, b}, h], err];

[f[m == err,

m = Check|

FindFit[ldata, {model2, Icons}, {a, b}, h, Method -> NMinimize], err]];

[f[m == err,

Print["Error 0 ", m, " ", ldata,

FindFit[ldata, {model2}, {a, b}, h, Method -> NMinimize]],,
AppendTo[mod, model2 /. m];

AppendTo([sol0, a /. m]];

Print["mO0 =", model2 /. m];
m = Check[FindFit[ldata, {modelL, Icons}, {a, b}, h], err];
[f[m == err,

m = Check|
FindFit[ldata, {modelL, Icons}, {a, b}, h, Method -> NMinimize], err]];
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[f[m == err,

Print["Error L", m, " ", 1data,

FindFit[ldata, {modelL}, {a, b}, h, Method -> NMinimize]],,
AppendTo[mod, modelL /. m];

AppendTo([sol0, a /. m]];

Print["mL =", modelL /. m];

m = Check[FindFit[ldata, {modelU, lcons}, {a, b}, h], err];

[f[m == err,

m = Check|

FindFit[ldata, {modelU, lcons}, {a, b}, h, Method -> NMinimize], err]];

[f[m == err,

Print["Error U", m, " ", ldata,

FindFit[ldata, {modelU}, {a, b}, h, Method -> NMinimize]],,
AppendTo[mod, modelU /. m];

AppendTo[sol0, a /. m]];

Print["'mU =", modelU /. m];

m = Check|

FindFit[ldata, {model, cons}, {a, b, ¢}, h,

NormFunction -> (Norm[#, 2] &), Method -> NMinimize], err];
[f[m == err,

m = Check]

FindFit[ldata, {model, cons}, {a, b, ¢}, h,

NormFunction -> (Norm[#, 2] &)], err]];

[f[m == err, Print["Error 2c"],,
AppendTo[mod, model /. m];
AppendTo[sol0, a /. m];
AppendTolrate, c /. m]];

Print["'m2c =", model /. m];

m = Check|

FindFit[ldata, {model, cons}, {a, b, ¢}, h,

NormFunction -> (Norm[#, 1024] &), Method -> NMinimize], err|;
[f[m == err,

m = FindFit[ldata, {model, cons}, {a, b, c}, h,

NormFunction -> (Norm[#, 1024] &)]];

[f[m == err, Print["Error Ic"],,
AppendTo[mod, model /. m];
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AppendTo[sol0, a /. m];
AppendTo|[rate, c /. m]];

Print["mic =", model /. m];

If[k==0,,

m = Check|

FindFit[ldata, {model, cons}, {a, b, ¢}, h,

NormFunction -> (Norm[#, 3] &), Method -> NMinimize], err];
[f[m == err,

m = FindFit[ldata, {model, cons}, {a, b, c}, h,

NormFunction -> (Norm[#, 3] &)]];

[f[m == err, Print["Error 4c"],,
AppendTo[mod, model /. m];
AppendTo[sol0, a /. m];
AppendTolrate, c /. m]];

Print["m4c =", model /. m];

m = Check|

FindFit[ldata, {model, cons}, {a, b, c}, h,

NormFunction -> (Norm[#, 4] &), Method -> NMinimize], err];
[f[m == err,

m = FindFit[ldata, {model, cons}, {a, b, c}, h,

NormFunction -> (Norm[#, 4] &)]];

[f[m == err, Print["Error 16c"],,
AppendTo[mod, model /. m];
AppendTo[sol0, a /. m];
AppendTolrate, c /. m]];

Print["'m16c =", model /. m];

m = Check|

FindFit[ldata, {model, cons}, {a, b, ¢}, h,

NormFunction -> (Norm[#, 5] &), Method -> NMinimize], err];
[f[m == err,

m = FindFit[ldata, {model, cons}, {a, b, c}, h,

NormFunction -> (Norm[#, 5] &)]];

[f[m == err, Print["Error 64c"],,
AppendTo[mod, model /. m];
AppendTo([sol0, a /. m];
AppendTolrate, c /. m]];
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Print["m64c =", model /. m];

m = Check|

FindFit[ldata, {model, cons}, {a, b, ¢}, h,

NormFunction -> (Norm[#, 6] &), Method -> NMinimize], err];
[f[m == err,

m = FindFit[ldata, {model, cons}, {a, b, c}, h,

NormFunction -> (Norm[#, 6] &)]];

