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ABSTRACT 

 

This report presents a step forward in the development and realization of a 

novel model-data integration approach that supports the validation and data 

assimilation framework currently being developed at the Consortium for 

Advanced Simulation of LWRs (CASL) to enable quantitative assessment of 

the CASL predictive capabilities [1]. The approach is designed and applied to 

the analysis of a subcooled boiling flow model which is an essential 

component in the CASL case study modeling of crud-induced power shift 

(CIPS) phenomenon. The validity of the boiling two-phase flow modeling 

depends not only on the robustness and accuracy of the numerical treatments 

(for discussion, see, e.g., [2]), but also on the correctness of the conservative 

laws-based models and various constitutive models or closure laws which are 

the simplified representations of micro-/meso-scale physics not resolved by 

the main conservation laws, i.e. vapor-liquid interactions, wall heat flux 

partitioning, bubble nucleation and detachment dynamics, etc. [3]. The closure 

laws are usually derived based on experimental data and can not be 

universally applied to all ranges of flow conditions.  

Although measurement data have been used in the past for model 

calibration, a new trend has emerged which focuses on even more tightly 

integration of model and data in an effort to improve the predictive capability 

of modern complex multiphysics models. Data also needed for model 

validation and quantification of model prediction uncertainty. For complex 

hierarchical multiphysics systems, data availability, quality and uncertainty 

may vary widely depending on the scale, physics, and system level, which 

poses a significant challenge to model-data integration methods. 

In this work a model calibration/validation approach based on Bayesian 

networks and Bayesian inference is proposed and developed which is used in 

the analysis of a subcooled boiling flow model. This approach is based on 

total data assimilation concept and allows the integration of different datasets 

obtained from different type of experiments and observations. Technical 

details about this Bayesian model-data integration approach as well as its 

capability and limitations in application to the considered subcooled boiling 

flow and the CASL case-study CIPS modeling are present and discussed. The 

proposed model-data integration approach is developed in conjunction with 

and support of the implementation of the CASL‟s VUQ-guided data 

collection, characterization and qualification concept [1].  

This report is prepared for the Department of Energy‟s Consortium for 

Advanced Simulation of LWRs (CASL) program‟s VUQ Focus Area. 
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SUMMARY 

 

In this CASL CIPS Validation Data Plan implementation case study, a 

model calibration/validation framework based on Bayesian inference for the 

analysis of a subcooled boiling flow model is outlined and analyzed. The 

framework based on the total data assimilation concept allows the 

calibration/validation of complex multiphysics models using heterogeneous 

data obtained from different types of experiments, i.e. SETs, METs, IETs and 

PMOs. Data quality defined by the relevancy, scalability and uncertainty are 

accounted for in the model analysis allowing the quantification of uncertainty 

in model predictions and parameter determination. Such a process of model-

data integration could form a basis for advanced multiphysics model VUQ, 

data characterization and identification of the values of both available and 

missing data.  

The couplings of multiple physics of different fidelity levels and based on 

both first-principle conservation laws or simplified empirical representations 

of physics are realized in this study using a Bayesian network which facilitates 

the propagation of uncertainty information between the coupled models. 

Bayesian inference conducted on such a network allows both the forward 

propagation of uncertainty in model form and parameters to model predictions 

and the backward propagation of data uncertainty to parameter estimates. 

Uncertainties of both parameter estimates and model form are therefore 

accounted for in the process.  

A preliminary workflow has been established for the proposed model 

calibration/validation method which is “application-oriented” to the analysis 

of a subcooled boiling flow model. Currently, this test-case model comprises a 

drift-flux two-phase flow and other submodels representing wall convective 

heat transfer, wall evaporation, bulk flow condensation, etc. Except for the 

flow model which is conservation laws-based, the other models are semi-

empirically derived which require parameter calibration. In this preliminary 

analysis, only data on axial distributions of void fraction and temperature have 

been used, but further extension of this calibration/validation framework will 

enable the use of the small-scale data on wall evaporation dynamics.  

Based on the present study, the following conclusions and 

recommendations for the CASL validation data plan (VDP) can be made: 

 CASL CIPS problem in particular and other nuclear power system and 

safety problems in general are characterized by presence of multiple 

scales and non-linear couplings of multiple parallel/nested physics 

which involve different modeling approaches based both on first-

principle and empirical/semi-empirical derivations; 
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 Both high-fidelity spatio-temporal conservation-laws based and 

evidences-based local-interactions (characteristically, lower-fidelity) 

constitutive models are used in multiphysics system modeling. Such a 

mixture of models constitutes a major new complication in the 

validation and calibration tasks of advanced simulation capability; 

 Conservation laws based models represented by PDEs are more 

credible and scale-independent which constrain the constitutive model 

calibration. However, the potential bias in selecting model forms could 

cause significant off-settings that render the model un-amenable for 

parameter calibration;  

 Data of multiphysics systems are heterogeneous, multivariate, 

multidimensional and data availability varies greatly depending on 

scales and physics; 

 A total data assimilation approach to VUQ is needed to take the 

advantage of all available data regardless of their origin, uncertainty 

and characteristics; 

 Data uncertainty must be accounted for and used in quantification of 

prediction uncertainty; 

 A flexible model-data integration framework is needed which can  

o represent the complex hierarchy of coupled multiphysics models 

o account for model form inadequacy and biases 

o account for data relevance, scaling and uncertainty (represented by 

“weight” factor [1]) 

o assimilate heterogeneous data available at different levels of model 

hierarchy  

o not be rendered unworkable when data are missing or not directly 

applicable for some constituent models 

 Bayesian inference in combination with Bayesian influence networks 

is a promising approach to multiphysics model VUQ which satisfies 

the above requirements; 

 Data homogenization, grading and characterization are required before 

the data can be used in the proposed “unified” VUQ framework; 

 It is recommended that the present case study (subcooled flow boiling) 

be continued and extended in a close collaboration with THM, AMA, 

NE-KAMS team and the CDC initiative, with the objective to enable a 

VUQ-aided, data-cognizant development of advanced capability in 

Computational Multiphase Fluid Dynamics for CASL. 
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ACRONYMS 
 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

  

 Description 

AMS Advanced Modeling and Simulation 

CASL Consortium for Advanced Simulations of LWRs 

CDC CASL Validation Data Center 

CFD Computational Fluid Dynamics 

CHF Critical Heat Flux 

CILC Crud Induced Localized Corrosion 

CIPS Crud Induced Power Shift 

CMFD Computational Multi-phase Fluid Dynamics 

CRUD Chalk River Unidentified Deposit 

DA Data Assimilation 

DNB Departure from Nucleate Boiling 

DNS Direct Numerical Simulation 

EMU Experimental Measurement Uncertainty 

FA Focus Area (in CASL) 

IET Integral Effect Test 

MCMC Markov Chain Monte Carlo sampling 

MET Multiple Effect Test 

ONB Onset of Nucleate Boiling 

OSV Onset of Significant Void 

PCD Principal Component Decomposition   

PDE Partial Differential Equation 

PMO Plant Measurements and Observations 

RPP Reactor Prototypicality Parameter 

SET Separate Effect Test 

SFB Subcooled Flow Boiling 

SNB Subcooled Nucleate Boiling 

THM Thermal-Hydraulics Method (FA) 

VDP Validation Data Plan 

V&V Verification and Validation 

VERA Virtual Environment for Reactor Applications 

VUQ Validation & Uncertainty Quantification 

UQ Uncertainty Quantification 
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NOMENCLATURE 
 

 

 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

  

Latin letters  

A Area 

cp Specific heat 

D Diameter 

E Total energy 

f Friction factor 

g Gravity 

h Enthalpy/Heat transfer coefficient 

i Internal energy 

j Volumetric flux 

k Heat conductivity 

 Likelihood function 

 Normal probabilistic distribution 

p Pressure/Probability 

Pe Peclet number 

q,Q Heat flux 

t Time 

T Temperature 

u Velocity 

Vgj Drift velocity 

  

