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Abstract

The purpose of the present document is to formulate Jacobian-free New-
ton-Krylov algorithm for approximate projection method used in Hydra-
TH code. Hydra-TH is developed by Los Alamos National Laboratory
(LANL) under the auspices of the Consortium for Advanced Simulation
of Light-Water Reactors (CASL) for thermal-hydraulics applications rang-
ing from grid-to-rod fretting (GTRF) to multiphase flow subcooled boil-
ing. Currently, Hydra-TH is based on the semi-implicit projection method,
which provides an excellent platform for simulation of transient single-phase
thermalhydraulics problems. This algorithm however is not efficient when
applied for very slow or steady-state problems, as well as for highly non-
linear multiphase problems relevant to nuclear reactor thermalhydraulics
with boiling and condensation. These applications require fully-implicit
tightly-coupling algorithms. The major technical contribution of the present
report is the formulation of fully-implicit projection algorithm which will ful-
fill this purpose. This includes the definition of non-linear residuals used for
GMRES-based linear iterations, as well as physics-based preconditioning
techniques.

Key words: Multi-Physics, Multi-Scale problems, Finite Volume, Incompressible
Flow, Approximate Projection, Jacobian-Free Newton Krylov (JENK),
Physics-Based Preconditioning
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1. Introduction

The solution of the time-dependent incompressible single- and multi-
phase flows poses several algorithmic problems due to the div-free constraint,
and the concomitant spatial and temporal resolution required to perform
time-accurate solutions particularly when complex geometry is involved.
The initial deployment of Hydra-TH has focused on projection methods
because of their computational efficiency and accuracy for transient flows.
However, when applied to slow transients and steady-state problems, the
currently existing projection methods are not cost-effective, due to stabil-
ity restrictions imposed by material Courant limit. For these applications,
fully-implicit algorithms are required. Here, we reformulate semi-implicit
projection method to fit into the fully-implicit Jacobian-free Newton Krylov
solution strategy.

We start with a short description of governing equations, defined in Sec-
tion 3. Even though we limit our discussion here to single-phase flows, the
basic ideas introduced are extendable to multi-fluid formulation [1].

A detailed review of projection methods is beyond the scope of this
document, but a partial list of relevant work is provided for the interested
reader. Projection methods, also commonly referred to as fractional-step,
pressure correction methods, or Chorin’s method [2] have grown in popu-
larity over the past 20 years due to the relative ease of implementation and
computational performance. This is reflected by the volume of work pub-
lished on the development of second-order accurate projection methods, see
for example van Kan [3], Bell, et al. [4], Gresho, et al. [5, 6, 7, 8], Alm-
gren, et al. [9, 10, 11], Rider [12, 13, 14, 15], Minion [16], Guermond and
Quartapelle [17], Puckett, et al. [18], Sussman, et al. [19], and Knio, et al.
[20]. The numerical performance of projection methods has been considered
by Brown and Minion [21, 22], Wetton [23], Guermond [24, 25|, Guermond
and Quartapelle [26, 27], and Almgren et al. [11]. A short introduction to
semi-implicit projection method is given in Section 4.

The main technical contribution of this report is described in sections 5
and 6, introducing fully-implicit projection and its physics-based precondi-

tioning.

Concluding remarks are given in the final section 7.
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2. HydraTH

Hydra-TH [28] refers to the specific physics module that provides the hy-
brid finite-volume/finite-element incompressible/low-Mach flow solver. This
is built as one of the many physics modules using the Hydra multiphysics
toolkit. The toolkit provides a rich suite of components that permits rapid
application development, I/O interfaces to permit reading/writing multiple
file formats for meshes, plot data, time-history and surface-based output.
The toolkit also provides run-time parallel domain decomposition with data-
migration for both static and dynamic load-balancing. Linear algebra is
handled through an abstract interface that permits use of popular libraries
such as PetSC and Trilinos. Hydra’s toolkit model for development pro-
vides lightweight, high-performance and reusable code components for agile
development. Currently the toolkit supports finite-element based solvers
for time-dependent heat conduction, time-dependent advection-diffusion,
time-dependent incompressible flow, multiple Lagrangian hydrodynamics
solvers, rigid-body dynamics, etc. In addition, unstructured-grid finite-
volume solvers are available for solving time-dependent advection-diffusion,
Burgers’ equation, the compressible Euler equations, and incompressible /low-
Mach Navier-Stokes equations. There are also interfaces to the FronTier
front-tracking software and to level-set methods.

