
Exact-to-Precision Generalized Perturbation Theory: Analytical Analysis

Congjian Wang and Hany S. Abdel-Khalik

North Carolina State University, Raleigh, NC 27695
cwang21@ncsu.edu,abdelkhalik@ncsu.edu

INTRODUCTION

Exact-to-Precision Generalized Perturbation Theory
(EPGPT) is the new development in generalized
perturbation theory (GPT) that is intended to extend its
applicability to estimate higher-order variations in all
responses in the model with respect to all possible
perturbations in the model’s input parameters [1-4].
EPGPT places high premium on computational efficiency
in order to render GPT a standard analysis tool in routine
design and safety reactor calculations. This approach was
first introduced into reactor physics in 2011 for one-group
source-driven problems in diffusion theory [1], and then
the theory was further extended to multi-group eigenvalue
problems in 2012 [2]. Although, classical GPT has been
distinguished as a powerful mathematical tool in
sensitivity analysis and uncertainty quantification, it still
faces two major obstacles. First, to properly capture exact
variations (i.e. all higher orders) in the response of
interest, the associated number of model executions
becomes dependent on either the number of parameters or
the number of points in the flux phase space [5, 7].
Second, the computational burden of GPT is dependent on
the number of responses; this is because a separate adjoint
solution is required for each response of interest [6]. For
realistic design calculations based on high fidelity multi-
scale multi-physics models with large volumes of data
manipulated at each code-to-code interface, the number of
parameters, responses, and flux phase space points are
expected to be very large. These major obstacles arising
with classical GPT are overcome via new development in
EPGPT in order to revive the interest in GPT for routine
design calculations.

The purpose of this summary is to demonstrate the
use of EPGPT by solving a simple analytic example.
Many of the properties discussed in previous work [1, 2]
can be illustrated in this manner.

METHODOLOGY

For the sake of a complete discussion, we provide a
brief overview of GPT and EPGPT. The reader is referred
to Refs. [1, 6] for the detailed description.

Consider the following time-independent form of
Boltzmann equation for neutron transport:

  0    LP F (1)

where the neutron flux,  , is a function of continuous

variables in space, energy, and direction. The P operator
represents all the terms in the transport equation, the L
and F operators represent neutron loss and fission
production, respectively.  is the smallest eigenvalue

(equal to 1/ effk ) associated with the eigenvector  . Note

that the normalization of the function  can be chosen

arbitrarily since the operator P is ill-posed. For simplicity,
 is normalized so that its phase-integral is equal to one.

The adjoint criticality equation is:

 * * * * * 0    P L F (2)

The first-order GPT estimation for the variation in 
which results from the perturbation is:
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where the brackets ‘<>’ represent the integration that is
carried over the whole accessible range of the variables,
and the perturbations in the operators are denoted as

and L F .
Higher-order GPT evaluation of variations in the 

have been suggested by Gandini [8] based on expanding
the perturbed flux in terms of the  eigenfunctions of Eq.
(2) and iteratively obtaining higher order estimates for the
eigenvalue perturbation as follows.
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where the  eigenfunctions can be computed recursively
from the equations:
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The major drawback to this approach is that one needs to
solve the recursive equations in Eq. (5) which are
extremely time-consuming. Moreover, the recursive
equations are dependent on the specific perturbation in the
input parameters, i.e. L and F . This means that Eq.
(5) would have to be solved anew every time a
perturbation is made to the system. This limits the GPT
for the systems whose parameters have only small
variations while first-order approximation is acceptable.

GPT can also be used to estimate the variations in
any given response R :
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where the first term in Eq. (6) denotes as the direct effects
which can be readily evaluated, and the generalized

adjoint * is defined by the equation:

 * * * R





 


L F , with * , 0 F (7)

The Eq. (7) shows that the associated number of adjoint
model executions of first-order GPT is dependent on the
number of responses.

In the contrary, EPGPT assumes that the flux
variations lie in a small dimensional subspace, denoted
hereinafter as active subspace, which are constructed by
executing the forward model a number of times by
employing range-finding algorithms [1, 2]. Moreover, the
number of adjoint model executions is only dependent on
the size of the active subspace.

As assumed, we can expand the flux variations in the
active subspace as shown in the following equations:
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where r is the size of the active subspace, ,i j ijq q

and ,i i  q , for , , ,1,2i j r  ; ij is the

Kronecker symbol, and iq represents an orthonormal

basis vector function in the active subspace, which is only

dependent on flux variations and can be determined by
range-finding algorithms (RFA). RFA have been
primarily developed in linear algebra community and the
machine learning community [9]. The idea of RFA has
been further extended by Abdel-Khalik and his research
groups to identify a subspace in the input parameters
space of complex engineering systems [1-2, 10].
Considering this is just a summary, we refer the reader to
Ref. 9 for excellent review on the mathematical literature
on range-finding algorithms.