Greek letters  

 Volume fraction 

 Mass generation rate 

 Surface roughness 

 Density 

 Surface tension 

 Stress tensor 

  

Superscripts  

  T Turbulence/Transpose (of matrix) 

  

Subscripts  

  f fluid 

 FC Forced Convection 

 I Interface 

 fg Transition from fluid to gas 

 g vapor 

 m mixture 

 NB Nucleate Boiling 

  x spatial direction x 

 w wall 
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1. INTRODUCTION 
 

 

Advanced modeling and simulation of nuclear reactor systems 

increasingly involve high-fidelity/high-resolution multi-physics, multi-scale 

methods and tools. On one hand, it appears that the advent of these 

capabilities has surpassed the pace at which experiments could be designed, 

constructed, and performed to produce VUQ-grade data suitable for 

calibration and validation of advanced codes. On the other hand, extraordinary 

progress in experimentation and instrumentation allows visualization and 

characterization of various phenomena and processes at a level of resolution 

not imaginable decades ago. Most notably, experiments use different working 

fluids and are conducted under a broad range of test conditions which may or 

may not be similar to the plant conditions. For an engineering application and 

conditions of interest, different experiments (and their resulting datasets) are 

characterized by their individual relevance and applicability. Because a typical 

nuclear energy system is characteristically complex, involving multiple 

phenomena, some enveloping many others, measurement data are often 

heterogeneous, varying greatly from experiment to experiment. 

Correspondingly, each experiment may have unique values to calibration and 

validation of computer models and codes. The heterogeneity of data presents a 

challenge to the characterization of datasets and their assimilation for the 

purpose of integrated assessment of the predictive capability in question.  

The crud-induced power shift (CIPS) and crud-induced localized corrosion 

(CILC) have been chosen by the DOE Consortium for Advanced Simulation 

of Light Water Reactor (CASL) to be challenge problems to assess the CASL 

predictive capabilities which are under continuing development [1]. These 

problems are caused by localized evaporation of coolant and deposition of 

corrosive boron and corrosion products on fuel rods leading to distorted axial 

and radial distributions of neutrons and power in a PWR reactor core. Such 

phenomena involve a range of different interacting physics and chemistries, 

such as thermal hydraulics of single/multi-phase flow, subcooled boiling, 

boron transport and deposition, corrosion product formation and convection, 

core neutronics, etc. In this context, the dynamics of subcooled boiling flows 

plays a prominent role and, by itself, is a multiphysics phenomenon involving 

two-phase fluid dynamics, heat transfer and phase changes (boiling and 

condensation) (Figure 1.1).  

As a result of the study on “CIPS Validation Data Plan” [1], a 

comprehensive (application-oriented, VUQ-guided) strategy to validation data 

support for the CIPS challenge problem was formulated. The study also 

suggests that implementation of the proposed approach (namely, Bayesian 

data assimilation framework, aided by a validation data management system, 

or CASL Data Center) be started with a case study, which is complex enough 
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to reflect all key aspects requiring consideration in a validation data plan 

(VDP), while simple enough to allow an integrated treatment, from data 

collection to model calibration. Based on a detailed review of CIPS-related 

data and models performed in Chapter 4 of [1], subcooled flow boiling was 

found to best meet these requirements and recommended for VDP case study
1
. 

Furthermore, reliable prediction of subcooled flow boiling is a much-needed 

capability for solving the CIPS challenge problem and is a focal point of 

development in CASL Thermal-Hydraulics Method (THM) area.  

Modeling of subcooled boiling flows in nuclear power systems is 

commonly based on the first-principle descriptions of mass, momentum and 

energy conservations and various empirical/semi-empirical constitutive 

correlations which describe the physics and interactions at the micro- and 

meso-scopic scales. As such, constitutive laws are also models which 

represent the real physics in a simplified manner. Given the incomplete 

understanding of micro-/meso-scale physics, the constitutive models are 

mostly stochastic with many uncertainties involved. The model of subcooled 

boiling flows therefore is a hierarchy of nested models of different reliabilities 

and the predictive capability of the model as a whole greatly depends on the 

reliability and accuracy of the constituent models. The constitutive laws – 

being crude representations of physics and in many cases derived from 

particular experimental datasets obtained for certain flow configurations and 

conditions – have lower reliability (compared to the first-principle 

conservation laws) and are the weakest links in such a hierarchy. Their 

presence in the model necessitates extensive model calibration and validation 

before it can be applied in analyses of realistic operational, transient and 

accident scenarios in (full-scale) nuclear power plants. 

                                                 
1
 The case study‟s technical approach includes the following steps [1]: 

i. Review modeling approaches, data bases and simulation capability for crud-

related thermal-hydraulics and material-chemistry processes in subcooled 

flow boiling (SFB) at all relevant scales. 

ii. Identify, assess and treat various sources of uncertainty in SFB experimental 

data related to their application in a PWR crud analysis. 

iii. Evaluate sub-cooled flow boiling models and their hierarchical 

decomposition for modeling/ experimentation/ validation consistency. 

iv. Design, initial implementation and application of a framework (including 

infrastructure) for SFB model calibration and validation. 

v. Document the implementation of SFB thermal-hydraulics validation data 

plan, lessons learned, and recommendations for improvements.  

vi. The work is to be performed in close collaboration with THM, MPO, and 

AMA experts, and with the CASL Data Center initiative. 
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Figure 1.1. Complex interactions of multiple thermal-fluid phenomena at 

different scales involved in subcooled boiling flows, and their interactions 

with other physics (fuels/cladding/heat/neutronics; CRUD/corrosion/ 

system) that govern the CASL CIPS problem; see detail discussion in [1]. 

 

The phenomenology of subcooled boiling flows has been extensively 

investigated in the past decades. In parallel to numerical modeling, 

experiments have been conducted for boiling flows with different flow 

orientations (vertical and horizontal), conditions (low/high pressure, heat flux, 

flow rate, etc.) and geometric configurations (pipe, annular, duct, tube 

bundles). Data have been obtained at both system (integral) level, e.g. radial 

and axial distribution of temperature, void fraction, interfacial concentration, 

flow regime, etc., and smaller scales, e.g. bubble size, nucleation site density, 

bubble growth rate, bubble detachment frequency and diameter, etc. [4,5,6]. In 

CASL-U-2012-0162-000



Subcooled Flow Boiling Case Study 

 
 INL-MIS-12-27303 11 

the current practice of model calibration/validation, separate effect 

experimental data are used to derive and calibrate constitutive relationships 

(via data fitting), whereas integral level data are employed to validate the 

whole model (by direct comparison of simulation results and data).  A 

physical model calibrated and validated in such ways are capable of providing 

reasonable predictions only for system configurations and conditions not too 

different from the configurations and conditions of the experiments which 

provide the calibration/validation data. Such a constraint significantly reduces 

the credibility and applicability of the model, especially when in extrapolative 

predictions.  

The above-mentioned practice of computer model calibration and 

validation is cumbersome and may become intractable when applied to 

increasingly complex multiphysics system models and codes where no data 

may be available for calibration/validation of constitutive models of 

interacting or individual physics. Moreover, it can‟t take into consideration the 

effect of data unreliability/uncertainty and/or allows a full use of different 

types of measurement data in individual and overall model calibration. 

Calibration based on data assimilation [7] and Bayesian inference [8] 

offers a better framework for complex model calibration and data integration. 

Such a framework allows to account for data uncertainty and, most 

importantly, to utilize the whole spectrum of available data in the calibration 

process. Moreover, the framework offers a mechanism for data grading and 

characterization, i.e. assessing the values of available and “missing” data of 

different types in overall model improvement.  Until now, there are few 

reported applications of Bayesian inference in analysis of complex 

multiphysics models [9]. 