3. Governing Equations

In the following discussion, we allow variable-density formulation. The
mass conservation principle in divergence form is

9p | 0(pvj)
— =0. 1
ot T oz, )
In the incompressible limit, the velocity field is solenoidal,
81)@-
=0 2
oz, (2)
which implies a mass density transport equation,
op ap
— i— = 0. 3
ot Yoz, 3

For constant density, Eq. (2) is neglected with Eq. (3) remaining as a con-
straint on the velocity field.
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Momentum conservation. The conservation of linear momentum is

0 | OV 9%y
pat pjaxj_axj

+pfi (4)

where v; is the velocity, o;; is the stress tensor, p is the mass density, and
fi is the body force. The body force contribution pf; typically accounts for
buoyancy forces with f; representing the acceleration due to gravity.

The stress may be written in terms of the fluid pressure and the devia-
toric stress tensor as

Oij = —Poij + Tij (5)

where p is the pressure, d;; is the Kronecker delta, and 7;; is the deviatoric
stress tensor. A constitutive equation relates the deviatoric stress and the
strain rate, e.g.,

Tij = 2154 (6)
The strain-rate tensor is written in terms of the velocity gradients as
1 /0v; Ovj
Sij==|-— 2. 7
’ 2 (81'] + 8x1> ( )

Energy conservation. The energy equation may be expressed in terms
of temperature, T, as
3pC'pT 8 aqj "

5+ g0 (PGT) = — 52+ ®

where C), is the specific heat at constant pressure, ¢; is the diffusional heat
flux rate, and ¢ represents volumetric heat sources and sinks, e.g., due to
exothermic/endothermic chemical reactions. Fourier’s law relates the heat
flux rate to the temperature gradient and thermal conductivity

oT
Gi = —hy - (9)

where & is the thermal conductivity.

Alternatively, one can solve in terms of specific internal energy:

8pu 0 6qj "
o, Y ) = =22 10
at "+ oz (pusv) ow; 1 (10)
with a given function
u=F(T)
4
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For example,

U(T):u0+cu(T_To)

where v, and T} are the values of specific internal energy and temperature
at some reference point, while C,, is specific heat.

Scalar transport. In addition, we consider a coupled solution for trans-
port of scalars:

(9/)(]5” i ‘ . 8\7717 "
ot oz (p0i0,) = - oz, T (11)

where by J, and j:/ we denote diffusive flux and volumetric sources for
a scalar ¢,. Note that ¢, could represent turbulence transport quantities
(e.g., turbulent kinetic energy k). In this case, momentum and heat diffusion
coefficients are considered to be a function of ¢,. In the most general case,

u(T,an) and ﬁ(T,gbn), n=0,...N—-1

4. Semi-Implicit Projection

Following the well-established finite-volume procedure, we discretize mo-
mentum equation in space, integrate by parts, and apply the divergence
theorem. Using a piecewise-constant weight functions yields

d
pdt/ VdQe-l-j{ pv(v-n)dI’e—j{ T-ndl'+ Vdee—/ fd° (12)
e Fe e Qe e

Using definition for the cell-average,

1 h
— 1
o |, " (13)

u =

the spatially-discrete momentum equations become

. dv

P — + pv(v-n)dfe—jé T -ndl°+ Vdee—/ fdQ° (14)
dt Te Qe e

e

The projection algorithm can be derived a number of ways. Here, we
choose to first develop the time-integrator, and identify the terms associated
with the projection via a Helmholtz decomposition of the velocity. Before
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proceeding we define the following mass, advective, viscous, gradient and
body-force operators.

