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This report assesses recent progress on the development of the new 2D/1D methodol-

ogy, the implementation of the new “consistent” 2D/1D method in DeCART, comparisons

of this method with the “baseline” 2D/1D method in DeCART, and projected future efforts.

I. BACKGROUND OF THE 2D/1D METHODOLOGY

The term “2D/1D” has been used to describe recently-developed computational meth-

ods for solving 3D whole-core neutronics problems in which the (1D) axial and (2D) radial

derivative terms are approximated in different ways. These methods were proposed, imple-

mented, and tested by two groups in Korea during 2002-2007 [1–11]. One group, located

at KAIST (N.Z. Cho, G.S. Lee, C.J. Park, and colleagues), developed the “2D/1D Fusion”

method for the CRX code [1, 3–5,8, 9]. In this method, the 3D Boltzmann transport equa-

tion is solved by discretizing the radial derivative terms on a “fine” radial grid and the axial

derivative term on a “coarse” radial grid. This method is an unconventional discretization

of the 3D Boltzmann equation, which makes use of fine and coarse radial spatial grids. The

other group, located at at KAERI (J.Y. Cho, H.G. Joo, K.S. Kim, and S.Q. Zee and col-

leagues), developed a different “planar MOC solution-based 3D heterogeneous core method”

for the DeCART code [2, 6, 10, 11]. This method also discretizes the axial derivative term

using a “coarse” radial grid – but most importantly, it alters this term in a way that (i) is

accurate for problems in which the axial leakage can be represented by Fick’s Law, and (ii)

offers major computational advantages for parallel-architecture computers.

Early in the CASL project, the version of DeCART (Deterministic Core Analysis

Based on Ray Tracing) at the University of Michigan (UM) was used for 3D neutronics

simulations. DeCART had certain advantages: (i) it could run problems much faster than

a 3D discrete ordinates or Method of Characteristics code, (ii) for many problems it was

sufficiently accurate, (iii) it allowed for a fine non-Cartesian radial spatial grid to accurately

resolve pin cells, and (iv) it permitted very coarse axial grids for problems in which the

neutron flux was expected to vary slowly in the axial direction.

Unfortunately, DeCART also had disadvantages: (i) it was based on an unfamiliar

“2D/1D” methodology whose theoretical basis was not understood, (ii) the iterative method

in DeCART failed to converge for problems in which the axial grid (∆z) became sufficiently

small, and (iii) the documentation and coding of DeCART were not conducive to locat-

ing and correcting the deficiencies. The users of DeCART were historically accustomed to

running codes in which, as the underlying grid is refined, the numerical solution becomes

increasingly accurate (the truncation errors reduce to zero). With the 2D/1D method in
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DeCART, approximations had been introduced that made it impossible to state theoreti-

cally what the numerical solution might converge to as the grid was refined. Moreover, it

was not possible to test DeCART on small axial grids to see whether the solution converged

or not; the iteration process in the code failed for these problems. These were (are) the

technical issues with the original “baseline” 2D/1D method in DeCART.

Given these difficulties, the idea of developing a new 3D reactor physics code that

would employ a more robust 2D/1D methodology – and would use modern software pro-

cedures to make the code easier to understand, maintain, and modify for CASL tasks –

became increasingly attractive. This was the origin of the new MPACT (Michigan Parallel

Characteristics Transport Code) code [12, 13]. To help accomplish the task of developing

a robust 2D/1D method for MPACT, we decided to attempt to formulate a mathematical

foundation for the 2D/1D methodology in DeCART – in order to better understand this

methodology, and to suggest systematic ways to improve it. The remainder of this report

briefly describes the resulting “consistent” 2D/1D theory, the progress made in implement-

ing the new method in MPACT, and projected future efforts.

II. A CONSISTENT 2D/1D METHODOLOGY

Our derivation of a “consistent” 2D/1D methodology rests on a new approximation to

the linear 3D Boltzmann equation, which (not surprisingly) we call the “2D/1D equation.

