

L3:VRI.PSS.P6.02
John Turner

ORNL
Completed: 12/21/2012

CASL-U-2013-0003-000

Suggestions for COBRA-TF Parallelization and

Optimization

Robert K. Salko∗

(570) 972-0988
rks171@psu.edu

Maria N. Avramova∗

(814) 865-0043
mna109@psu.edu

Rodney C. Schmidt†

(801) 733-8568
rcschmi@sandia.gov

Scott Palmtag‡

(910) 620-6540
scott.palmtag@

corephysics.com

Russell Hooper†

(505) 844-9219
rhoope@sandia.gov

December 21, 2012

Abstract

This document details the suggestions for further improving the execu-
tion time of Coolant Boiling in Rod Arrays—Two Fluids (COBRA-TF).
Strategies for making these improvements include running several sections
of the code in parallel as well as restructuring large arrays, restructuring
loops, and changing how the superheated vapor temperature and specific
heat are calculated. This document provides COBRA-TF profiling results,
points out specific code sections that would be candidates for performing
in parallel, describes an MPI-based SPMD approach to parallelizing the
entire COBRA-TF code, and offers strategies to remedy inefficient por-
tions of the code.

1 Introduction

Suggestions for improving COBRA-TF runtime involve making some of the
most-visited code sections run in parallel as well as improving code runtime in
serial. This document is divided into three sections. First, profiling results are
presented to give a snapshot of how the current COBRA-TF version spends its

∗The Pennsylvania State University
†Sandia National Laboratory
‡Core Physics, Inc.

1

Suggestions for COBRA-TF Parallelization Optimization

Consortium for Advanced Simulation of LWRs CASL-U-2013-0003-000

execution time (which routines should be targeted for making improvements).
Second, specific sections of code that are possible candidates for performing in
parallel are discussed, and then an MPI-based SPMD approach to paralleliz-
ing the entire COBRA-TF code is outlined. Finally, COBRA-TF inefficiencies
involving the storage of data and use of expensive operations along with their
potential remedies are brought to light.

2 COBRA-TF Profiling

Prior to making source code modifications for improving COBRA-TF execution
time, it was necessary to determine the amount of execution time being spent in
different sections of the code. Profiling data was collected by placing timing calls
in selected sections of COBRA-TF. Time spent in a section of code between
two calls was collected for simulations modeling 17x17-pin assemblies of various
configurations (e.g., single assembly, 2x2 assemblies, 4x4 assemblies, etc.). The
time gathered for a code section includes, not only the time spent in that routine
where the timing calls are made, but also the time spent in other routines called
between those timing calls.

Additional timing studies were also made using gprof, which gathers time
spent in each routine and on each line of source code (as opposed to time spent
in specific sections of source code). Those results are briefly discussed later in
the text in conjunction with suggestions for serial speedup of COBRA-TF.

Results from the first profiling method are shown in Table 1. The table
shows the routine name, followed by the percent of execution time spent in
that routine. Results are given for different model sizes ranging from a single
assembly up to 49 assemblies.

Timing results show a disproportionate amount of time being spent in a
select few routines, which include heat, xschem, and gssolv. Therefore, this
report will focus primarily on those routines; their purpose and tasks will be
discussed, followed by strategies for speeding them up through parallelization.

3 Subroutine Descriptions

Based on findings from the profiling work, the bulk of COBRA-TF execution
time is spent in only a few code subroutines. This section describes the work
done in these routines, such that a strategy for parallelizing their tasks may be
discussed in the following section (Section 4).

3.1 Subroutine heat

The heat routine, which accounted for roughly 30 % of COBRA-TF execution
time, is primarily responsible for two things:

1. Determining the heat transfer between solid conductors (including fuel
rods) and fluid, and

2

Suggestions for COBRA-TF Parallelization Optimization

Consortium for Advanced Simulation of LWRs CASL-U-2013-0003-000

Table 1: Profile produced by timing COBRA-TF code sections (per-
centage of time spent in code section)