The goal of this study is to develop a more concrete solution for the 

project implementation strategy shown in Figure 1.2 where integration of 

models and data plays a central role. In this study, the multiphysics model of 

subcooled boiling flows is the application to be considered.  
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Figure 1.2. The project implementation chart for a specified application 

(challenge problem) [1]. The key distinction between engineering solution-

oriented model calibration/validation effort and predictive capability-

oriented (such as a general purpose CFD or CSM code) V&V effort is the 

latter has a convergence point to compare with (a scientifically accepted 

truth, e.g. Navier-Stokes equations DNS), while the former is an open-

ended enterprise, judged by experts’ confidence (in issue being resolved) 

and ultimately by engineering practice.   

 

 

The present development aims to bring together the knowledge of the 

capability of the modern data-model fusion techniques, the phenomenology of 

subcooled boiling flows, the relevant experimental studies/data and the current 

modeling practices applicable to such a multiphysics problem. Extension of 

this example study to the CASL CIPS challenge problem is discussed.  
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2. SUBCOOLED BOILING FLOW MODELING AND 

EXPERIMENTAL STUDIES 
 

Subcooled boiling flows involve a number of interacting physics (Figure 

2.1.) which usually require different approaches to modeling. Whereas the 

heat-mass transfers by flows can be represented using mathematically 

rigorous ensemble-averaged conservation laws-based models, a range of 

smaller (micro-/meso-) scale physics, e.g. vapor-fluid and near-wall thermal 

hydrodynamic interactions, are described by empirical/semi-empirical 

constitutive models which are normally derived from specific datasets and for 

certain ranges of conditions (flow configuration, pressure, temperature, wall 

heat flux, etc.).The conservation laws-based models are more credible and 

universal than the constitutive models, but they are also responsible for model 

form inadequacy/biases which may lead to consistently inaccurate predictions. 

The constitutive models being derived from experimental data obtained under 

certain conditions have a scaling problem and their tuning parameters are 

required to be calibrated when the models are applied to different problems 

with different conditions. 

 

 
Figure 2.1. The pyramid of the subcooled boiling flow phenomenology [1]. 
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2.1. Modeling approach 

 
The most significant characteristic of, and critical requirement for, an 

advanced model for subcooled flow boiling subject to model calibration and 

validation is the use of PDE-based conservation laws (spatio-temporal balance 

equations) and constitutive relations (local non-equilibrium interactions). This 

can be achieved in a one-dimensional two-phase flow model known as drift-

flux. The model provides a flexible physics-based mathematical framework 

for describing both thermal and mechanical non-equilibrium, and mass 

transfer between fields (fluids).    

 
Ultimately, a computational multi-phase fluid dynamics (CMFD) may be used 

for the CIPS challenge problem. In fact, such a model and associated simulation 

capability are being developed in the CASL THM Focus Area‟s flagship product 

Hydra-TH code. The choice of modeling approach in the case study is, therefore, 

made with an eye on potential extension of the effort to Hydra-TH effort (as 

detailed in section 3.4 below). More importantly, the model choice is made such 

that it captures potential features in the CMFD, while amenable to an immediate 

implementation (without having to wait till Hydra-TH mature).  

 
Conservation laws-based drift-flux two-phase flow model 
 
The simplified one-dimensional (1D) drift-flux model is used in the 

present case study for simulation of heat-mass transports by subcooled boiling 

flows. This model can be derived from the two-fluid 6-equation model with 

the relative velocity between phases defined analytically. As a result, the total 

number of equations reduces by one and the resulted equation system 

allegedly becomes more well-posed and easier to be solved.  

As noted in  [3], the drift-flux model is acceptable when the dynamics of 

two phases are closely coupled. In many engineering systems, the large 

dimensionality of the systems may allow sufficient interaction times and, 

consequently, the two-phase flow phenomenon can be appropriately 

described by a drift-flux model. However, its application to the problems 

involving high-speed wave propagations, choking phenomena and high-

frequency instabilities may be questionable  [3]. 

 

Mixture mass conservation equation: 

0m
m mu

t x
 

Fluid mass conservation equation: 

f f

f f f fu
t x
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Mixture momentum equation: 

2 T

, ,

2

2

m m
m m xx m xx m m x

g g fm
m m m gj

f m

u p
u g

t x x x

f
u u V

D x

 

Fluid energy equation: 

T

,

,

xx f

f f x f w

f f

f f f f f

f fI

f

E
u E p q q

t x x

g u Q Q

 

Relations between mixture and phase properties are defined as: 

1g f
, 

m g g f f , 

m m g g g f f fu u u , 

m m g g g f f fi i i . 

The drift velocity of the gas phase is defined as: 

( )gj g g g g f fV u j u u u , 

where j is the volumetric flux given by 

,g g f fj u u  

and the relationships between the phase and drift velocities are defined as 

follows: 

,
f

g m gj

m

u u V  

.
g g

f m gj

f m

u u V  

 
 
Constitutive models and scaling issue 
 
Many complex physics of sub-cooled boiling flow thermal hydraulics (see 

§4.1.2 in [1]) at the micro-/meso-scopic scales are parameterized and 

described with use of simplified empirical/semi-empirical constitutive models. 

A list of the major constitutive models used in the present subcooled boiling 

flow model is given in the following table: 
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Model description Reference Comments 

Drift velocity [10] Flow regime 

dependent 

Mixture-wall friction 

factor 

[10] Flow regime 

dependent 

Wall boiling – heat 

flux partitioning 

[11] [12]  

Wall boiling - 

nucleation density 

[6] [13] [14] Nucleation 

boiling mode 

Wall boiling - 

bubble detachment 

frequency 

[6] [15] Nucleation 

boiling mode 

Wall boiling- bubble 

detachment size 

[6] [16] Nucleation 

boiling mode 

Bulk flow 

condensation 

[6] [17] [18]  

Flow regime 

transition model 

[3] [6]  

 

The flow transition model is based on empirically derived flow regime 

maps which correlate the factors such as the local void fraction or quality, 

flow direction (upward, downward, horizontal), heat flux, temperature, etc. in 

determination of the local configuration of vapor and liquid [6]. Since many 

other constitutive models are flow regime-dependent (see above table), 

invalidity/uncertainty in determination of local flow regime contributes 

greatly to the incorrectness and uncertainty of overall model predictions. 

Instead of defining wall evaporation in terms of meso-scale models 

describing, e.g., nucleation site density, bubble detachment frequency and 

radius [16,13,15], wall evaporation can also be calculated direction from the 

model of wall energy split, i.e. portions of heat flux going to fluid heating and 

to fluid evaporation [12]. 

It is constructive to note that most boiling closure laws described above 

have been empirically or semi-empirically derived using experimental data 

obtained at the laboratorial conditions which are far different from the LWR 

plant conditions (i.e. low pressure, low heat flux, simple flow geometry, etc.). 

In many experiments, working fluids have been refrigerants [19] which have 

thermodynamic properties much different from water. Consequently, the 

scaling issue may arise which necessitates the examination and quantification 
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of uncertainty related to the use of closure models derived/calibrated based on 

those experimental data. 

The above scaling issue can be implicated from the dependencies of 

relevant physics on factors such as pressure, temperature, heat flux, etc. For 

instance, increase of pressure will change the thermodynamic properties of 

fluid and vapor, i.e. reduce the vapor-fluid density ratio, elevate boiling 

temperature, etc., and leads to the alterations of wall boiling and flow heat 

transfer factors as follows: 

Wall boiling: 

 Decrease of nucleation site density [14]; 

 Decrease of bubble growth rate [20,21]; 

 Decrease of bubble detachment frequency and diameter [21,22]; 

 Change of CHF threshold [23]; 

Heat transfer by flows: 

 Smaller relative vapor-fluid density which reduces buoyancy force and 

relative velocity between phases (drift velocity); 

 Smaller bubble size which reduces the bubble Reynolds number and 

increases the drag force; 

 Stronger effect of bubble condensation in bulk flow; 

 Change of forced convection heat transfer. 