After applying the EPGPT manipulations, one can
obtain the following equations for unknown coefficients:

 
1

  β I T w (9)

where   ii
β , r rI  is identity matrix, and the

elements in the matrix r rT  and vector rw  are
given by:

  * ,i jij
  T Pq and   * ,ii

  w P ,

for i, j = 1, 2, …, r

and the generalized adjoint *
i is the solution to the

following equations:

** , , for 1,2, ,i i i ri  P q q  (10)

Furthermore, the exact variation in the eigenvalue could
be approximated by:
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where   * , , for 1 2 ,, ,ii
i r η Pq  .

It can be clearly seen from Eq. (10) that one needs to
solve only r generalized adjoint equations to capture the
exact variations in the flux and eigenvalue. Early works
have shown that r is usually a small number compared to
the original dimension of flux [10] in BWR assembly
model.

CASE STUDY

The system considered for demonstration EPGPT is a
two-group infinite homogenous medium. For this case,
the transport operators are 2 by 2 matrices such that one
can easily obtain the analytic solution. The parameters for
first group are arbitrarily assigned as ,1 5t  , ,1 3c  ,

,1 1f  , ,1 1 0,s   ,1 2 1s   , 1 4v  , and 1 0.75 

where the symbols have their usual definitions. Similarly,



the parameters for the second group are assigned as

,2 2t  , ,2 1c  , ,2 1f  , ,2 1 0s   , ,2 2 0s   ,

2 2v  , and 2 0.25  . Notice that for each group the

absorption  c f gg
   equals the neutron production

 f gg
v  ; therefore, the system is critical and the

neutron transport operator can be obtained:
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Moreover, * TL L , and * TF F . The characteristic
equation for this problem is:
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The fundamental forward solution is:
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The fundamental adjoint solution is
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Note that all fluxes are normalized to one for simplicity.
The perturbation equation for  is illustrated by
considering the perturbation given by:

,1 0

0 0

c 
   

 
L

This perturbation represents a change in the capture cross
section for the first group. The first order estimation for
the variation in  via GPT is:
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The characteristic equation for the perturbed system can
be solved to obtain the following exact result for the

variation in  resulting from the perturbation ,1c :
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Considering the flux is normalized, only one basis
vector is needed for EPGPT calculation since there is only
one degree of freedom in the neutron flux variations. This
basis vector is obtained by range-finding algorithm:

1 1/ 2 1/ 2
T

   q

A comparison of numerical results obtained using
Eqs. (11), (13), and (14) are show in Table I and Table II.

Table I. Exact and Approximate Errors for 

,1

,1

c

c





Exact

(pcm)
1

(pcm)
2

(pcm)

0.01 449.33 -0.67 0.00

-0.01 -450.68 -0.68 0.00

0.05 2233.25 -16.75 0.00

-0.05 -2267.00 -17.00 0.00

0.10 4433.50 -66.50 0.00

-0.10 -4568.53 -68.53 0.00

0.25 10843.37 -406.63 0.00

-0.25 -11688.31 -438.31 0.00

0.50 20930.23 -1569.77 0.00

-0.50 -24324.32 -1824.32 0.00

where 1 Exact 1st    ;
PExact2 E GPT   

Table II. Errors in Neutron Flux

,1

,1

c

c



 rel.rms

0.01 1.43E-16

-0.01 2.63E-16

0.05 1.54E-16

-0.05 1.78E-16

0.10 1.67E-16

-0.10 1.97E-16

0.25 3.56E-16

-0.25 9.82E-17

0.50 1.44E-16

-0.50 1.64E-16

where
PExact E GPT 2

Referenc 2e

rel.rms=
 




;

The fast group capture cross section is randomly
perturbed by 10%. The results calculated by EPGPT and
first-order GPT are compared to those computed by



solving the exact perturbed forward equation, as presented
in Fig. 1 for 100 different cases.

Fig. 1. Comparison of Estimation Accuracy (100 cases).

CONCLUSION

This presented summary has demonstrated that the
solutions obtained by EPGPT are equivalent to the
solutions solved by the forward perturbed equations via a
simple analytic example. However, by employing active
subspace projection techniques, the EPGPT places a high
premium on reduction of the associated computational
overhead required to estimate higher order variations.

We are currently working on employing EPGPT to
efficiently and accurately replace assembly calculations,
currently used to prepare few-group cross sections for
downstream core calculations.
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