Name 1x1 2x2 3x3 4x4 7x7
main 0.0 0.0 0.0 0.0 0.0
input 0.1 0.1 0.1 0.1 0.1
setup 0.0 0.0 0.0 0.0 0.0
heatin 0.0 0.0 0.0 0.0 0.0
trans 7.6 8.3 6.3 7.1 8.6
heat11 27.1 25.5 21.4 22.2 21.6
heat22 7.8 7.6 6.4 6.7 6.8
heat3 0.5 0.7 0.5 0.5 0.6
xschem 0.0 0.0 0.0 0.0 0.0
xschm13 19.6 18.4 16.3 17.1 20.2
xschm24 7.5 7.1 6.2 6.4 8.5
gssolv 29.7 32.4 42.9 39.9 33.7
Total 100 100 100 100 100

1 Heat Transfer Coefficient (HTC) determination—channel loop
2 Heat conduction solution—rod loop
3 Momentum equation solution
4 Energy/continuity equation setup and reduction

2. determining the temperature throughout solid conductors in the model by
solving the conduction equation.

The profiling results shown in Table 1 timed these two tasks individually,
listed as heat1 for Task 1 and heat2 for Task 2. The final timed task, heat3,
accounts for time spent doing remaining work in the heat subroutine, which has
been shown be insignificant.

Task 1, the determination of the HTCs, is done for each scalar cell in the
mesh. The heat1 section is found within a loop over all channels and axial levels
in the mesh. It is useful to note that the determination of HTC in one mesh
cell does not depend on the determination of HTC in any other mesh cells.

Task 2, the determination of temperature profiles throughout the solid con-
ductors in the model, includes only a call to the temp subroutine. The temp
subroutine loops over each conductor in the model. Typically, a conductor will
be a heater rod or a nuclear fuel rod, but conductors can also be used to model
fuel canisters, shrouds, etc. For each conductor, the conduction equation will
be solved to determine the temperature of each mesh cell in that conductor.

3.2 Subroutine xschem

The xschem routine, in general, does two things:

1. Setup and solve the momentum equations, and

2. Setup the continuity/energy equations.

3

Suggestions for COBRA-TF Parallelization Optimization

Consortium for Advanced Simulation of LWRs CASL-U-2013-0003-000

These two steps must be done in sequence because the continuity/energy
equations must be setup using the updated velocity field, which is obtained from
the momentum equation solution (this separated solution process is built off of
the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm
[1]).

The first step—solution of the momentum equations—contains two smaller
steps, which are solution of the transverse momentum equations and then so-
lution of the axial momentum equations. The momentum equations are solved
using a Gauss-Siedel approach, so convection between channels is explicit; how-
ever, the solution will use some new-iteration velocities that were obtained for
neighboring cells. To clarify, the momentum equations for the three fields are
setup and then solved using Gaussian elimination for a single momentum-mesh
cell at a time—the momentum equations of neighboring cells are not consid-
ered in this calculation. However, velocities in neighboring cells that convect
momentum into the current momentum cell may be current-iteration velocities
if that cell’s momentum equations have already been solved. If the momentum
equations have not already been solved for the current iteration, then they will
be old-iteration velocities doing the convection.

It is useful, at this point, to depict the structure of xschem using a flowchart,
which is shown in Figure 1. The first chunk of the flowchart shows the work
done for completing the momentum-equation solution. There is a loop over all
sections in the model and then a loop over all axial levels in that section. For
each axial level, COBRA-TF calls intfr, which determines the interfacial terms
(momentum equation closure terms) for all mesh cells in the current axial level
(all channels), and vdrift, which determines the transfer of momentum, mass,
and energy between all cells (channels) in the current axial level due to turbulent
mixing and void drift. Each of these routines contains a loop over all channels
in the current axial level.

Next, there is a loop over all of the gaps at the current axial level. Gaps are
connections between different channels. The transverse momentum equations
are setup for each gap and solved by Gaussian elimination. Because communi-
cation between the phases is implicit, this results in a 3x3 matrix being solved.
If the sub-channel approach1 is utilized, then gaps do not “see” other gaps, and
there is no convection of transverse momentum into the gap from other gaps.
However, the gaps do know what channels they are connected to no matter which
solution approach is employed and they can convect axial momentum. However,
because the gap solution is performed first, convection of axial momentum will
include old-iteration velocities only.