M = pQ° (15)
A(p,v)v = ]{pv(v-n)df‘e (16)
Kv = fr-ndre (17)
By = [ Vpdo© (18)

Qe

F - /cfdQe (19)

We form the global operators, apply forward-Euler first, then backward-
Euler with explicit advection in both cases, and take the sum of the fully-
discrete systems results in the following

MWTZV = (1—0)KV" + 0KVt 4 (1 — 0)F" + gF" ' —
(20)
—(1=0)A(p,v)Vv" — 0A(p, v)v"T! —Bp™ — 6, B(p" ' — p")

where 0 < 0§ < 1, § = 0 corresponds to a forward-Euler, § = 1/2 a trape-
zoidal rule, and # = 1 backward-Euler treatment of viscous and body-force
terms.

Using the Helmholtz decomposition as
v = pv T4 VA (21)
we introduce the following definition
A= 0, At — ) (22)

Plugging these into Eq. (20), the momentum equation can be formulated
for the approximate (“predictor”) velocity as

(M — 0AL (K — A (p,v))]¥* = [M + (1 — 0)AL(K — A(p,v))] "+

+At ((1 - 0)F" + 0F" ! — Bp") + (23)

0 0 0
VA
FOALA (V) fMﬂMP/Bﬂ'

6
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Using the Helmholtz decomposition, and requiring Vv"*! = 0, yields a
pressure-Poisson equation (PPE) that can be solved for the Lagrange mul-
tiplier \:

1
V.o VA=V.¥ (24)

Given a velocity and pressure at time-level n, the P2 algorithm proceeds
as follows.

Algorithm 1. Basic P2 Algorithm
1. Solve for v*

(M — OAL (K — A (p,v)]¥* = [M + (1 — 0)At (K — A (p,v))]| "+

(25)
+At ((1 - 0)F" + 0F"! — Bjp™)
2. Form the right-hand-side of the PPE, solve for A,
KyA=D (26)
3. Update the pressure
Pt ="+ %NA (27)

Note that testing over the last 20 years or so has indicated that using
0, = 1/2 to update the pressure can lead to temporal oscillations in the
pressure. For this reason, we use 0, =1 in the implementation.

4. Project the cell-centered velocities

1
vl =¥ — “BA (28)
P

5. Compute face gradients and project the face-centered velocities

vy = V) — p1f<<B>A>f ‘n (20)

6. Repeat steps 1 - 5 until the termination time is reached
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5. Fully-Implicit Projection

For the sake of simplicity, consider isothermal constant-density flow.
Thus, the vector of unknowns is

o|

<
| I

or, in terms of Lagrange multiplier:

A

v
Let us search a new-time solution iteratively, defining new-iteration values
U%® or V®? in the following incremental form:

_00 _0

po=p +7 (30)
A=A N (31)
70 =" 4 v (32)

and assume the following linearization of body force:
F° —F° 4+ F, (FO) v+ f, (FO) v (33)

where specific forms of the linearization matrix IF,, and vector f , are problem-

dependent.

Plug these into egs.(21), (22) and (20):

1
vi= Tav v (A7) (34)
N—— p
Divergence-free part
NN =0,at (57— 5) + 6,0t (35)
—_— /™
A¢ A

M (v° v —vn) = At(1— )K" + AWK (v° +v') —
—AH1 — 0)A(p,v)¥" — AtBA(p,v) (¥° +v') + (36)

FAL(1 — O)F" + Atf (F<> +F .V 4+ £,p) —

—AtBp" — A0 B(5° +p/ — ")

8
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After re-grouping, the momentum equation becomes:

_ 0 -
[At&M ' (fp — ;B)} P+ [1 — AtOM (K — A(p,v)+F,)| v/ = —res,

(37)
where

res, =¥ —v" — AtM ' (1 - 0)Kv" + 0K ) +
FALM ((1 — 0)A(p, v)V" + 0A(p, V)V ) — -

~AtM ((1 — 0)F" + 0F° ) +

+aim (B +6,B@ 1))

From eq.(34),
0 At

VO—FV/:V*— pp V(ﬁo-i-p,—ﬁn) (39)

which can be plugged into eq.(36) to get a counterpart of the momentum
“predictor” equation (23):

[M — At (K — A(p,v) + F, )] v* =

_l’_

= [M + AH1 - 0) (K — A(p,v))]¥" — | At (AZQP v (ﬁ° +p - p")

