Power uprates
and plant life extension CASL-U-2013-0069-000

LNASL

Consortium for Advanced Simulation of LWRs

Eggiggggg?sd@weliminary Solution Verification of
Denovo:

Focus on Spatial---Angular

Convergence

William J. Rider
Science-enabling

high performance Sandia National Laboratories
computing
February 28, 2013

Fundamental science

Plant operational data

T I T
000000000008 0090000000000 000040
aee e 9 RADDPIOROBRY
a0 00abeaROLRORES

(T I XX T TR T1]
(JIITEI 1]

Preliminary Solution Verification of Denovo: Focus
on Spatial-Angular Convergence.

William J. Rider
Sandia National Laboratories
Albuquerque, NM 87185
February 28,2013

SAND 2013-1421P
Summary

The purpose of this work is to demonstrate solution verification (i.e., numerical
error estimation) using advanced techniques on neutronics simulations of interest
to CASL. The specific case chosen are simple verification problems computed with
the code Denovo developed by ORNL. This effort has been undertaken to
understand the basic spatial and angular discretization characteristics. The specific
verification analysis will include both standard and recently developed techniques
for numerical error estimation, all based on a modified version of the usual power
law error description. We will also example the coupling of spatial-angular
discretizations into a single coupling term. One key aspect of the study is the
examination of the dependence of the angular error on the discretization. Our
proposed error is relatively successful in describing the error. We also exercise the
error analysis methodology under these stressing circumstances. In particular, the
newer techniques provide a self-contained error and convergence analysis that
includes confidence intervals for the results derived. The methodology is described
in detail in this report.

This work builds upon the basic theory, solution verification analysis and workflow
described earlier by the authors in [Rid10,Rid11,Rid12].

Introduction

Calculation or solution verification is a class of procedure where the discretization or
numerical error is estimated in simulations of problems of interest. Such analyses
constitute a specific form of uncertainty quantification. There are a number of
defined procedures by which numerical error estimates can be converted to
numerical uncertainty estimates. In this report we will review existing procedures
and describe a new one. We take the two terms calculation verification and solution
verification to be synonymous. Code verification is a related, but distinct process in
which the correctness of a software implementation of a numerical algorithm is
evaluated, typically by comparison against an exact solution. For the purpose of
comparison, the new verification procedure introduced will be applied
synergistically to code verification as well.

CASL-U-2013-0069-000

Numerical methods that are used to obtain approximate numerical solutions of
continuum models unavoidably lead to errors in the computed results. These errors
are associated with the numerical method alone and have nothing to do with any
assumptions related to the physical correctness of the continuum models (e.g.,
model-form errors). The process of examining model-form error is known as
validation and is distinct from verification. The challenge of solution verification is
to help provide estimates of such numerical errors. These errors are of four general

types:

round-off errors,

sampling errors,

iterative (linear and nonlinear) solver errors, and
discretization errors.

B W=

Our sole focus in this work will be the last of these, the discretization error. Fully
verifying the veracity of our approach would require further study and additional
calculations that cannot be justified given the difficulty of obtaining full-scale
calculation for estimating discretization error. We fully acknowledge this as a
weakness of the present study.

Discretization errors are a direct consequence of the numerical scheme used to
obtain a discrete approximation of the continuous model equations (e.g., finite
difference, finite element, or finite volume methods). In this case we have to include
the angular variable associated with the use of a discrete quadrature used in the
discrete ordinates method. This aspect of the work renders our effort far more
exploratory in nature. Our finding will be somewhat unique with regard to the
published literature. The solution approach used on those discrete equations and
the nature of the solution itself determine the expected behavior of the error. Many
researchers contend that discretization error is often the dominant source of
numerical error in scientific computing simulations. This is consistent with much of
the authors’ experience, although nonlinear solver error can dominate strongly
coupled (stiff) problems.