After the gap loop is complete, a loop is made over all channels in the cur-
rent axial level. The axial momentum equations are setup and solved. The

1Note that COBRA-TF offers two approaches for solving for the transverse velocity field—
a sub-channel approach may be used, whereby momentum “loses” its direction upon leaving
a gap since gaps don’t “see” other gaps, or a 3-D approach may be used, whereby transvere
momentum retains its direction because the user specifies the orientation of gaps in the input
deck. This document doesn’t consider use of the 3-D approach when discussing parallel
strategies.

4

Suggestions for COBRA-TF Parallelization Optimization

Consortium for Advanced Simulation of LWRs CASL-U-2013-0003-000

Setup and solve transverse
Momentum equations

Section Loop

Axial Level Loop

Gap Loop

Setup and solve axial
Momentum equations

Channel Loop

INTFR VDRIFT

Section Loop

Axial Level Loop

1. Setup cell Jacobian
2. Reduce and store

Jacobian

Channel Loop

Solve the pressure
Matrix

GSSOLV

Figure 1: Flowchart of xschem

5

Suggestions for COBRA-TF Parallelization Optimization

Consortium for Advanced Simulation of LWRs CASL-U-2013-0003-000

convection terms are explicit, so Gaussian elimination is, once again, done for a
3x3 matrix. However, in keeping with the Gauss-Siedel approach, the velocities
convecting momentum into one side of the cells will be new-iteration veloci-
ties and will be old-iteration velocities on the other side of the cells. Because
COBRA-TF marches in a bottom-up fashion, going from the first axial level to
the last one in the model, velocities coming in the bottom of the cell will be
new-iteration, and velocities going out of the top will be old-iteration.

The second section of xschem involves setting up and reducing the continu-
ity/energy equations. The loops are nested in the same manner as they were for
the momentum equation setup/solution. COBRA-TF uses the Newton-Raphson
approach to solve the continuity/energy equations, so this requires that a Ja-
cobian is built for the system of equations. In keeping with the separated
approach, the continuity and energy equations are not solved simultaneously
for the entire mesh. Instead, a Jacobian is built for each cell, these individual
matrices are reduced, and a pressure matrix is formed from these individual
reduced matrices (the individual matrices are not square because the effect of
pressure in neighbor cells is implicit). After the Jacobian terms and pressure
matrix terms are stored, xschem moves onto the next cell. When all cells in the
mesh are accounted for, the work flow moves to gssolv to direct the solution of
the pressure matrix.

3.3 Subroutine gssolv

The final routine, gssolv, is responsible for the solution of the pressure correction
equations (the pressure coefficient matrix), which was setup and reduced in
xschem2. The gssolv routine calls routines found in the Sparskit Library which
do an iterative solution of the pressure matrix; the time shown in Table 1 for
gssolv is actually spent doing the iterative solution of the pressure matrix.

4 Parallelization Strategies

As parallel programming and parallel computation hardware have evolved over
the last several decades, many different approaches, hardware systems, software
libraries, and even programming languages have been developed and tested.
Thus it must be recognized up front that a variety of different approaches might
be taken to modify COBRA-TF to run in parallel.

In deciding on an approach appropriate for CASL, several factors need to
be considered. The first is the CASL objective to perform a full-core, pin-
resolved, channel-flow thermal-hydraulics analysis on the order of minutes per
steady-state solve. At present, the cost of solving a single 17x17-pin assembly
steady-state problem with serial COBRA-TF is on the order of minutes. Thus,
to achieve the CASL objective, we will need to create a parallelized COBRA-TF
capable of running efficiently (in a parallel sense) on up to ∼500 processors.

An evaluation of the results of the COBRA-TF profiling and the solution
methodology described in the previous sections suggest that this objective can be

6

Suggestions for COBRA-TF Parallelization Optimization

Consortium for Advanced Simulation of LWRs CASL-U-2013-0003-000

achieved using a relatively standard approach that has seen wide application in
a variety of disciplines and which is well tested on the most commonly available
parallel computational platforms. Furthermore, it can be accomplished without
changing the solution strategy and without sacrificing the ability of the revised
code to still run in serial when desired. The purpose of this subsection is to
describe this approach.

We begin by defining the following terms commonly used in parallel compu-
tational science [2].