In overall, pressure increase leads to increase in the boiling heat transfer 

coefficient (Figure 2.2) and change of the CHF threshold (Figure 2.3).  

 

 

 
Figure 2.2.Change of boiling curve with pressure [24]. 
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Figure 2.3. Variation of CHF with pressure in pool boiling [24]. 
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2.2. Experimental studies and data 

 
For the considered subcooled boiling flows which involve a range of 

physics occurring at different scales (Figure 2.1), experimental studies can be 

classified into Separate-Effect Tests (SETs), Multiple-Effect Tests (METs) 

and Integral-Effect Tests (IETs). IETs have been conducted to obtain data at 

the large-scale level regarding, for instance, void fraction/temperature/velocity 

distributions, pressure drop and inlet/outlet flow rate, etc. [25]. With the 

advance of modern experimental methods, measurements of small-scale 

phenomena such as bubble growth/departure dynamics, wall nucleation, and 

bubble-flow interactions become feasible which provide data to derive the 

closure laws used in boiling flow modeling (see reviews in [1] and [26]). 

Those METs/SETs/small-scale IETs however have been conducted mainly 

under laboratorial conditions which are far from the realistic plant conditions 

(i.e. low pressure, low and uniform wall heat flux, simple flow geometry, 

etc.). Consequently, the scaling issue may arise for the computer models 

which employ the closure laws derived from those experimental data. 

The practice of using SET data for derivation/validation of closure models 

and IET data for validation of overall models fits into the so-called 

“traditional” concept of calibration/validation of multiphysics models 

(illustrated in Figure 2.5). 

In the so-called “total data assimilation” approach proposed in [1], the 

whole spectrum of available data provided by IETs, METs, SETs, etc., is 

going to be used in the calibration/validation process and, in particular, 

includes data (see Figure 2.4): 

From IET measurements:  

 Void temporal and spatial (axial and radial) distributions [25] 

 (Axial) interfacial area distribution [27,28] 

From SET measurements: (mostly under atmospheric pressure) [16,13,15] 

 nucleation site density; 

 bubble growth rate; 

 bubble detachment frequency and diameter; 

 bubble Sauter diameter.  

Those data are highly heterogeneous, being very different in their origin, 

dimensionality, uncertainty, reliability, scalability, etc., which poses a 

significant challenge to the data assimilation/integration method. Specifically, 

IET data on subcooled boiling flows are often multi-dimensional (e.g. 1D/2D 

void fraction/temperature distributions) and featuring the time variations of 

flow characteristics. The model calibration method therefore should be able to 

handle such dynamic and multi-dimensional data. 
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In addition to the “true” experimental measurements described above, 

Direct Numerical Simulation (DNS) models, which rely mostly on first-

principle physical laws and inherently possess high predictive capability, can 

also be used to generate data needed in the calibration and validation of less 

accurate models. The DNS study presented in [16], for instance, provides 

valuable information about of bubble dynamics which can be used in 

calibration/validation of the subcooled boiling flow model proposed in this 

work. DNSs however are very computationally intensive/expensive. 

Moreover, like all other modeling, DNSs may incur significant uncertainty in 

their predictions due to inadequate/biased model form. 

 

Figure 2.4.Interrelationship of conservation-laws based and constitutive 

models and data available for calibration/validation of the proposed 

subcooled boiling flow model. 

 

A strategy to deal with data heterogeneity involves data validation and 

data homogenization. As described in [29], data validation may include: 
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 Faulty data detection: identifies doubtful or missing data; 

 Data correction: modifies doubtful data or estimates missing data – 

interpolation, data smoothing, data mining, data reconciliation, 

etc.; 

 Data quality quantification: UQ, scalability assessment, etc. 

Data homogenization is required to remove the factors which cause data 

variations/biases which are not related to the physics of the subcooled boiling 

phenomenon. These factors include, for instance, instrumental inaccuracies, 

variations in data acquisition and processing methods/procedures, changes in 

experimental settings and conditions, etc. If DNS is used for data generation, 

grid resolution/dependency would be the factor which needs to be addressed. 

More detailed discussion about data strategy needed to realize the total 

data assimilation concept can be found in [1].  

Notably, data depending on their relevance, scalability and uncertainty can 

be graded as outlined in [1]. A Reactor Prototypicality Parameter (RPP) and 

an Experimental Measurement Uncertainty (EMU) have been introduced (see 

[1]) which can be used as a means to “harmonize (influence of) different 

experiments, different types and quality of evidence” [1].  

A weight factor can be then determined on the basis of RPP and EMU and 

used in the Bayesian model analysis as discussed below. Given the objective 

of the capability for SFB simulation being prediction of CIPS phenomena in a 

PWR, system pressure itself p (in dimensionless form of [p / pcr] where pcr is 

the coolant (water) critical pressure, can be considered as the scaling 

parameter. This choice reflects a vast knowledge base on the effect of system 

pressure on two-phase flow phenomena. The effect can be traced to pressure 

dependence of coolant‟s thermo-physical and thermodynamic properties, most 

notably liquid and vapor density, and their density ratio.    

The table below (from [1]) lists references of relevant experiments on 

mesoscale mechanisms involved in SFB. It was noted [1] that – with one 

exception, the available experiments were poorly scalable to PWR-CIPS 

conditions, as characterized by their low scaling grade (see [1], Table 3.1 for 

definition of scaling grades). The tests conducted also had limited diagnostics, 

without resolving near-wall structures and detail dynamics.  

 

Authors (year) Phenomena investigated Scaling 

Bertel et al (2001) Interfacial area in SFB 1 (1 atm) 

Garnier et al (2001) Local measurements  1 (R12) 

Kang et al (2002) Vapor phase measurements SFB 1 (R113) 

Warrier et al (2002) Interfacial heat transfer 1 (low P) 

Roy et al (1992, 1997) Turbulence, void fraction 1 (R133) 

Chen et al  (2003) Bubble coalescence 1 (1 atm) 

Yeoh et al (2004) Bubble departure, bubbly flow 1 (1-2 atm) 
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Okawa et al (2005a,b) Bubble slide 1 (1 atm) 

Mauruset al (2006) Bubble; boundary layer 1 (horiz.) 

Bang et al (2004) Visual bubble 1 (R134a) 

Situ et al (2004a,b) Bubble dynamics 1 (1 atm) 

Unal (1976) Bubble growth 3 (full P) 

Chang et al (2002) Wall bubble 1 (R134a) 

Basu et al (2005) Wall heat partitioning in SFB 1 (low P) 

Basu et al (2002) Boiling onset, nucleation site density 1 (low P) 

Hibiki& Ishii (2003) Nucleation site 1 (1 am) 

Theofanous et al (2001) Nucleation on different surfaces 1 (1 atm, PB) 

Dinh et al (2004) Nucleation  1 (1 atm, PB) 

      * PB – pool boiling  

 

More review on the diversity of experimental data relevant to subcooled 

boiling flows is provided in Appendix C. 
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2.3. Traditional model calibration and validation 

 
As mentioned earlier, traditional approach of data-model integration 

involves calibrations of constitutive sub-models using SET data and whole 

model validation using IET data (see Figure 2.5). The shortcomings of such 

an approach include, but not limited to: 

 Not accounting for data uncertainty; 

 Inability to quantify prediction uncertainty; 

 Ambiguity in determination of the reasons of “wrong” model 

predictions; 

 Difficulty in using IET data for submodel calibration/validation; 

 Not allowing incremental model update based on newly available 

data. 

 
Figure 2.5. “Traditional” approach to multiphysics model calibration & 

validation (left) versus ”total data assimilation” approach (right). 

 

The so-called “naïve” validation approach has been employed until now 

where the validity of a computer model is judged based on the comparability 

of model predictions and experimental data (see example inFigure 2.6). 