[f[m == err, Print["Error 256c"],,
AppendTo[mod, model /. m];
AppendTo[sol0, a /. m];
AppendTolrate, c /. m]];

Print["'m256¢ =", model /. m];
I;
1

mmed = Median[sol0]; meddev = MedianDeviation[sol0];

Print["median solution = ", mmed]; Print["median deviation in solution =", \
meddev];

rmed = Median[rate]; rdev = MedianDeviation[rate];

Print["median convergence rate = ", rmed];

Print["median deviation in convergence rate = ", rdev];

Print["number of models =", Length[mod]];

Print["models ", mod];

Histogram|[sol0] Histogram|rate]

Show|ListPlot[data], Plot[mod, {h, 0, 0.1}]] Plot[mod, {h, 0, 0.1}]

pL =0.5; pH = 2.0; pth = 1.0;

model =a + b h”c;

model2 = a + b h”"pth;

modelL = a + b h*pL; modelU =a + b h*pH;
cons = {a >0, pL <= c<=pH};

cons = {a >0, pL <= c<=pH};

h =; mod = {}; rate = {}; sol0 = {};

For[k = 1, k < Length[data], k++, Print[k];
ldata = data[[Length[data] - k ;; Length[data]]];
Print["local data = ", Idata];

m = Check[FindFit[ldata, {model2}, {a, b}, h], err];

[f[m == err,
m = Check[FindFit[ldata, {model2}, {a, b}, h, Method -> NMinimize], err]];
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[f[m == err,

Print["Error 0 ", m, " ", ldata,

FindFit[ldata, {model2}, {a, b}, h, Method -> NMinimize]],,
AppendTo[mod, model2 /. m];

AppendTo([sol0, a /. m]];

Print["mO0 =", model2 /. m];

m = Check[FindFit[ldata, {modelL}, {a, b}, h], err];
[f[m == err,
m = Check[FindFit[ldata, {modelL}, {a, b}, h, Method -> NMinimize], err]];

[f[m == err,

Print["Error L", m, " ", 1data,

FindFit[ldata, {modelL}, {a, b}, h, Method -> NMinimize]],,
AppendTo[mod, modelL /. m];

AppendTol[sol0, a /. m]];

Print["mL =", modelL /. m];

m = Check[FindFit[ldata, {modelU}, {a, b}, h], err];
[f[m == err,
m = Check[FindFit[ldata, {modelU}, {a, b}, h, Method -> NMinimize], err]];

[f[m == err,

Print["Error U", m, " ", ldata,

FindFit[ldata, {modelU}, {a, b}, h, Method -> NMinimize]],,
AppendTo[mod, modelU /. m];

AppendTol[sol0, a /. m]];

Print["'mU =", modelU /. m];

m = Check|

FindFit[ldata, {model, cons}, {a, b, ¢}, h,

NormFunction -> (Norm[#, 2] &), Method -> NMinimize], err];
[f[m == err,

m = Check|

FindFit[ldata, {model, cons}, {a, b, ¢}, h,

NormFunction -> (Norm[#, 2] &)], err]];

[f[m == err, Print["Error 2c"],,
AppendTo[mod, model /. m];
AppendTo([sol0, a /. m];
AppendTolrate, c /. m]];
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Print["'m2c =", model /. m];

m = Check|
FindFit[ldata, {model, cons}, {a, b, ¢}, h,

NormFunction -> (Norm[#, 1024] &), Method -> NMinimize], err|;

[f[m == err,
m = FindFit[ldata, {model, cons}, {a, b, c}, h,
NormFunction -> (Norm[#, 1024] &)]];

[f[m == err, Print["Error Ic"],,
AppendTo[mod, model /. m];
AppendTo[sol0, a /. m];
AppendTolrate, c /. m]];

Print["mic =", model /. m];