SPMD: The Single Program Multiple Data programming paradigm. In this
model, each process runs the same executable program. However, the
processes execute different statements by taking different branches in the
program: the branches are determined by the process rank.

MIMD: Multiple-instruction multiple-data type of parallel computer. In
MIMD systems the processors are autonomous: each processor is a full
fledged CPU capable of executing its own program at its own pace.

Distributed-Memory: In a distributed-memory system each processor has
its own private memory.

Message Passing: The most commonly used method of programming distributed-
memory MIMD systems is message passing. In basic message passing the
processes coordinate their activities by explicitly sending and receiving
messages.

MPI: A widely used standard library of routines for performing message pass-
ing that can be called from Fortran or C/C++ programs.

Domain Decomposition: A common approach to defining the tasks asso-
ciated with each processor is to assign each processor all computational
tasks on a sub-portion of the total computational domain (often tied to a
physical domain). The pre-requisite first step to making this assignment
is to decompose the overall domain into sub-regions.

The approach described here is based on applying the SPMD paradigm on
a distributed memory MIMD system. The COBRA-TF loop structures, data
arrays, and computation domain is quite naturally decomposed into groups
of channels, gaps, and rods that can be associated with a unique processor.
Communication between processors is accomplished by inserting various MPI
calls at strategic points in the code that facilitate the coordinated solution to
the overall problem.

Although some code revisions will be needed, this approach is less invasive
than it may initially appear, and most of the current coding in COBRA-TF
would remain essentially unchanged. Furthermore, the success of the imple-
mentation can be tested/demonstrated by showing that identical results are
obtained for all regression test problems whether running on a single processor
or using hundreds of processors.

7

Suggestions for COBRA-TF Parallelization Optimization

Consortium for Advanced Simulation of LWRs CASL-U-2013-0003-000

In this approach, the problem domain is decomposed into ‘n’ sub-channel
groups, where n is the number of processors being used to solve the problem.
Each sub-channel group is associated with a single section. If multiple sections
are defined in a problem, then each section will be decomposed into up to n sub-
channel groups and, per the solution algorithm, solved sequentially. In order to
simplify the discussion here we will assume there is only one section.

Figures 2–4 are useful to help understand and describe the approach. Figure
2 shows a simple 4x4-pin bundle model that could be solved by COBRA-TF. It
consists of 25 channels, 40 gaps, and 16 rods. To solve this case in parallel, we
decompose it into two groups, as shown in Figure 3. Group 1 is shown in blue
and Group 2 is shown in green. Finally, Figure 4 shows only Group 1 and its
associated “ghost” channel, gap, and rod entities.

Figure 2: Cross-section of simple domain to be decomposed for parallel solu-
tion on two processors. Channels, gaps, and rods are shown but gaps are not
numbered.

Note that Figure 4 gives only one possible configuration for Group 1. Group
1 could have more or less ghost entities depending on how the work is divided
up. It is also important to now discuss the issue of MPI communication. We
require there be ghost entities because channels on the boundaries of the channel
group require data from channels existing in other neighboring channel groups.
It will be necessary to periodically update the data in these ghost channels,
gaps, and rods.

However, it is possible to reduce the number of required updates (MPI com-
munications) if we do “double work”. This means, we can solve the gap mo-
mentum equations for gaps on channel-group boundaries in both channel groups
that those gaps reside in. This would result in double work for those overlapping
gaps, but it would also reduce the number of communications that must be per-
formed. Likewise, we could do double work in calculating the rod temperatures
for rods that lie on the boundaries, thus reducing the number of communica-

8

Suggestions for COBRA-TF Parallelization Optimization

Consortium for Advanced Simulation of LWRs CASL-U-2013-0003-000

Figure 3: Decomposition of simple domain (Figure 2) decomposed into two
groups (Group 1 shown in blue and Group 2 shown in green)

Figure 4: Group 1 channels (1-13), rods (1-8) and gaps (not numbered). Ghost
channels, rods, and gaps shown in shaded regions.

9

Suggestions for COBRA-TF Parallelization Optimization

Consortium for Advanced Simulation of LWRs CASL-U-2013-0003-000

tions required. In this case, there would be no ghost gaps or rods needed—the
processor for that channel group would simply loop over all rods residing in
the channel group and all gaps in the channel group. While it is possible to
eliminate ghost gaps and rods due to the nature of the COBRA-TF solution, it
is not possible to eliminate ghost channels. The issue of MPI communication
will be discussed further during the description of parallel subroutine execution.