Among the most important characteristics of discretization schemes is the order-of-
accuracy (also called the convergence rate), which is given by the exponent in the
power law relating the numerical truncation error to the value of a parameter
associated with the discretization, usually given by the size of the computational cell
(for spatial convergence) or time step (for temporal convergence) and in the specific
case of our study here the order of the numerical quadrature defined by the number
of quadrature points evaluated. This is a standard property of the numerical
method; however, it formally applies only when the solution is continuously
differentiable. The factor multiplying this term gives a measure of the overall error
of a given scheme; thus, two different schemes that converge at the same rate may
have different (absolute) discretization errors. The standard method by which to
estimate this accuracy is systematic mesh refinement (or variation), although there
are, other, less general approaches [Roy10a]. The results of this approach are

CASL-U-2013-0069-000

combined with error measurement to produce the observed rate-of-convergence,
which is compared with the ideal or theoretical rate-of-convergence of the
underlying algorithm. In solution verification, unlike code verification, the use of an
analytical or exact solution to a problem is not available as an unambiguous fiducial
solution. Instead, the comparisons are made between solutions using different grid
resolutions under the a priori assumption that finer mesh resolution yields more
accurate solutions.! This assumption is generally regarded to be reasonable, given
its fundamental character with regard to numerical analysis.

To aid analysts in conducting solution verification analyses, the following workflow
for solution verification is proposed.

1. Starting with an algorithm implementation (i.e., code) that has passed the
appropriate level of software quality assurance and code verification, choose
the software executable to be examined.

2. Provide an analysis of the numerical method as implemented including
accuracy and stability properties. (This information should be available from
the code verification analysis.)

3. Produce the code input to model the problem(s) of interest.

4. Select the sequence of mesh discretizations to be examined for each problem,
and the input necessary to accomplish these calculations.

5. Run the code and provide the means of producing appropriate metrics to
evaluate the difference between the computed quantities of interest based on
numerical parameters within the control of the code user. This can also
include the numerical method chosen (order of approximation or scheme).

6. Use the comparison to determine the sequence of estimated errors
corresponding to the various discretizations and tolerances.

7. The error sequence allows the determination of the rate-of-convergence for
the method, which is compared to the theoretical rate. For iterative solver
errors, the error is a function of the stopping criteria and the discretization.

8. Using these results, render an assessment of the accuracy (level of error
estimated) for the simulation for a given set of numerical settings.

9. Examine the degree of coverage of features in an implementation by the
verification testing.

The workhorse technique for estimating discretization error is systematic mesh
refinement (or de-refinement, i.e., coarsening), while the method for estimating
iterative error involves systematic changes in stopping criteria for the iteration. A
fundamental expectation for a numerical method is the systematic reduction in
solution error as, say, the characteristic length scale associated with the mesh is

! Implicit in this assumption is the expectation that the quantity being measured is
sufficiently well behaved, numerically, that convergence is a sensible concept. For example,
in a turbulent flow, the value of the velocity at a particular location in the flow should not be
expected to converge, but the (integrated) turbulent kinetic energy of a specified volume of
the flow can reasonably be presumed to be convergent.

CASL-U-2013-0069-000

reduced. By the same token, iterative errors are assumed to be smaller as the
stopping criterion is decreased in numerical value. For mesh refinement, in the
asymptotic limit where the mesh length scale approaches zero, a correct
implementation of a consistent method should approach a rate of convergence given
by numerical analysis (often obtained with the aid of Taylor series expansion). In
practice, however, a series of calculations might not be in the asymptotic range. This
circumstance does not obviate the need for some estimate of the numerical error,
however imprecise that estimate may be; in fact the necessity may be increased under
these conditions.

To conduct analysis using this approach, a sequence of grids with different intrinsic
mesh scales is used to compute solutions and their associated errors. The
combination of errors and mesh scales can then be used to evaluate the observed
rate of convergence for the method in the code on the given problem. In order to
estimate the convergence rate, a minimum of two grids is necessary (giving two
error estimates, one for each grid). The convergence tolerance for iterative solvers
can be investigated by simple changes in the value of the stopping criteria. Assessing
iterative convergence is complicated by the fact that the level of error is also related
to the mesh through a bounding relation in which the error in the solution is
proportional to the condition number of the iteration matrix. Most investigations of
iterative solver error only consider the impact of the stopping criteria alone.