However, values of such ad-hoc validations are hard to be quantified and 

successful validations do not necessarily warrant equally successful 

application of the model to real plant simulations.  
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Figure 2.6. “Traditional” validation of the subcooled boiling flow model 

proposed in this study (Red line – this model’s predictions; Experimental 

data from [25]; RELAP5 predictions from [30] – Conditions: flow rate – 

890 kg/s; heat flux – 790 kW/m
2
; pipe diameter – 24 mm; subcooling – 

49.2
o
C (left) and 52.4

o
C (right); pressure– 1.5 MPa (left) and 4.5 MPa 

(right)). 

 

Validation of the RELAP5/MOD3.2 subcooled boiling model was based 

mainly on high pressure data [31]. Modification of that model was suggested 

[32,33] and MOD3.3 had improved capability in predicting low-pressure 

cases and handling non-uniform heat flux profiles. 

In [34], RELAP5 and COBRA-EN were shown to be able to provide 

relatively good predictions of void fraction axial distribution for pressure 

down to 1.5 MPa. Significant discrepancy between model predictions of wall 

temperature and experimental data was however observed even at the 

relatively high pressure of 4.5 MPa. 

TRACE was found to over-predict evaporation in the OECD/NRC PSBT 

Benchmark simulations. 
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3. BAYESIAN FRAMEWORK FOR CALIBRATION 

AND VALIDATION OF SUBCOOLED BOILING 

FLOW MODELS 

 
As can be seen from the model hierarchy shown in Figure 2.1, the 

subcooled boiling flow model is based on both conservation laws-based 

models and empirical/semi-empirical closure models. The validity of the 

model as a whole is therefore constrained by the validities of both the 

conservation laws and the closure laws models. With the conservation laws 

represented by a system of partial differential equations (PDEs), model 

calibration can be thought of as a PDE-constrained optimization process with 

the PDEs determining the “shape” of the response surface, whereas calibration 

helping to “move” that surface closer to the data. 

The conservation laws-based models are relatively more credible and 

universal than the constitutive (closure) models and their validity can be 

scrutinized in a model comparison test. On the other hands, closure models 

normally have many parameters which require calibration. Compared to 

single-physics model calibration, the calibration of multiphysics models is 

more challenging because it may involve finding the optimized correlations or 

dependencies of model parameters (e.g. pressure/temperature-dependent 

nucleation site density) or spatial distributions of them (e.g. spatially varying 

thermal conductivity) rather than their single values [35]. 

For the subcooled boiling flow model described above, the calibration 

process entails both the assessment of the model form inadequacy/bias and the 

optimization of the constitutive model parameters. The optimization or 

calibration of the constitutive model parameters is constrained by the 

validity/adequacy of the conservation laws-based models, i.e. (i) if the 

conservation laws-based model is heavily inadequate, parameter calibration 

may become impossible, and (ii) valid and robust conservation laws-based 

models limit the impact of uncertainty/errors/ biases of poorly calibrated 

model parameters. 

The involvement of multiple parallel (turbulence, flow dynamics) and 

nested (flow dynamics, wall evaporation) models in subcooled boiling flow 

simulations poses significant challenge to the VUQ framework. Without 

considering the complex structure of multiple coupled models, the full model 

of subcooled boiling flows can be thought of as a black box with multiple 

inputs and outputs and the calibration process is carried out using data at the 

system level, i.e. axial distributions of vapor fraction, fluid temperature, etc. 

Such an approach however would not allow to use data obtained at other 

scales, such as measurements of nucleation site density, bubble detachment 
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radius/frequency, etc. in the calibration process. Moreover, the issue of non-

identifiability may also arise.  

As illustrated in Figure 2.5, a traditional “hierarchical” calibration of 

multiphysics model may also applied to our problem, which consists of two 

steps [36]: (i) parameters of the sub-models are first calibrated independently 

from each other and then (ii) other parameters common for the whole model 

are subsequently calibrated. Such a calibration approach is only feasible if 

measurement data are available at every sub-/full-model levels. When data are 

less abundant and missing at some levels, the “top-down” calibration 

approach described in [36] is more appropriate, which is similar to the simple 

single-model calibration delineated previously. 

The model calibration approach proposed in this work is based on the 

expression of inter-dependencies between the involved models, parameters 

and inputs using Bayesian influence networks as shown in Figure 2.7 and 

Figure 2.8.It is noteworthy that Bayesian networks are directed and acyclic 

graphs (DAGs) and, consequently, two-way couplings between the nodes 

can‟t be described. 

 

Figure 2.7. Example of a Bayesian influence network representing the 

relationships between two parallel physics sharing a common model 

parameter [9]. 
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Figure 2.8. A simplified Bayesian network representing the nested physics 

of subcooled boiling flows. The Bayesian networks only link inputs and 

model parameters to the responses and the models are therefore hidden. 

 

Bayesian inference is best equipped to incorporate/assimilate 

heterogeneous data with models for model and prediction improvement, since 

it can: 

 account for uncertainty in observed data or take into consideration the 

“weight” or “values” of data given their uncertainty; 

 quantify prediction uncertainty; 

 exploit the results of past validations/calibrations (in construction of 

more informative priors for analysis), i.e. sequential model updating; 

 handle “missing” data and allow the validation of unobserved quantity 

predictions; 

 handle multiple (multiphysics) coupled models using Bayesian 

influence networks. 
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3.1. Overview of Bayesian data assimilation and 

model calibration 
 

Bayesian calibration is based on the Bayes theorem, which computes a 

posterior probabilistic distribution of unknowns  (i.e. model parameters in 

our model calibration) from observed data D as follows: 

 

where  is a prior probabilistic distribution of  and  is the 

“likelihood” of observations D given specific values of . 

In Bayesian model calibration, the relationship between observed data   

and model predictions M can be expressed as [8,37] 

 

with  being a model inadequacy/bias function,  indicating the 

observation error/uncertainty and x denoting the vector of known variable 

inputs.  

Both   and  can be assumed to be normally distributed with   having a 

zero mean, i.e. ( ) ~  [m  ( ),c  ( )] and  ~ [0,c ( )] with m and 

c being the mean and covariance functions, respectively. A common choice 

for covariance function has the squared exponential form as follows: 

. 

where k is the dimension of  and ‟,  is the variance and ω is the 

roughness parameter. 

Given the above assumptions about the distributions of data, observation 

error, and model inadequacy, the „likelihood‟ function is also a normal 

probability density function defined as  

 

with V being a matrix which combines the variance and covariance 

matrices of D, M,   and  [8].  

Calculation of the likelihood function involves forward model simulations 

to determine M given specific inputs  and . When the likelihood function is 

intractable, approximate Bayesian calibration [38] and/or likelihood-free 

MCMC [39] can be applied. 

As can be seen in its formulation, the likelihood function is where 

comparison of model predictions and data occurs and, when there are multiple 

observed data, a joint likelihood function can be derived which is simply a 

multiplication of the individual likelihood functions, i.e. 
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where  and  being the subsets of the full data space  and parameter 

space , respectively. 

In the model calibration that involves maximum likelihood estimation, the 

natural logarithm of the likelihood function is normally used, which is 

expressed as the sum of individual log-likelihoods: 

 

As suggested in [40], the weighting factor ωi of dataset  calculated 

based on the relevancy, scalability and uncertainty criteria (see §2.2) can be 

used to express the variance of  in terms of a common variance determined 

for all datasets.  

When data and models have hierarchical structures, e.g. both IET and SET 

data are available as shown in Figure 2.4, the calibration process becomes 

more complicated. For the two-level model hierarchy shown in Figure 3.1  the 

relationships between responses and parameters are expressed as: 

 

 

where M and N are the predictions/responses provided by bubble dynamic 

and two-phase flow models, respectively, f and h are data with measurement 

errors  and , respectively. The model biases are ignored for simplification.  