For now, we continue to discuss the issue of domain decomposition. For
parallel COBRA-TF, additional auxiliary parameters can be defined to account
for the need to distinguish between channels, gaps, and rods that are “owned”
by the local processor and those which are needed for the solution, but which
are owned by another processor (i.e., they are being computed in another chan-
nel group). For COBRA-TF, the local name used by the code for how many
channels (nchanl), gaps (nk), or rods (nrrod) are in its problem will not change,
and thus no coding changes need to be made to the do loops where the code
will be parallelized. Instead, their values will change depending on how many
processors are used. For example, for the 25-channel case shown in Figure 2,
nchanl would be 25 for a single-processor solution. However, when using two
processors, and decomposed as shown in Figure 3, nchanl would be 13 for Group
1 and 12 for Group 2.

It will also be necessary to redefine the dimensioning of certain arrays, so
they are sized correctly for holding all data in the channel group plus the ghost
channel data. Table 2 gives insight into how looping and dimensioning param-
eters would be defined for Group 1 compared to a serial run of COBRA-TF.
Looping and array-sizing parameters include the number of channels, gaps, and
rods in the problem. The table presents information for two general cases—how
we loop over channels, gaps, and rods will depend on how many or how few
MPI communication calls we wish to make.

The table presents the size of channel, gap, and rod loops for serial COBRA-
TF and the size of those loops for Group 1 of parallel COBRA-TF when setup as
shown in Figure 4. It also presents the values that would be used to dimension
arrays that hold data for channels, gaps, and rods for both serial COBRA-TF
and Group 1 of parallel COBRA-TF.

Table 2: Loop and array dimensioning parameters for serial and parallel
COBRA-TF

Serial Values Group 1 Parallel Values
Parameter Loop Counter Array Size Loop Counter Array Size

Limited MPI Communication
Channels 25 25 13 18
Gaps 40 40 24 24
Rods 16 16 11 11

No Double Work
Channels 25 25 13 18
Gaps 40 40 20 24
Rods 16 16 8 11

10

Suggestions for COBRA-TF Parallelization Optimization

Consortium for Advanced Simulation of LWRs CASL-U-2013-0003-000

Note how the loop size is identical to the array size for serial COBRA-TF. For
serial COBRA-TF, there is only one channel group and, thus, no ghost entities
that need to be accounted for when sizing the arrays. For parallel COBRA-TF,
however, the number of channels must be increased to account for the 5 ghost
channels when sizing arrays that hold channel data. This is the case whether
we seek to perform limited MPI communications or limited double work.

As for gaps, if we want to perform fewer MPI communications, the number
of gaps are the same as the array size to hold gap data because we loop over
all gaps that are in or connected to Group 1. If we don’t want to perform gap
calculations for the same gaps existing in multiple channel groups, we only loop
over 20 of the gaps. The other 4 gaps that are connected to Group 1 will be
ghost gaps and their data will be provided from Group 2 where they will be
solved.

Finally, if we seek limited MPI communications, we could loop over all rods
that have contact with Group 1, which leads to the rod counter being the same
as the array size for rod data. If we seek limited double work, then we only
loop over 8 rods, with Rods 9, 10, and 11 being ghost rods, which get their data
from Group 2 where their solutions are performed.

We now focus our attention on the execution path that would occur for pro-
cessor 1 (Group 1). In doing so we can usefully refer back to the discussion
and description of key subroutines provided previously. We start with the dis-
cussion of how xschem will be handled in parallel, referring back to Figure 1,
which illustrates the basic flowchart associated with the subroutine. For parallel
COBRA-TF, the execution path of each processor will be exactly the same as
is shown here for serial COBRA-TF. However, the size of the loops (i.e., the
number of gaps to loop over for the transverse momentum equation solution or
the number of channels to loop over in intfr, vdrift, and the axial momentum
equation solution) will be smaller than serial COBRA-TF—the loops will only
be over that processors group of channels, gaps, and rods.