Basic Verification Analysis Theory

In this section, we examine the case of ideal asymptotic convergence analysis. The
axiomatic premise of asymptotic convergence analysis is that the computed
difference between the reference and computed solutions can be expanded in a
series based on some measure of the discretization of the underlying equations.
Taking the spatial mesh as the obvious example, the ansatz for the errorina 1-D
simulation is taken to be

14,4, ||=C,+Ch"+o(h") (3)

In this relation, A is the reference solution, which for solution verification is
computed on a refined mesh, Ax.; is the computed solution, h is some measure of the
mesh-cell size, Co is the zero-th order error, C1 is the first order error, and the
notation “o((h)?)” denotes terms that approach zero faster than (h)? as h®0*. For
consistent numerical solutions, Co should be identically zero; we assume this to be
the case in the following discussion. For a consistent solution, the exponent p of h is
the convergence rate: p =1 implies first-order convergence, p =2 implies second
order convergence, etc.

The error ansatz implies:

4,-4,_[[=c,+ch+... (4)

CASL-U-2013-0069-000

Let us further assume that we have computational results on a “fine” mesh hy
(subscript k), where 0 < hi < hi-; with hi.; / hx 2 s> 1.In this case, the error ansatz
implies:

14,4, |[=0"ch+... (5)

Manipulation of these two equations leads to the following explicit expressions for
the quantities p and C:

p= [log‘ ‘Ak - Ak_l‘ ‘—log‘ ‘Ak_l - Ak_z‘ H/Iogc (6)

¢ :HAk _Ak—l‘ |/hp HAk —Ak_1||/h" (7)

These two equalities are the workhorse relations that provide a direct approach to
convergence analysis as a means to evaluating the order of accuracy for code
verification.

For quantities of interest (QOIs) or figures of merit (FOMs), the above development
can be utilized without resorting to error norms. The quantity, 4, is defined without
the use of a norm with the following related error model,

A=A +Ch+... (8)

with the remainder of the development proceeding as above, if the approach toward
A, the mesh converged solution, is monotonic. In the case where a solution is not
monotonically approached, the above error model can still be utilized as long as the
error in absolute terms is diminishing monotonically.

Once the nature of the solution has been properly categorized, the numerical
uncertainty can then be estimated as part of the overall uncertainty estimate.? The
Grid Convergence Index (GCI) of Roach (see [Roa98, Roa09]) is perhaps the original
attempt to codify the numerical uncertainty associated with inferred convergence
parameters. Roache [Roa98] claims that there is evidence for the numerical
uncertainty based on the GCI method (with a safety factor of 1.25) to achieve a 95%
confidence level. This approach was extended to the Correction Factor (CF) method
of Stern et al. [Ste01] Xing and Stern [Xin10], however, take issue with both of these
approaches, stating, “...there is no statistical evidence for what confidence level the
GCI and CF methods an actually achieve” and, more specifically, that their analyses
“...suggest that the use of the GCI1 method is closer to a 68% than a 95% confidence
level.” As we describe below, Xing and Stern come to a different conclusion
regarding an approach that technically does meet the 95% confidence level
empirically, albeit with respect to a specific ensemble of simulations.

2 The proceedings of the 1st, 2nd, and 3rd Workshops on CFD Uncertainty Analysis [Eca08]
provide an interesting reference on many aspects of uncertainty analysis for CFD.

CASL-U-2013-0069-000

Eca and Hoeckstra [E¢a06] propose heuristics by which to estimate the numerical
uncertainty associated with fundamental behavior of a set of computed results.
These suggestions appear to be based on the assumption that the underlying
numerical scheme has a theoretical convergence rate of two; however, for many
multiphysics (and some single-physics) problems, the theoretical convergence rate
is unity, for which the specific prescription of [Eca06] should be modified. It is
worth noting here that the convergence rate is both a function of the scheme
employed and the nature of the solution sought itself. For example, a second-order
method applied to a problem with a discontinuous solution cannot produce a
second-order convergent result. Hence the expected theoretical convergence rate is to
be considered a function of both the method used and the solution sought.