The likelihood functions are then given by 

 

 

with P and Q denoting the variance/covariance matrices.  
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Figure 3.1. Example of two-level model hierarchy. 

The posterior distribution of parameters  is then determined from 

 

Problems related to the application of Bayesian model calibration include 

[41]: 

 When model bias is large, calibration may be impossible, as it is 

impossible to pinpoint what is the reason of discrepancy between 

model predictions and data – model bias or wrongly specified model 

parameters; 

 Non-identifiability problem for models with multiple calibrating 

parameters may arise when a similar response can be caused by 

variations of different parameters. For multi-physics modeling, there is 

also a danger of calibration of “wrong” models or parameters, e.g. 

calibrating “wrong” friction model due to incorrect flow regime 

defined. This issue however can be alleviated when multiple responses 

are used in the calibration process [42]. Better prior information about 

parameters and/or model discrepancy may also help; 

 If computer model is computationally expensive, calculation of 

likelihood function may become too costly. In this case, faster 

approximate or surrogate model may need to be constructed to replace 

the real physics-based model. Gaussian process (GP), polynomial 

chaos expansion (PC), support vector machine (SVM), 

Bayesian/artificial neural network  [43] and Multiple Adaptive 

Regression Spline (MARS)  [44] are common techniques used for 

surrogate model construction; 

 Difficulty may also arise on how to assign priors when little or no 

information about them are available. The principle of maximum 

entropy may be applied in this case to determine the probabilistic 

distributions of priors. 
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Bayesian calibration using the Gaussian processes to approximate M and 

 can use the method of maximum likelihood estimation (MLE) to directly 

calculate parameters. In this case, the estimated parameters do not have 

probabilistic distributions and their values are assumed to be unchanged 

during the rest of the Bayesian analysis. 

The output of the subcooled boiling two-phase flow model and the data 

available for model validation are commonly multivariate and 

multidimensional (varying in time and space) which considerably complicates 

the application of Gaussian process for model approximation (due to 

enormous number of training points and big size of the covariance matrix) and 

the model calibration as a whole. Remedies to this situation can be: 

 Dimensionality reduction via principal component analysis (PCT) 

[45,46,47] or QPIRT [48] 

 Use of “Greedy algorithm”  [49] – selectively choosing of candidate 

training points or training point selection with optimization 

 Use of multiple independent Gaussian process surrogates for different 

subsets of data (different spatial location or time). 

Sampling of posterior distributions and integration of high-dimensional 

functions involved in the Bayesian model calibration are very computationally 

expensive. In such cases, an efficient statistical tool such as the Markov Chain 

Monte Carlo (MCMC) method [50] is needed. Different implementations of 

the MCMC algorithm can be found in many Bayesian/statistical software 

packages as shown in the next section.  
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3.2. Review of the Bayesian data-assimilation and 

model analysis software packages 

 
An overview of select software packages available for Bayesian model 

analysis is given in the following table [51]. 

 

 

Classification of the relevant software packages based on their application 

purpose is as follows: 

 General Bayesian inference: OpenBUGS, R/BRUGS, R/jags 

 Uncertainty quantification: DAKOTA, GEMSA, R/BACCO, 

PSUADE 

 Gaussian regression: GPML, R/gausspr, Multi GP, GEMSA, GPMSA, 

DAKOTA 

 Sensitivity analysis: GPMSA, DAKOTA, R/BACCO, SamIam 

 Bayesian model calibration: GPMSA, (DAKOTA+GPMSA), 

R/BACCO, PSUADE, GEMCAL, BAT 

 Bayesian networks:SamIam, GeNIe, Netica, Analytica, HuginLite 

 MCMC: R/mcmc, R/MCMCHybrid, OpenBUGS, R/BRUGS, etc. 
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 Structural Equation Modeling (SEM): R/OpenMx, SmartPLS, R/sem, 

SMILE/GeNIe 

 Data assimilation: OpenDA 

Preliminary testing of the packages highlighted in red has been conducted 

and, as a result, the Matlab-library GPMSA (and the currently under-

development joint DAKOTA/GPMSA package) and C++-library BAT are 

recommended for the simplified calibration of the proposed subcooled boiling 

flow model (see more details in the following section §3.3).The more 

advanced model calibration involving an integration of multi-level data and a 

coupling of Bayesian network representations of multiphysics models and 

Bayesian model analysis methods would require an extension of one of the 

Bayesian network software packages described above, e.g. GeNIe, or a 

development of a new software tool based on the above open-source 

libraries/software. 
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3.3. Total data assimilation in application to the 

subcooled boiling flow problem 

 
The model-data integration strategy delineated above is currently being 

implemented and applied to the analysis of the case-study subcooled boiling flow 

model. The current implementation is based on the simplified models of wall 

evaporation and bulk flow condensation as described in the Appendices. An 

interface between DAKOTA [52] and this subcooled boiling flow mode has been 

developed and some DAKOTA runs were conducted to study the parameter 

sensitivity. The results shown in Figures 3.2 indicate relatively high sensitivity of 

the void fraction prediction to the change of the bulk condensation parameter. The 

variation of the boiling heat transfer parameter however has a relatively smaller 

effect on the axial void fraction prediction shown in Figures 3.3. 

 
Figure 3.2. Effect of the variation of the bulk condensation parameter 

 in the range (0.08-0.24)(standard value is 0.16). 
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Figure 3.3. Effect of the variation of the boiling heat transfer parameter 

hNB,0 in the range (4600-6600)(standard value is 5600 W/(m
2
 K)). 

For standard (non-Bayesian) model calibration, the non-linear least squares 

capabilities of DAKOTA can be employed. 

The computational results generated in the DAKOTA parameter study are 

used to construct a Gaussian process (GP) emulator of the subcooled boiling flow 

model following the approach proposed by Higdon et al. [45,47]. 

 

 

 

 

 

 

Figure 3.4. Application of principal component analysis (PCA) in GP 

emulator construction [47]. 

Given the high dimensionality of the outputs, the principal component 

analysis (PCA) technique [53] is used here for dimensionality reduction. As 

shown in Figure 3.4, an alternative path to model predictions is constructed using 

a GP-based emulator  and a PCA mapping, thus avoiding costly ) 

simulations.  

The matrix of 25 (or 5 5, 5 per parameter) one-dimensional void-fraction 

distributions obtained in the parameter study described above is used in the 

principal component analysis (each row of this matrix contains the results of one 

simulation). The matrix is first standardized, so that the mean of each column is 

PCA
-1 

) 

) 

 

  

PCA
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zero and the variance of each column is one. The singular value decomposition 

(SVD) is then applied to the standardized simulation result matrix (of 25 35 

dimension) as follows: 

 = U  V* 

where U is a 25 25 unitary matrix containing the left singular vectors, V (V* - 

the complex conjugate transpose of V) is a 35 35 unitary matrix containing the 

right singular vectors, and  is a 25 35 rectangular diagonal matrix with non-

negative real principal values (or eigenvalues) on the diagonal. 

The eigenvalues on the matrix   diagonal indicate that up to 99.2% of 

variance can be “explained” or represented by the first two principal components. 

Consequently, the principal subspace  is constructed on the basis of two 

orthogonal vectors given by the first two columns of V [47] as follows 

 =  V1 

where V1 is the mapping matrix formed from the first two column of V. 

Following [47], the PC emulator  is constructed, which, in this case, 

comprises two independent Gaussian processes – one for each dimension of the 

principal subspace (i.e. ). 

For Bayesian model calibration, either BAT – Bayesian Analysis Toolkit [54] 

– or GPMSA [45] software package can be used. The Bayesian calibration of the 

subcooled boiling flow model will primarily be based on the steady-state axial 

void fraction distribution data reported in [25] with information about 

measurement errors artificially introduced. To overcome the non-identifiability 

issue, other data such as fluid temperature axial distribution, mixture axial 

velocity or void fraction radial distribution may also be used in the so-called 

“multiple response” model calibration [42]. It is noted that, in the preliminary 

case study, model bias is not accounted for and calibration in such a way does not 

allow the use of data obtained at other (smaller-scale) levels. 