An additional difference will be the need for MPI-based communication
steps. These required communications are denoted in Figure 1 with pink stars.
Each of these communication steps are now discussed in further detail.

The first communication must take place after the execution of intfr. This
is required because the transverse-momentum-equation solution requires the
current-iteration closure terms (e.g., interfacial drag and wall drag) which were
calculated by intfr for the channels. Gaps that lie on the boundary of a chan-
nel group will need the current-iteration closure terms from channels that lie
outside of the processor’s channel group. However, it is possible to avoid this
communication by using intfr to calculate the closure terms for the ghost chan-
nels as well as the channel-group channels. This would present a trade off by
exchanging less required MPI communications for more calls to intfr.

No communication is required after vdrift because the determination of
mass/momentum/energy transfer due to turbulent mixing and void drift is based
only on old-iteration terms, which would already be present in the ghost chan-
nels.

The second communication must take place after the gap-momentum-equation

11

Suggestions for COBRA-TF Parallelization Optimization

Consortium for Advanced Simulation of LWRs CASL-U-2013-0003-000

solution. The gap-momentum-equation solution updates the transverse veloci-
ties. During the axial-momentum-equation solution, gap velocities convect axial
momentum between channels. It is necessary to update velocities at the bound-
aries of channel groups when the gap momentum equations aren’t being solved
in that channel group. Like for the post-intfr communication, it is possible to
eliminate this communication if each channel group solves the gap-momentum
equations on its boundaries. Of course, this would result in overlapping gaps
(gaps between channel groups) having their momentum equations solved on dif-
ferent processors (double work). It would, once again, be a trade off between
reducing MPI communications at the expense of more gap-momentum-equation
solutions.

The third communication must take place after the solution of the axial mo-
mentum equations. This will refresh the axial velocities in, not only ghost cells,
but all axial momentum cells in the mesh with the new-iteration velocities. It is
not possible to skip this communication, as the momentum equation solution in
ghost channels will rely on data from their connecting gaps and channels that
may exist in different channel groups. Since the velocities of all momentum cells
are updated, no communication is required before the continuity/energy setup.

The final communication of xschem will be required after the Jacobian is
built and reduced for each scalar cell in the channel group. Each group will
have a piece of the pressure matrix after this process. These pieces of each
channel group must be shared to form a single pressure matrix that is sent off
to gssolv for solution.

Moving attention to the pressure equation solution, it has been pointed out in
profiling results that this code section (gssolv) accounts for a significant amount
of computational time. It is believed that a pre-existing parallel matrix solver,
such as PETSc, could be used to speed up this code section. Since COBRA-TF
already stores the pressure matrix in the Compressed Sparse Row (CSR) format,
it should be rather straightforward to make use of a parallel solver. Of course,
another communication step will be needed after the solution of the pressure
equation so that each channel group may update its dependent variables prior
to completion of the iteration.

The final subroutines to benefit from parallelization are heat and temp. As
discussed in Section 3, these routines are responsible for determining the HTC
in each fluid cell that is adjacent a solid conductor cell as well as determining
the temperature profile in each solid conductor. Both of these calculations are
done before the fluid solution (i.e., before the flowchart of Figure 1. It is a sim-
ple matter to have each processor compute the HTCs in its own channel group.
Additionally, each processor will be assigned a conductor group in addition to
a channel group. In that way, each processor will have its own group of rods to
solve. Since the solution of the conduction equation for one conductor is inde-
pendent from the solution of the conduction equation in any other conductor,
and since the determination of the HTC for one fluid cell is independent from
the determination of the HTC for any other fluid cell, these two parallelizations
can be done without any MPI communication if we perform double work, as
previously discussed. If we seek to perform no double work, there will need to

12

Suggestions for COBRA-TF Parallelization Optimization

Consortium for Advanced Simulation of LWRs CASL-U-2013-0003-000

be sharing of rod data for rods that exist on the boundaries of channel groups.
The rod heat fluxes will be needed later in the fluid solution, which is why the
data sharing must take place after the rod solution.

Space here does not allow for a detailed description of all aspects of how to
implement this approach in COBRA-TF. However, there remain several other
aspects of a parallel-cobra code that need to be mentioned and which would
require code revisions or additions. Some are very minor, but others are signif-
icant. These include the following:

• The addition of the appropriate MPI initialization and finalize subroutine
calls, as well as the MPI call to set up the MPI communicator based on
the number of processors being used.