Iffk==0,,

m = Check|

FindFit[ldata, {model, cons}, {a, b, c}, h,

NormFunction -> (Norm[#, 3] &), Method -> NMinimize], err];
[f[m == err,

m = FindFit[ldata, {model, cons}, {a, b, c}, h,

NormFunction -> (Norm[#, 3] &)]];

[f[m == err, Print["Error 4c"],,
AppendTo[mod, model /. m];
AppendTo[sol0, a /. m];
AppendTolrate, c /. m]];

Print["m4c =", model /. m];

m = Check|

FindFit[ldata, {model, cons}, {a, b, ¢}, h,

NormFunction -> (Norm[#, 4] &), Method -> NMinimize], err];
[f[m == err,

m = FindFit[ldata, {model, cons}, {a, b, c}, h,

NormFunction -> (Norm[#, 4] &)]];

[f[m == err, Print["Error 16c"],,
AppendTo[mod, model /. m];
AppendTo([sol0, a /. m];
AppendTolrate, c /. m]];

Print["'m16c =", model /. m];

m = Check|
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FindFit[ldata, {model, cons}, {a, b, ¢}, h,

NormFunction -> (Norm[#, 5] &), Method -> NMinimize], err];
[f[m == err,

m = FindFit[ldata, {model, cons}, {a, b, c}, h,

NormFunction -> (Norm[#, 5] &)]];

[f[m == err, Print["Error 64c"],,
AppendTo[mod, model /. m];
AppendTo[sol0, a /. m];
AppendTolrate, c /. m]];

Print["m64c =", model /. m];

m = Check|

FindFit[ldata, {model, cons}, {a, b, c}, h,

NormFunction -> (Norm[#, 6] &), Method -> NMinimize], err];
[f[m == err,

m = FindFit[ldata, {model, cons}, {a, b, c}, h,

NormFunction -> (Norm[#, 6] &)]];

[f[m == err, Print["Error 256c"],,
AppendTo[mod, model /. m];
AppendTo[sol0, a /. m];
AppendTolrate, c /. m]];

Print["'m256¢ =", model /. m];
I;
I;

mmed = Median[sol0]; meddev = MedianDeviation[sol0];
Print["median solution = ", mmed]; Print["median deviation in solution =",
3 meddev];

Print["GCI =", 300 meddev/mmed, "%"]

rmed = Median[rate]; rdev = MedianDeviation[rate];
Print["median convergence rate = ", rmed];

Print["median deviation in convergence rate = ", 3 rdev];
Print["GCI convergence rate =", 300 rdev/rmed, "%"]
Print["number of models =", Length[mod]];

Print["models ", mod];

Histogram|[solO] Histogram|rate]

Show|ListPlot[data], Plot[mod, {h, 0, 0.1}]] Plot[mod, {h, 0, 0.1}]

(* Asymmetric statistics *)
rates = Sort[rate, Less]; sol0Os = Sort[sol0, Less];
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Nr = Length[rates]; Nr2 = Round[Nr/2]; Ns = Length[sol0s]; Ns2 = Round[Ns/2];

If[OddQ[NTr],
rmedm = Median[rates[[1;; Nr2 + 1]]] - rmed;
rmedp = Median[rates[[Nr2 + 1 ;; Nr]]] - rmed,
rmedm = Median[rates[[1 ;; Nr2]]] - rmed;
rmedp = Median[rates[[Nr2 + 1 ;; Nr]]] - rmed
I;

Print["Rate Uncertainty Median asymmetric =", 3 rmedm, " +", 3 rmedp];
Print["Rate Uncertainty Median asymmetric =", 300 rmedm/rmed, "% +",
300 rmedp/rmed, "%"];

If[0ddQ[Ns],
solmedm = Median[sol0s[[1 ;; Ns2 + 1]]] - mmed;
solmedp = Median[sol0s[[Ns2 + 1 ;; Ns]]] - mmed,
solmedm = Median[sol0s[[1 ;; Ns2]]] - mmed;
solmedp = Median[solOs[[Ns2 + 1 ;; Ns]]] - mmed
I;

Print["Solution Uncertainty Median asymmetric =", 3 solmedm, " +",
3 solmedp];

Print["Solution Uncertainty Median asymmetric =", 300 solmedm/mmed, "% +",
300 solmedp/mmed, "%"]
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