_|_

(40)

FAH(1 — §)F" + Atf (F<> ~F, (

)
At0A(p, v) <A29Pv (;3 - ﬁ")) +

)

b

Atd
_AIBj" — <At0pB(p<> +p =P — Tpv (15<> +p — p”))

Note that the terms in boxes are dropped in eq.(25). Next, we further
re-group this equation as:

PV =m’ — &p/ (41)
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where
m’ = [M+ At(1—6) (K — A(p,v))]| v+
FAH(1 — O)F" + Atf (FO T, (VO + %VAO)) ~ AfBp"— (42)
A0 [K — A(p, V)] (%wo) ~BA° +1v°
B At0, 6, At At
© = AW |F, =2V — £+ 0B = —EV 4 (K = A(p,v) = V| ()
P =M - A6(K — Alp,v) +F,) (44)

and we used equation (35) for definition of 2 Thus, “predictor” velocity
can be computed as

=y <m° - Q5p/) (45)

Finally, we can form incremental PPE by taking divergence of eq.(34)
and using eq.(45):

loy 1 /
Lz . = — 4
\% pV)\ + OPAtv S res, (46)
where
1_ ¢ -1 0
res, = V- VA —v-(m m) (47)

With this, linear iterations of a Newton-based algorithm are defined by the
following equation:

1 1
VoAV glnV- e 0 /
[)\/} :_|:’I”68>\ } (48)
P 6, . v res,
M (fprB) 1—AtOM ' (K — A(p,v) +F,) | e N
A\ rés
v

~
Jacobian, Jy;

Non-linear residuals res, and res, are supplied to PETSC-SNES [29] for
JFNK implementation.

10
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6. Preconditioning

6.1. General strategy
Consider the following modification of eq.(48):

J PPV = —rés,, (V'
P b

where P symbolically represents the preconditioning matrix (or process),
and P! is its inverse. Thus, the solution procedure is splitted into two
processes:

1. Solving for
I,V =b (50)
(this is what actually crunched by GMRES), and

2. Preconditioning:
VvV =P 'V’ (51)

While one refers to the matrix/process P, operationally the algorithm
only requires the action of P~! on a vector. The main requirement is that
[P designed properly, to enable clustering eigenvalues of the J,, making the
solution of eq.(50) to converge faster.

For effective preconditioning of the fully-implicit projection algorithm,
we can use semi-implicit algorithm described in Section 4. The strategy with
involving a legacy (e.g., operator-splitting) algorithm for preconditioning
is commonly referred to as Physics-(Process)-based preconditioning (PBP)
[30, 31, 32, 33, 34], to be contrasted to the Matriz-(Math)-based precon-
ditioning (MBP) algorithms. The later include different flavors of SOR,
SSOR, ILU, MILU, ILUT, ILUTP, ILUS, ILUC, etc. preconditioners, see
[35] for review. In these cases, the preconditioning matrix P is required, as
a suitable approximation for J, .

In the following section, we will describe details of our implementation
of the semi-implicit projection as PBP, emphasizing all differences relative
to the using this algorithm as a solver (in an operator-splitting OS mode).

11
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6.2. Semi-Implicit Projection as Physics-Based Preconditioning

At the input of the preconditioning step, we have current Newton itera-
tion values of ¥, p° and \°, and current update values ¥, 5 and \”. In

the OS splitting mode, these are:

vO=v", p =p" A°=0, ¥'=0, 5"=0 and \' =0

)

The task of the preconditioning is to convert these into v, p , A~, V', 7'

and X, where

v v v
_© _O _
p, =7 +p
A A 4+ N

In the OS mode, 7 = <I>n+1, where ® = v, p and \.

We define Helmholtz decomposition as

_ 0
vOr = v 4V
~———

. _o
Divergence-free part, v

Non-incremental Form.

1
il v ()\
p —_——
)\(7

(52)

(53)

1. The first step would be to solve for non-solenoidal (“predictor”) veloc-
ity field, v¥>*, using one of the following options.