We highlight the heuristic but simple estimation associated with Roache’s
procedure as defined by Oberkampf and Roy [Obe10]. The simplicity of this
estimate should be held in contrast to the more elaborate procedure described later.
For both procedures, the starting point is a regression given the results of the mesh
refinement (or coarsening) procedure. This produces a mesh-converged result, 4,
and convergence rate, p. From these values, one obtains the basic scale for the error
estimate,

— 4,-4 — 1

A-A . (9)

5(1 O_p_1 k

This value is processed with the convergence rate to define a safety factor,

| 1258, if |p-p,,| /Py, <01
- 3‘5a| otherwise '

U =F|s (10)

num

o

Finally, the grid convergence index (GCI) is the ratio of Unum/A expressed as a
percentage. The safety factors in (10) were chosen on the basis of expert judgment
from extensive CFD experience.

Xing and Stern [Xin10] take a different, more complicated, but nevertheless still
empirical approach. To evaluate the numerical uncertainty associated with these
solution verification estimates, Xing and Stern performed a statistical analysis of 25
sets of computational data, covering a range of fluid, thermal, and structural
simulations, to arrive at various parameters for their estimations of simulation
uncertainty. The parameter values obtained by Xing and Stern provide
computational uncertainty estimates that demonstrably satisfy the 95% confidence
level for the data sets upon which that analysis is based. They contend that the
formula below provides a safety factor with empirical, statistical support. We
suggest following this approach whenever the grid sequence provides a convergent
sequence.

CASL-U-2013-0069-000

(245-0.85P)|8,].if0< P <1
(164P—14.8)|8,].if P>1

U, = FS|5,| = (11)

num

where P = prg/pe, the ratio of the Richardson extrapolation based convergence rate
(pre) and the theoretical convergence rate (p:), defines whether the observed
solution is asymptotic in nature. The numerical error magnitude comes from the
Richardson extrapolation toward the monotonically mesh converged solutions as

A—-A
0 =—k—KkL 12
«T g7 1 (12)
or the related error estimate for monotonically decreasing error as
A—-A
0 =—Fk—*k1 13
e (13)

In the case where the solution is not convergent, the numerical uncertainty should
nonetheless be estimated, however imprecise those estimates may be. It is the
authors’ experience that users of codes will generally move forward with
calculations and—absent guidance to the contrary—may offer no numerical
uncertainty estimates whatsoever. We maintain that this practice is potentially
more dangerous than providing a weakly justified estimate. We offer the important
caveat that this bound is not rigorously justified; it is perhaps more appropriately
viewed as a heuristic estimate, with documented provenance, that can be readily
generated given limited information. The simplest approach is to examine the range
of solutions produced and multiply this quantity by a generous safety factor,

u. :3(maxA—minA) (14)

The safety factor, set to 3 in (14), might assume different values in different
computational science applications. This heuristic approach is similar to that
advocated by Eca and Hoekstra [E¢a06].

Augmentation of Verification Theory for Neutronics

In order to apply verification to neutronics we must treat the angular variable. The
angular quadrature is defined by the order of the quadrature (here our attention is
primarily directed toward the level symmetric set used as the default in Denovo).
This method is known as the “Sn” method where “n” is the order of the quadrature,
and the number of quadrature points is given by n(n+2)/2, which scales as n>. The
angular space is two dimensional thus the analog to h in space is 1/n in angle. This
is similar to the ansatz made by Jarrell in his thesis [Jar10]. We then take the
angular error to be

Py
A= A+C, [n" (15)
and the coupled angular-space equation with discretization error to be

CASL-U-2013-0069-000

A =A+CH"+C [n", (16)

or

phn
h
Ak=A+Chhph+Cn/n”“+Chn[;j . (17)
These are the specific forms that we examine from the set of calculations conducted
with Denovo. We have tested (16) in comparison to (17) and found that the simpler
form of the error model performs better as measured by the requisite uncertainty.