This new equation is intermediate in both accuracy and cost of solution between the 3D

Boltzmann equation and the standard 3D diffusion equation. The underlying premise of

the 2D/1D equation is that it preserves transport physics in the radial (x and y) directions,

and it uses approximate diffusion physics in the axial (z) direction.

The derivation of the 2D/1D equation begins with the linear 3D Boltzmann transport

equation formulated on a “cylindrical” system V , consisting of points x = (x, y, z) with

the radial variables (x, y) ∈ R (a convex but otherwise arbitrary 2D region), and the axial

variable z in the interval 0 ≤ z ≤ Z.

x

y

z

0

Z

V

R

Figure 1: The Cylindrical System V
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For simplicity, we assume monoenergetic transport with isotropic scattering and vac-

uum boundaries. Using the standard notation:

Ω = (Ωx,Ωy,Ωz) = (
√

1− µ2 cosω,
√

1− µ2 sinω, µ) , (1)

we have the fixed-source transport equation:

Ω ·∇ψ(x,Ω) + Σt(x)ψ(x,Ω) =
Σs(x)

4π

∫
4π
ψ(x,Ω′)dΩ′ +

Q(x)

4π
, x ∈ V , Ω ∈ 4π , (2a)

with the vacuum boundary condition:

ψ(x,Ω) = 0 , x ∈ ∂V , Ω · n < 0 . (2b)

In typical light water reactors, the cross sections are highly complicated functions of

the radial variables x and y, but are relatively simple (almost constant) functions of the

axial variable z. This suggests that the z-dependence of ψ is weak, and that the small axial

leakage term µ∂ψ/∂z in Eq. (2a) can be approximated advantageously, with a minimal loss

of accuracy. To proceed, we write Eq. (2a) as:√
1− µ2

(
cosω

∂ψ

∂x
+ sinω

∂ψ

∂y

)
+
∂F

∂z
+ Σtψ =

1

4π

(
Σsφ+Q

)
, (3)

where

F (x,Ω) = µψ(x,Ω) , (4a)

φ(x) =

∫
4π
ψ(x,Ω′)dΩ′ , (4b)

and we consider various approximations to F .

If ψ on the right side of Eq. (4a) is approximated by its classic diffusion approximation,

the axial leakage term becomes:

∂F

∂z
≈ ∂

∂z

µ

4π

[
φ− 1

Σt

(
Ωx

∂φ

∂x
+ Ωy

∂φ

∂y
+ µ

∂φ

∂z

)]
. (5a)

In a simpler approximation, the radial derivative terms in Eq. (5a) are discarded, yielding:

∂F

∂z
≈ ∂

∂z

µ

4π

(
φ− µ

Σt

∂φ

∂z

)
. (5b)

In an even simpler approximation, the right side of Eq. (5b) is replaced by its zero-th angular

moment, giving:
∂F

∂z
≈ − ∂

∂z

D

4π

∂φ

∂z
, (5c)

where D = 1/3Σt. The progression from Eq. (5a) to Eq. (5b) to Eq. (5c) becomes increas-

ingly simple and (presumably) less accurate. In this paper we consider the simplest of these

approximations, Eq. (5c). Using this in Eq. (3), we obtain the following “simplest” 2D/1D

equation:

√
1− µ2

(
cosω

∂ψ

∂x
+ sinω

∂ψ

∂y

)
− ∂

∂z

D

4π

∂φ

∂z
+ Σtψ =

1

4π

(
Σsφ+Q

)
. (6a)
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The vacuum boundary conditions for Eq. (6a) remain the standard transport vacuum

boundary condition on the “sides” of ∂V :

ψ(x,Ω) = 0 , (x, y) ∈ ∂R , 0 < z < Z , Ω · n < 0 , (6b)

but become “diffusion” boundary conditions on the “top” and “bottom” of V :

φ(x, y, 0)− 2D
∂φ

∂z
(x, y, 0) = 0 , (x, y) ∈ R , (6c)

φ(x, y, Z) + 2D
∂φ

∂z
(x, y, Z) = 0 , (x, y) ∈ R . (6d)

The second-order integrodifferential 2D/1D Eq. (6a) approximates the linear Boltz-

mann equation only in its axial derivative term; here this is done using the standard dif-

fusion approximation. The radial derivative terms in Eq. (6a) are not approximated, and

– unlike the standard diffusion equation – the angular variable is not eliminated from the

2D/1D equation. More complicated, but presumably more accurate 2D/1D equations can

be obtained using the approximations (5b) or (5a) instead of Eq. (5c).