Option-A:

[M — At (K — A(p,v) +F )| v9* =

Ato

+

= [M + At(1 - 0) (K — A(p,v))] V" — At9K< ppv@o +p~_pn>> "

FAL(1 — O)F" + Atf (F<> T, (T‘?V P

Atf
AtOA(p,v) < ry (150 +p —13") +
p
At _0 _ —|—V<>> _
AtO
—At9 |F, 202V — £, | '~

Atd

—AtBp" — <At9pB(]3<> +p" —p") — TPV

(p° +o" - ﬁ”))

12
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In the OS mode, v¥* = ¥v* and eq.(54) reduces to eq.(25).
Option-B:

Equation (54) is of advection-diffusion type, which is not well amean-
able to multigrid algorithm, and solved in Hydra by ILU-based solver.
Another viable option would be to convert it into the parabolic equa-
tion, by taking out advection operator on the left-hand-side (leaving
it to GMRES to deal with). Thus, the parabolic equation would be:

[M — At (K +F,)|v9* = [M + At(1 — 0) (K — A(p,v))] v"—
o)}
7))

At6
+At9A(p,V)< p”V<p +p" -

N,
—AtOA(p, v) <v<> n v”) —|AtoK ( Q

+A(1 = OF" + At0 (B —F, (2029 (5 ) +°) ) -

~Ath [F, 20y fp} o -

At@
—AtBp" — <At9pB(p0+p”—p")— ; (p +p" — ))

2. The second step would be to form and solve PPE. Taking divergence
of eq.(53) leads to the following PPE:

1
V.SVA =V (56)
;2,_/ D
K,\Y

which reduces to eq.(26) in the OS mode.

3. Pressure is computed from the new Lagrange multiplier as:

) 1
D p" 7)\ 57
p + 7 (57)

4. Next, we project the cell-centered velocities as

1
v =v9* - -BX’ (58)
P

13
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5. Finally, we can compute

vV = v ¥
Po=1p -7 (59)
No= A7)

and these are the values which are returned to PETSC-SNES. As men-
tioned above, in the OS mode, this step is absent, as o7 =",

Incremental Form. One can re-write eq.(53) as:

T =5 v (60)

where )
vV =V 4+ -V (/\<> + /\’) (61)
P
1. Solve for non-solenoidal velocity increment v* .

Option-A:

[M — Atf (K — A(p, V) +IFV)]V —[M — At (K — A(p,v) + vt
At0
» (15

FIM 4+ At(1—0) (K — A(p,v))]|¥" — | At (

)
+H At0A(p,v) (APGV (p +p" = p" >+

+At(1—9)F"+At9(FO—F (A’” v (5 - )+v )

~Ath [F, 20y - fp} o -

AtO
—AtBp" — <Att9 B(p +p —p)—TV<p +9" —p ))

14
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Option-B:

(M — At (K +F,)] v = — [M — At (K +F,)]v" +
+[M + At(1 - 0) (K — A(p,v)

(5° +" >+
"))

NG
—AtOA(p, V) <v<> n v”) —|AK (

A
H At0A(p, v) ( (5" +p"=5") ) 1+ ”
63
FAL(1 — )F" + Atf (F° T, (A” 7 —p”) ))
~Ath [F, 200y - fp} P -
Ato,
—AtBp" — <At6’pB(p<> +p"—p") — TV (p +p"—p ))
2. Solve incremental PPE:
1 / 1
V- -VN=V.-v' -v.-VA° (64)
P p
3. Convert to pressure correction as
)\/
-/
A, (65)
4. Return to PETSC-SNES a preconditioned solution as
P’ (or X)
[V/:va<>\<>+)\/> (66)

7. Concluding Remarks

The main technical contribution of the present report is the formulation
of the fully-implicit projection algorithm for implementation in Hydra-TH
code. We discussed definition of non-linear residual vector, as well as the
strategy for efficient preconditioning of linear (GMRES) solver, utilizing the
variation of the currently-available in Hydra-TH semi-implicit projection
algorithm. While focusing here on single-phase flow formulation, the basic
ideas of the fully-implicit projection should be straightforwardly extandable
to multi-fluid flows. These extensions will be presented in future.

15
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