• Restricting all I/O to only one of the processors (e.g. processor 1). Since
the I/O cost in cobra is not significant (See Table 1), I/O tasks do not
need to be parallelized, but can be relegated to a single proc. However,
this requirement would also mean that before output could be performed
global information would need to be gathered from all processors.

• Convergence metrics will need to be determined by gathering informa-
tion from all processors as needed to compute the various metrics being
checked. This includes determining the maximum velocity throughout the
entire model for timestep calculation using the Courant-Friedrich-Lewy
condition.

• An effective strategy must be designed for automatically performing do-
main decomposition given a specified number of available procs. This
will need to be designed to minimize the number of ghost nodes and to
accommodate the issue of multiple sections mentioned above. The code
must be revised to have the ability to read a single input deck, and then
create virtual input values for use by each sub-problem associated with
the domain decomposition. This would also require determining the ghost
entity requirements and the local-to-global index mappings that may be
needed. This work will be facilitated by first clearly determining what
module data would be the same on each processor and what module data
is unique to the processor.

Of the items mentioned above, the last bullet is the most involved. Although
this would not require extensive changes to the existing code base, it would
clearly involve the addition of several new subroutines.

In summary, an MPI-based SPMD approach to parallelizing COBRA-TF
is clearly a very viable pathway to achieving major speedups to COBRA-TF,
and is a natural fit to the solution algorithms currently used. Although some
code revisions would need to be made, most changes would be associated with
the addition of new coding instead of the rewriting of current code. For large
full-core problems being looked at by CASL, where each processor might be
assigned to do the work on one assembly, the overhead associated with message

13

Suggestions for COBRA-TF Parallelization Optimization

Consortium for Advanced Simulation of LWRs CASL-U-2013-0003-000

passing would be expected to be small, and good parallel efficiencies would be
expected. This would enable CASL to be able to perform full-core pin-resolved
steady-state solutions in approximately a minute of clock time with a parallel
COBRA-TF.

5 Serial Strategies

In reviewing profiling results and COBRA-TF source code, sections of code were
found that would likely benefit from optimization that doesn’t involve splitting
work up to be done in parallel. This includes sections of the temp and tgas
routines. These strategies are discussed in the following three subsections.

5.1 temp

Line-by-line profiling results revealed that some of the most expensive lines of
code in COBRA-TF occur in the third step of the temp routine. It is believed
that this is due to the fact that very large, three-dimensional arrays are used
for storing rod temperatures and properties in the temp routine. These arrays
are accessed on these expensive lines of code. It may be that the arrays are
too large to fit on the on-die cache of the chip and are forcing the code to
unnecessarily move some of the data to the Random Access Memory (RAM),
which is more computationally expensive to access. These arrays store the
conductor-cell temperatures and material properties for all rods in the model;
however, during the solution of a single rod, data from other rods is not needed.

A possible solution would be to restructure the large arrays (“rhs”, “trod”,
“toldr”, and “sphts”) so that they only hold data for the mesh cells of the
current rod, instead of all the rods in the mesh. At the completion of the rod
solution, the current-rod data could be passed back to the much larger arrays
which house data for all rods in the model. This would reduce the number
of large-array access several times over and possibly speedup the temp routine
enough to not require parallelization.

5.2 tgas

The steam properties are calculated using several subroutines including, blk-
dat, prop, and tgas. Currently, the properties are determined at several points
throughout a single iteration (time step), which corresponds to several calls to
each of these routines throughout the source code. It is believed that, based on
results from gprof, that the several calls to these property routines during the
heat routine account for the large amount of time shown for heat1 in Table 1. If
the source code were somehow rearranged to limit the calls to property routines
(by not calculating fluid properties for the same cells multiple times and instead
storing properties in an array), this may lead to significant speedups.