The above whole (single)-model Bayesian calibration is then extended to 

include model bias which, as in a normal practice, is modeled using a Gaussian 

process.  

More advanced implementation of the proposed data integration strategy in 

the future will rely on a Bayesian influence network to represent the connections 

between detailed models of wall evaporation (based on the constitutive models 

describing, for instance, nucleation site density, bubble growth/detachment 

dynamics, etc.) and related parameters (Figure 2.8). As shown in [9], even 

calibration of two single-level models joint by a simple Bayesian network entails 

complex information exchange on the network and, depending on the direction of 

the information flow, different calibration strategies can be adopted. A strategy 

for dimensionality reduction must and will also be developed to reduce the 

computational cost. 
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3.4. Implications to the CASL validation strategy  

and data plan 

 

This work presents a first step forward to implement the CASL 

“application-oriented total data assimilation” strategy for multiphysics model 

calibration and validation which was established in [1]. The Bayesian model 

calibration and data assimilation framework proposed in this work has the 

potentials to: 

a. study the propagation of uncertainty information on the networks 

of coupled multiple physical models based on both conservation 

laws and simplified empirical/semi-empirical representations of 

physics; 

b. integrate data of different origins, types, scales and qualities in the 

process of model optimization and validation; 

c. permit sequential model calibration/validation, i.e. incremental 

model improvement.  

The goal of “consistent integrated treatment of uncertainty across physics 

and scales” stated in the CASL CIPS validation data plan [1] can be achieved 

with (a) which is based on the use of Bayesian influence networks to facilitate 

the exchange of uncertainty information between the physical models. 

Capability (b) enables the realization of the “Data Realism” concept [1] 

which is a cornerstone feature of the CASL CIPS validation data plan. 

Recognizing the heterogeneity nature of available validation data as well as 

the scarcity/missing of data for certain scales and physics, the “Data Realism” 

concept calls for a flexible model calibration/validation approach which 

would maximize the use of past, current and future data of different origins, 

types, qualities, scales, and have the capability to deal with data 

shortage/missing. 

As stated in [1], given the never-perfect states (availability, quality, etc.) 

of data and codes, model calibration/validation should be considered as a 

continuing process which assimilates newly available data to incrementally 

update model/code and reduce uncertainty both in model form and 

parameters. The capability described in (c) therefore permits this strategy to 

be employed.   

The proposed model calibration/validation framework with its capability 

in assimilation of data uncertainty and “weights/grades” in model analysis 

would be able to support the “VUQ-guided data collection, characterization & 

qualification” process and the establishment of the CASL Data Center (CDC) 

delineated in [1]. Moreover, data characterization based on the principal 

component analysis (PCA) should be conducted in conjunction with the model 

emulator construction as described in §3.3. 
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As a next step, it is recommended to direct the present VUQ/VDP effort to 

support the development and assessment of CMFD capability Hydra-TH code 

being planned in the CASL THM Focus Area. Notably, the multi-phase flow 

capability in Hydra-TH code is being designed with subcooled flow boiling in 

mind, to support the CIPS challenge problem. Boiling surface area (in 

subcooled flow boiling regime) is found to be a leading uncertainty for crud 

prediction (along with the primary reactor system‟s crud source, and crud 

deposition/growth rate) identified by a DAKOTA-aided sensitivity/uncertainty 

analysis performed for the suite of CIPS baseline codes (ANC/VIPRE/BOA). 

It is expected that the finding remains applicable to the advanced capability 

under development (DeNOVO/Hydra-TH/MAMBA). In fact, the development 

of Hydra-TH capability stems from a premise that high-fidelity CMFD 

capability is foundational to reducing uncertainty in predicting the SFB 

boiling area.  

On one hand, this (uncertainty reduction) goal is a challenge, given all we 

know about (lack of) supporting data and resulting model uncertainty (see also 

discussion of “CIPS predictability” in section 4.2.1 in [1]).Furthermore, an 

effective implementation of VDP approach requires database infrastructure 

such as outlined in CASL Data Center (CDC) section in [1]. It is expected that 

in FY 2013, the CDC functions in Validation Data Management System 

(VDMS) will largely rely on database capability provided by the NE-KAMS 

platform, which in itself is subject to programmatic uncertainty.  

On the other hand, the circumstance presents a unique opportunity to 

apply VUQ methodology to support the development of a new CMFD 

capability. The most pronounced impact to be expected in this approach is to 

minimize, and hopefully avoid, late surprises in finding out about lack of 

supporting (relevant, scalable, VUQ-grade) data, data-model inconsistencies, 

and/or data-software incompatibilities for effective VUQ operations (e.g., 

total data assimilation, dealing with non-traditional data types, such as multi-

dimensional and multi-scale data). As a result, the developed capability would 

become cumbersome or even not be amenable to necessary calibration, 

validation and application under system conditions of interest. Another 

important benefit of the proposed VUQ-aided data-cognizant development of 

CMFD capability is that first-hand insights and lessons learned from the 

THM-VUQ collaboration can help guide the development of NE-KAMS 

VDMS in a way that is both beneficial for meeting NE-KAMS objectives and 

CASL needs.  

As an extension from 1-D formulation evaluated in the present study into 

3-D formulation of CMFD, a next step can be made to focus on assessing 

components of SFB models and their integration in the CMFD formulation, 

including the following steps: 

 

1. Extend the initial review of modeling approaches, data bases and 

simulation capability for subcooled flow boiling (SFB) (for 1-D, 
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drift-flux model) into that of CMFD SFB (two-fluid three-

dimensional formulation). 

2. Assess relevance, scalability and uncertainty, and provide VUQ 

grading, for SFB experimental data related to their application in a 

PWR operating condition, in CMFD formulation. 

3. Assess architecture, functions and software platform of NE-KAMS 

VDMS and CDC for their compatibility and usability with CMFD 

SFB databases. 

4. Provide a summary on data collection, characterization, and 

integration of validation data, and their adequacy, for support of 

CMFD capability for SFB regime in PWR CIPS-related analysis. 

5. Evaluate consistency of constitutive models (closures) selected for 

CMFD sub-cooled flow boiling models and supporting databases. 

6. Design, initial implementation and application of a framework for 

calibration and validation of SFB closure models in CMFD. 

7. Continue close collaboration and interactions with THM and AMA 

experts, the NE-KAMS team and the CASL Data Center initiative.  

8. Document outcomes, lessons learned, and recommendations for 

improvement in the task of VUQ support for CMFD development 

in the form of a PoR-7 milestone report (tentative title: “VUQ-

aided data-cognizant development and assessment of constitutive 

models for CMFD in PWR CIPS-related subcooled flow boiling”). 

 

 

  

CASL-U-2012-0162-000



Subcooled Flow Boiling Case Study 

 
 INL-MIS-12-27303 40 

4. CONCLUSIONS AND RECOMMENDATIONS 
 

In this CASL CIPS Validation Data Plan implementation case study, a 

model calibration/validation framework based on Bayesian inference for the 

analysis of a subcooled boiling flow model is outlined and analyzed. The 

framework based on the total data assimilation concept allows the 

calibration/validation of complex multiphysics models using heterogeneous 

data obtained from different types of experiments, i.e. SETs, METs, IETs and 

PMOs. Data quality defined by the relevancy, scalability and uncertainty are 

accounted for in the model analysis allowing the quantification of uncertainty 

in model predictions and parameter determination. Such a process of model-

data integration could form a basis for advanced multiphysics model VUQ, 

data characterization and identification of the values of both available and 

missing data.  