Some general conclusions regarding the propriety of these forms will be one of the

preliminary conclusions from this study.
Detailed Workflow

Here, we reproduce the details of the proposed CASL solution verification workflow,
which this work will demonstrate. The proposed steps do, however, standardize a
solution verification workflow that can be conducted by a code team (developers
and testers) for the purpose of estimating numerical uncertainty. Ideally, the code
verification process should be conducted regularly (as well as on demand), so that
incorrect implementations impacting mathematical correctness are detected as
soon as possible. The general consensus in software development is that the cost of
bugs is minimized if they are detected as close as possible to their introduction.

This procedure assumes that the code team is using a well-defined software quality
assurance (SQA) process, and that the code verification is integrated with this
activity. Such SQA includes source code control, regression testing, and
documentation, together with other project management activities. For consistency
and transparency, we recommend performing the code verification in the same
manner and using the same type of tools as other SQA processes.

1. Starting with an implementation (i.e., code) that has passed the appropriate
level of SQA and code verification scrutiny, choose the executable to be
examined. Solution verification can be a resource-intensive activity involving
substantial effort to perform. It is important that verification and validation
be applied to exactly the same code. Therefore, solution verification should
be applied to the same version of the code that analysts would use for any
important application. Indeed, this process should be applied to the specific
version of the code used throughout the entire V&V UQ activity.

2. Provide an analysis of the numerical method as implemented, including
accuracy and stability properties. The analysis should be conducted using
any one of a variety of standard approaches. Most commonly, the
von Neumann-Fourier method could be employed. For nonlinear systems,
the method of modified equation analysis can be used to define the expected
rate and form of convergence. The form and nature of the solution being
sought can also influence the expected behavior of the numerical solution.

CASL-U-2013-0069-000

For example, if the solution is discontinuous, the numerical solution will not
achieve the same order of accuracy as for a smooth solution. Finite element
methods can be analyzed via other methods to define the form and nature of
the convergence (including the appropriate norm for comparison).

3. Produce the code input to model the problem(s) for which the code
verification will be performed. Each problem is run using the code’s standard
modeling interface as for any physical problem that would be modeled. It can
be a challenging task to generate code input that correctly specifies a
particular problem?; e.g., special routines to generate particular initial or
boundary conditions that drive the problem may be required, and these
routines must be correctly interfaced to the code. It is advisable to consider
the complexities and overhead associated with such considerations prior to
undertaking such code verification analyses.

4. Select the sequence of discretizations to be examined so each solution.
Verification necessarily involves convergence testing, which requires that the
problem be solved on multiple discrete representations (i.e., grids or
meshings). This is consistent with notions associated with h-refinement,
although other sorts of discretization modification can be envisioned. The
mathematical aspects of verification are typically most conveniently carried
out if the discretizations differ by factors of two.

5. Run the code and provide of means of producing appropriate error metrics to
compare the numerical solutions. The solutions to the problem are computed
on the meshes corresponding to the different discretizations. Most
commonly and as discussed above, these metrics take the form of norms (i.e.,
p-norms such as the L; or energy norm). The selection of metrics is
inherently tied to the mathematics of the problem and its numerical solution.
The metrics can be computed over the entire domain, in subsets of the
domain, on surfaces, or at specific points. The domain over which the metrics
are evaluated and the analysis is to be conducted must be free of any
spurious solution features (due, e.g., to numerical waves erroneously
reflected from computational boundaries).

6. Use the comparison to determine the sequence of errors in the computed
solutions. Using the well-defined metrics for each solution, the error can be
computed for each discrete representation. Ideally, there will be a set of
metrics available (e.g., L1, L2, and Linfinity), providing a more complete
characterization of the problem and its solution.