Based on some preliminary scoping studies, it appears that the tgas routine
should be targeted because a great deal of time is spent performing power oper-

14

Suggestions for COBRA-TF Parallelization Optimization

Consortium for Advanced Simulation of LWRs CASL-U-2013-0003-000

ations in that routine. Profiling results reflect this fact, showing that over 17 %
of code execution time is spent doing power operations. A simple test was done
by removing these expensive correlations from tgas and instead specifying the
vapor temperature and specific heat as constant values. This led to a reduction
in runtime of 35 % for the 1x1 case. Furthermore, the amount of time spent do-
ing power operations dropped from 17.3 % to 1.3 %, showing that tgas accounts
for the majority of the power operations.

Granted, we cannot simply replace these correlations with constant num-
bers, so the final speedup would not be as good as the simple case, but we can
reduce the calls to tgas. However, this approach may require significant code
modifications and modifications to how COBRA-TF calculates thermophysi-
cal properties, and so it would be best to give other optimization approaches
priority.

5.3 Loop Nesting

While it is possible to use n-dimensional arrays in computer codes, all arrays
are actually stored in the computer memory as a 1-dimensional array, or vector.
This requires that multi-dimensional arrays be “unravelled” in some way. In
Fortran, arrays are stored using column-major order. This makes it optimal to
nest loops such that the first index of a multi-dimensional array is varied by the
inner-most loop. In practice, this means that data that is currently being used
from that array in the loop is more likely to be in the CPU cache memory as
opposed to the RAM, which is about an order of magnitude slower to access
than the cache memory. It was discovered that a frequently used array, utilized
for storing pressure correction equation coefficients (“storj”), was nested in the
“wrong” order for a Fortran program. By simply storing data in the array in
the opposite order (switching array indices), a 24 % reduction in runtime was
observed for the quarter-core case.

This demonstrates the importance of proper loop nesting. The case for
“storj” was a simple one to remedy because it appears in limited places in the
source code, requiring very little code modifications. However, it is a large array
and it is accessed frequently, which led to the significant impact on runtime.
Another frequently-accessed array is the “rjac” array. Line profiling actually
shows that it is involved in the four most computationally-expensive lines of
code in COBRA-TF (not including library calls). However, it also appears
frequently in the code, unlike “storj”, so restructuring the array may require
much greater effort.

6 Conclusion

Profiling results have been performed to determine the most computationally-
expensive sections of COBRA-TF. Results show these to be the heat, xschem,
and gssolv routines. It is possible to perform the work of all of these routines
in parallel in order to reduce COBRA-TF execution time. A specific strat-

15

Suggestions for COBRA-TF Parallelization Optimization

Consortium for Advanced Simulation of LWRs CASL-U-2013-0003-000

egy involving a Single Program Multiple Data (SPMD) approach and utilizing
domain-decomposition has been detailed. This approach involves breaking the
model into groups of channels, rods, and gaps which are solved separately on in-
dividual processors. This requires minimal changes to the COBRA-TF solution
algorithm. Required changes will primarily include the readin of data, devel-
oping a way to decompose the model into appropriate groups, and determining
where MPI data shares should take place. An example of a decomposition has
been provided along with suggestions for how data could be shared to com-
plete the parallel execution of the HTC determination, rod conduction equation
solution, and construction and solution of the governing equations.

The proposed approach is expected to lead to good scaling to large numbers
of processors. Less specific information has been provided on how the pressure
matrix should be solved in parallel, but it is believed that this can be made
possible with the use of PETSc. This task has been performed in the past, but
before this approach could be implemented, further research on the solver will
be required.

Acronyms

COBRA-TF Coolant Boiling in Rod Arrays—Two Fluids

CSR Compressed Sparse Row

HTC Heat Transfer Coefficient

MIMD Multiple Instruction Multiple Data

RAM Random Access Memory

SIMPLE Semi-Implicit Method for Pressure-Linked Equations

SPMD Single Program Multiple Data

References

[1] S.V. Patankar. Numerical Heat Transfer and Fluid Flow. McGraw-Hill,
1980.

[2] P.S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, 1996.

16

Suggestions for COBRA-TF Parallelization Optimization

Consortium for Advanced Simulation of LWRs CASL-U-2013-0003-000

	Introduction
	COBRA-TF Profiling
	Subroutine Descriptions
	Subroutine heat
	Subroutine xschem
	Subroutine gssolv

	Parallelization Strategies
	Serial Strategies
	temp
	tgas
	Loop Nesting

	Conclusion