The couplings of multiple physics of different fidelity levels and based on 

both first-principle conservation laws or simplified empirical representations 

of physics are realized in this study using a Bayesian network which facilitates 

the propagation of uncertainty information between the coupled models. 

Bayesian inference conducted on such a network allows both the forward 

propagation of uncertainty in model form and parameters to model predictions 

and the backward propagation of data uncertainty to parameter estimates. 

Uncertainties of both parameter estimates and model form are therefore 

accounted for in the process.  

A preliminary workflow has been established for the proposed model 

calibration/validation method which is “application-oriented” to the analysis 

of a subcooled boiling flow model. Currently, this test-case model comprises a 

drift-flux two-phase flow and other submodels representing wall convective 

heat transfer, wall evaporation, bulk flow condensation, etc. Except for the 

flow model which is conservation laws-based, the other models are semi-

empirically derived which require parameter calibration. In this preliminary 

analysis, only data on axial distributions of void fraction and temperature have 

been used, but further extension of this calibration/validation framework will 

enable the use of the small-scale data on wall evaporation dynamics.  

Based on the present study, the following conclusions and 

recommendations for the CASL validation data plan (VDP) can be made: 

 CASL CIPS problem in particular and other nuclear power system and 

safety problems in general are characterized by presence of multiple 

scales and non-linear couplings of multiple parallel/nested physics 

which involve different modeling approaches based both on first-

principle and empirical/semi-empirical derivations; 

 Both high-fidelity spatio-temporal conservation-laws based and 

evidences-based local-interactions (characteristically, lower-fidelity) 

constitutive models are used in multiphysics system modeling. Such a 
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mixture of models constitutes a major new complication in the 

validation and calibration tasks of advanced simulation capability; 

 Conservation laws based models represented by PDEs are more 

credible and scale-independent which constrain the constitutive model 

calibration. However, the potential bias in selecting model forms could 

cause significant off-settings that render the model un-amenable for 

parameter calibration;  

 Data of multiphysics systems are heterogeneous, multivariate, 

multidimensional and data availability varies greatly depending on 

scales and physics; 

 A total data assimilation approach to VUQ is needed to take the 

advantage of all available data regardless of their origin, uncertainty 

and characteristics; 

 Data uncertainty must be accounted for and used in quantification of 

prediction uncertainty; 

 A flexible model-data integration framework is needed which can  

o represent the complex hierarchy of coupled multiphysics models 

o account for model form inadequacy and biases 

o account for data relevance, scaling and uncertainty (represented by 

“weight” factor [1]) 

o assimilate heterogeneous data available at different levels of model 

hierarchy 

o not be rendered unworkable when data are missing or not directly 

applicable for some constituent models 

 Bayesian inference in combination with Bayesian influence networks 

is a promising approach to multiphysics model VUQ which satisfies 

the above requirements; 

 Data homogenization, grading and characterization are required before 

the data can be used in the proposed “unified” VUQ framework; 

 It is recommended that the present case study (subcooled flow boiling) 

be continued and extended in a close collaboration with THM, AMA, 

NE-KAMS team and the CDC initiative, with the objective to enable a 

VUQ-aided, data-cognizant development of advanced capability in 

Computational Multiphase Fluid Dynamics for CASL. 
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Appendix A 
 

Subcooled boiling model 
 

Under the sub-cooled boiling condition, evaporation starts on the heating 

wall long before the average fluid temperature reaches the boiling 

temperature. The onset of nucleate boiling (ONB) is defined as the wall 

superheat at that point bubble nucleation starts. From this point to the point of 

onset of significant void (OSV), partial boiling occurs and both bubble 

nucleation and condensation happen due to the thermodynamic non-

equilibrium between vapor and subcooled liquid.  

The ONB is dependent on many factors including wall heat flux and 

material as well flow conditions (flow rate and subcool). According to Basu et 

al. [13], the wall superheat at the ONB is empirically defined as: 

 

with factor G( ) being a function of the wetting contact angle  

. 

With the wall heat flux at the ONB qw,ONB defined by 

 , 

where hFC is the forced convection heat transfer coefficient and 

, the wall heat flux is expressed as follows 

 

where 

 

Superposition of the wall forced convection heat flux qw,FC and boiling 

heat flux qw,NB  is given by 

 

In this work, the formulation of boiling heat flux proposed for water by 

Gorenflo [6] is used which is expressed as 

 

with 
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and hNB,0 = 5600 W/(m
2
 K), q0= 20000 W/m

2
, 0= 0.4 m, Pr=p/pcr , pcr = 

220.6 bar. 

The rate of wall evaporation is then defined by the following correlation 

 

Due to fluid subcooling, wall evaporation is suppressed which is 

represented by a suppression factor fsub defined by  

 

with hfd being the fluid enthalpy at the bubble detachment threshold (or 

OSV) and defined by [55] 

 

It is worth noting that the above Saha-Zuber‟s OSV correlation usually 

does not work well for high pressure, high flow rate, or large Peclet number 

(over 400,000).  

Model parameters which may be subjected to calibration include: (i) 

boiling thresholds ONB and OSV; (ii) boiling heat transfer coefficient hNB; 

and (iii) evaporation suppression factor. 

Using the knowledge about the physics of subcooled boiling flows, a 

simplified strategy for sequential (hierarchical) model calibration and/or 

“manual” dimensionality reduction can be implemented. For instance, the 

variation of axial void fraction distribution in the saturated boiling region 

where no condensation occurs can be used to independently calibrate the 

boiling heat transfer coefficient correlation. Similarly, the ONB threshold can 

also be calibrated using only the data near the place where vapor starts to 

appear. However, all available data (void fraction, temperature, etc.) in the 

region from the ONB to the onset of saturated boiling are probably needed to 

calibrate the other factors and parameters. The onset of saturated boiling can 

approximately be estimated from the axial temperature distribution. 
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Appendix B 
 

Bulk flow condensation model 

 
When the fluid temperature is less than the boiling threshold, vapor 

bubbles generated at the wall can condense and collapse in the subcooled bulk 

flow, reducing the net vapor generation rate. By employing the interface heat 

transfer coefficient proposed by Ünal [56], the condensation rate is calculated 

as follows [18]: 

 

 

where   

 

 

with 
 
being an empirical constant subjected to calibration.  
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Appendix C 
 

Sample of relevant experimental data  

 

1. IETs 
Low pressure experiments [28] 

 
 
High pressure experiments [28] [19] 
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2. SETs 

 

 

Figure C.1. Wall temperature measurements [11] – p = 0.6-17 MPa, q = 

0.5-6 MW/m
2
. 

 

Figure C.2. Experimental data on the ONB [13] – 0.1-13.75 MPa, velocity 

= 0-17 m/s. 
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Figure C.3. Measured nucleate site density [13] – 0.1-13.75 MPa, velocity 

= 0-17 m/s. Note a large uncertainty in characterization of foundational 

processes in boiling.   

 

 

Figure C.4. Observations of the boiling surface [13] – (a) contact angle of 

30
o
; (b) contact angle of 90

o
. Note a significant dependence on surface 

characteristics (a diffeernt physics). 
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Figure C.5. Wall heat flux [12] – p=0.1-0.22 MPa. Note the low pressure 

and relatively low mass flux range of data.  

 

 

 

Figure C.6. Bubble dynamics – experimental data and ITM-DNS results [16] 

– atmospheric pressure. Note: multi-dimensional data (images), both 

experimental and computational, require a different approach to validation.  

CASL-U-2012-0162-000



Subcooled Flow Boiling Case Study 

 
 INL-MIS-12-27303 53 

 

Figure C.7. Comparison between predicted and measured dimensionless 

bubble departure frequencies [15] – atmospheric pressure. Note a large 

uncertainty in characterization of fundamental mechanisms/processes.    
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Figure C.8. Measurement and prediction of average interfacial area [27] 

– low pressure conditions. (Note: integral quantities are characterized 

with lower, still large, uncertainty). 
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