The underlying premise of the new “consistent” 2D/1D methodology is that it should

be based on a consistent discretization of Eqs. (6). In other words, Eqs. (6) should be

systematically discretized, and then an iteration scheme should be developed to solve the

resulting discrete equations. The discrete solution will then approximate the exact solution

of Eqs. (6). Also, as the space-angle grid is refined, the numerical solution of the discrete

2D/1D equations should converge to the exact solution of the 2D/1D Eqs. (6).

Thus, to proceed, Eqs. (6) must first be systematically discretized. An axial discretiza-

tion for the 2D/1D Eq. (6a) can be derived by integrating the equation over axial “slices”

zk−1/2 < z < zk+1/2 of width ∆k = zk+1/2 − zk−1/2, and using a standard finite difference

approximation for the axial leakage term. Assuming that the cross sections are independent

of z on each slice and defining:

1

∆k

∫ zk+1/2

zk−1/2

ψ(x,Ω)dz = ψk(x, y,Ω) , (7a)

1

∆k

∫ zk+1/2

zk−1/2

φ(x)dz = φk(x, y) =

∫
ψk(x, y,Ω)dΩ , (7b)

1

∆k

∫ zk+1/2

zk−1/2

∂

∂z
D(x)

∂φ(x)

∂z
dz =

1

∆k

[
Dk+1/2(x, y)

∂φk+1/2(x, y)

∂z
−Dk−1/2(x, y)

∂φk−1/2(x, y)

∂z

]
≈ 1

∆k

[
Dk+1/2(x, y)

∆k+1/2

(
φk+1(x, y)− φk(x, y)

)
−
Dk−1/2(x, y)

∆k−1/2

(
φk(x, y)− φk−1(x, y)

)]
,

(7c)

where:

Dk+1/2 =
∆k + ∆k+1

∆k
Dk

+
∆k+1

Dk+1

, ∆k+1/2 =
1

2
(∆k + ∆k+1) , (8)

the axially-discretized 2D/1D equation becomes:
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(
Ωx

∂

∂x
+ Ωy

∂

∂y
+ Σt,k

)
ψk(x, y,Ω) =

1

4π

{
Σs,kφk(x, y) +Qk(x, y)

+
1

∆k

[
Dk+1/2(x, y)

∆k+1/2

(
φk+1(x, y)− φk(x, y)

)
−
Dk−1/2(x, y)

∆k−1/2

(
φk(x, y)− φk−1(x, y)

)]}
.

(9)

For each 1 ≤ k ≤ K, this is a 2-D transport equation, which is coupled in a simple

way (requiring minimal storage and passage of information) to the neighboring slices k − 1

and k + 1. The special cases k = 1 and K are handled using the boundary conditions (6c),

(6d) in the standard manner.

In our numerical simulations, we employed the 2D Method-of-Characteristics (MOC)

[13] to discretize the radial and angular variables in Eq. (9). The only feature of these dis-

cretizations requiring comment is that in DeCART, the axial leakage terms [the second line

of Eq. (9)] are discretized on a coarse radial grid, while the remaining terms are discretized

on a fine radial grid. Typically, a coarse spatial cell consists of a pin cell (which is about one

mean free path in width), and the fine spatial cells resolve the inner structure of a pin cell

(and are small fractions of a mean free path in width). In practice, the radially discretized

φ’s in the axial leakage terms in Eq. (9) are volume-averaged over a coarse cell, and the

axial diffusion coefficients Dk±1/2 are homogenized over a coarse cell.

The restriction of the axial leakage terms to coarse mesh scalar fluxes implies that the

resulting 2D/1D equation can be parallelized, in such a way that each processor performs

sweeps on one slice, and only minimal information (coarse grid scalar fluxes) needs to be

passed between processors. (If spatially fine-grid or angularly fine-grid information had to be

transmitted between processors, the method would have significantly less parallel efficiency.)

Next, we consider the likely simplest iteration scheme for solving Eq. (9) that can be

made stable for all ∆z > 0. Noting that the right side of Eq. (9) depends only on the scalar

flux φ, we consider a standard 2D sweep on each slice to update the scalar flux:(
Ωx

∂

∂x
+ Ωy

∂

∂y
+ Σt,k

)
ψ

(`+1/2)
k (x,Ω) =

1

4π

{
Σs,kφ

(`)
k (x) +Qk(x)

+
1

∆k

[
Dk+1/2

∆k+1/2

(
φ

(`)
k+1(x)− φ(`)

k (x)
)
−
Dk−1/2

∆k−1/2

(
φ

(`)
k (x)− φ(`)

k−1(x)
)]}

, (10a)

φ
(`+1/2)
k (x) =

∫
ψ

(`+1/2)
k (x,Ω′)dΩ′ , (10b)

followed by a (nonstandard) relaxation step to define the end-of-iteration scalar flux:

φ
(`+1)
k (x) = θφ

(`+1/2)
k (x) + (1− θ)φ(`)

k (x) . (10c)

The relaxation parameter θ in Eq. (10c) is to be determined; if θ = 1, the method defined

by Eqs. (10) is basically Source Iteration (and is very similar, if not identical, to the original

iteration method encoded in DeCART). In each iteration, the numerical solutions in slice

k are directly coupled only to the numerical solutions in the neighboring slices k + 1 and

k − 1. Therefore, many iterations may be required for the numerical fluxes in all the axial

slices 1 ≤ k ≤ K to sufficiently “communicate.”
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We have Fourier-analyzed this method and have found it to be unconditionally stable

if the relaxation parameter θ is chosen optimally (θ = θopt). If θ = 1 (the “DeCART”

value), then the method is stable for coarse ∆z but unstable for fine ∆z. The iterative

instability for θ = 1 and small ∆z reflects the iterative behavior of DeCART. The following

figure depicts the stability (ρ < 1) of the iterative method with θ = θopt, and the instability

for small ∆z (ρ > 1) of the “DeCART” method with θ = 1.

To summarize: we have proposed a new “2D/1D” equation, which is intermediate in

both cost of execution and accuracy between the 3D Boltzmann equation and the standard

3D diffusion equation. The 2D/1D equation preserves transport physics in the radial vari-

ables, and uses approximate diffusion physics in the axial variable. The 2D/1D equation has

been systematically discretized using familiar discretization methods, and a simple iteration

scheme for solving the resulting discrete equations has been Fourier-analyzed to optimize

its stability and efficiency. The “consistent” discretized 2D/1D equation closely resembles

the discretized 2D/1D method in DeCART. However, the consistent discretized equations

unambiguously limit to the continuous 2D/1D equation as the space-angle grid is refined,

but it is not known whether the discrete “baseline” 2D/1D equations in DeCART have a

limit as the space-angle grid is refined.

III. IMPLEMENTATION IN MPACT

The consistent 2D/1D method described above has been implemented in MPACT

and has recently been tested on several problems. To date, all the results that we have

observed from these simulations are consistent with the underlying predictive theories. The

iteration method presented above is observed to be stable, its performance is consistent

with the Fourier analysis, and the new 2D/1D solution can be obtained for extremely small

values of ∆z. Also, the converged 2D/1D solution itself has the expected properties. For

classically diffusive problems, the Boltzmann, 2D/1D, and standard diffusion solutions all

closely agree. However, for problems in which the solution varies slowly in z but not in x

and y, the new 2D/1D solution is a much closer approximates the Boltzmann solution than

the standard diffusion solution.
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The most important deviation between the theory presented above and the method-

ology encoded in MPACT rests in the use of a nonlinear iterative acceleration technique

in MPACT, based on the standard CMFD (Coarse Mesh Finite Difference) methodology.

Student Blake Kelley is currently developing a linearized Fourier analysis of this method,

to theoretically validate its observed rapid convergence, and to ensure that this method is

as robust as possible. At the time of the writing of this report, it seemed that without

relaxation, there was the possibility of an instability, but with relaxation, this possibility

could be made to vanish.

IV. PROJECTED FUTURE WORK

The theory sketched here applies only to the simplest 2D/1D equation, using a stan-

dard finite-difference approximation for the 1D axial diffusion discretization, and a relatively

simple “Source Iteration” method with under-relaxation. For the new 2D/1D method to

become applicable to realistic reactor core problems, it must be generalized in several ways:

1. It must include multigroup energy dependence with anisotropic scattering. UM grad-

uate student Blake Kelley has this task on his agenda.

2. Eq. (9) can be directly applied to problems with radial spatial variation of the type

found in reactor cores. This basic procedure is followed in DeCART, and useful

numerical results are obtained. However, in these problems classic diffusion theory

is not valid, and the logic that leads to Eq. (5c) with D = 1/3Σt is also not valid.

Therefore, although the 2D/1D Eq. (9) with D = 1/3Σt can be solved, there is no

theoretical reason why the classic diffusion coefficient D = 1/3Σt should yield the

most accurate solution. Fortunately, an asymptotic theory has been developed that

provides the logic needed to specify D [14, 15]. This approach is also on Blake’s

agenda.

3. A related item on Blake’s agenda is that not only does the baseline 2D/1D method only

communicate coarse-grid scalar fluxes between processors to represent axial leakages,

but also, the axial leakages that are used in the 2D transport equations on each slice

have no fine spatial or angular dependence. Clearly, this is erroneous. Fortunately,

the asymptotic theory makes it possible to describe the fine spatial and angular-

dependence of the axial leakage terms using form functions, which can be precomputed

and stored. We anticipate that the inclusion of this new feature should significantly

enhance the accuracy of the new 2D/1D method.

4. Currently, DeCART uses a nodal (not a finite difference) axial diffusion discretization

in z. The option of a nodal discretization in z is now being implemented in MPACT.

5. As stated above, Blake is now Fourier-analyzing the CMFD acceleration method en-

coded in MPACT, to provide as complete a theory as possible on its efficiency and

range of stability.

6. Blake will also make comparisons to determine how much more accurate Eq. (5a) is

than Eq. (5b), and how much more accurate Eq. (5b) is than Eq. (5c). Other angular
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approximations to the axial leakage term, more accurate than the P1 representation

in Eq. (5a), will also be considered. The following issues will be kept in mind:

(a) If the angular discretizations of F and ψ satisfy Eq. (4a), then the angularly-

discretized 2D/1D Eq. (3) becomes identical to the angularly-discretized linear

Boltzmann equation. Thus, by systematically increasing the accuracy of the

angular dependence of the axial leakage term, the solution of the continuous

2D/1D equation should systematically limit to the solution of the continuous

Boltzmann equation. In this sense, there are many possible 2D/1D equations,

corresponding to different approximations to F .

(b) However, as the angular complexity of the transverse leakage term increases, the

amount of computational work will increase, and the amount of information that

must be passed between processors will increase – causing the parallel efficiency

of the resulting method to decrease. Thus, there is a tradeoff between accuracy

and parallelizability.

(c) An extra degree of complexity occurs because of the fine and coarse radial spatial

grids: no amount of angular refinement will cause the discrete 2D/1D solution to

limit to the discrete Boltzmann solution unless all the spatial grids are refined.

For further details on the new consistent 2D/1D method, we refer the reader to two

conference papers that will appear on the topics discussed above [16, 17]. In the near

future, we plan to aggressively continue the systematic development and implementation

of consistent 2D/1D methods in MPACT, along the lines described above. Specifically, the

tasks listed above will form the remainder of Blake Kelley’s PhD project. Hopefully, when

these tasks are complete, the resulting new 2D/1D method will be just about as optimized

as possible for realistic problems.
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