7. The error sequence allows the determination of the rate-of-convergence for
the method, which is compared to the theoretical rate. With a sequence of

3 Trucano et al. [Tru06] refer to this concept as the “alignment” between a code and a
specific problem (either verification or validation).

CASL-U-2013-0069-000

errors in hand, the demonstrated convergence rate of the code for the
problem is estimated. The theoretical convergence rate of a numerical
method is a key property. Verification relies upon comparing this rate to the
demonstrated rate of convergence. Evidence supporting verification is
provided when the demonstrated convergence rate is consistent with the
theoretical rate of convergence. This can be a difficult inference to draw,
because the theoretical rate of convergence is a limit reached in an
asymptotic sense, i.e., it cannot be attained for any finite discretization. As a
consequence, there are unavoidable deviations from the theoretical rate of
convergence, to which judgment must be applied.

8. Using the results, render an assessment of the method’s implementation
correctness. Based on the discrete solutions, errors, and convergence rate(s),
a decision on the correctness of a model can be rendered. This judgment is
applied to a code across the full suite of verification test problems.

a. The assessment can be positive, that is, the convergence rate is
consistent with the method'’s expected accuracy.

b. The assessment can be negative, that is, the convergence rate is
inconsistent with the method’s expected accuracy.

c. The assessment can be inconclusive, that is, one cannot defensibly
demonstrate clearly either uniform consistency or inconsistency with
the method’s expected accuracy. For example, the convergence rate is
nearly the correct rate, but the differences between the expected rate
and the observed rate is unacceptably large, potentially indicating a
problem.

Figures 7a,b show the entire process in diagrams that conceptually expand the line
for code verification in Fig. 4. As previously stated, this process should be repeatable
and available on demand. As noted in the introduction to this section, having the
code verification integrated with the ongoing SQA activity and tools can greatly
facilitate this essential property. The solution verification process is not monolithic,
but, instead, should be flexible and should meet the needs of the specific application.
For this reason we include two versions of the flowchart to facilitate this mindset.

CASL-U-2013-0069-000

Write the =
Develop the =
computer =
et implementation £ B
g J \Jmp ¢ J 3 2
i |
Analy}ze;he ’ (Sh;t co.de ’.’ S.(?ftffvar‘e qual.lt)f‘ % =
methods \Vell lcatlon/ assurance process | = 2
N — — w c
= rc
N 2 2|z
/ \] -
/ \ Rt
Develop the 2 -
Develop the P =

. meshes to solve
code input

§) __problemon | [s5ye Analysis
I N o
' Compute errors | Write error
on the meshes analysis
chosen) software
/ \

v

Compute the
convergence
rate

The expected
convergence rate Is the result
' acceptable?

+ Yes, it is the expected rate

No, there is a problem

How well does
verification cover
code features?

Figure 1(a). The flowchart version of the list of activities is shown for code
verification, which can be interpreted as an expansion of the simple expression of
this activity.

CASL-U-2013-0069-000

Unverified z |]
[Model of Reality '
Code |

v Governing Equations

Choose/Develop Numerical
Method

Y

Develop Problem

v

\ B
{1

Analyze |\

Algorithm

|
|
v Discrete Equations |
v Untested Code |

—l—)‘ Express in Software |
[

Y Q)
Software Quality Engineering Express as
(SQE) | code input

Run simulations of test Input deck,
problem on various meshes | sequence of meshes

N

i Numerical Solutions

Quantitatively Compare
Different Grid Solutions

/kbsm’ed Convergence Rate

No - — n
Expected

~ RatesMatch? :

Convergence Rate
Yes: Code works as
M= 7 7 i T T
_~Satisfied™
I No -~ with ~ I
numerical
solutions?

Search for issues in these elements

Issue
Analysis

(Partially)
Verified
Code

Yes: Go to next test or,
to application

Figure 1(b). The flowchart version of the list of activities is shown for code
verification, which can be interpreted as an expansion of the simple expression of
this activity.

A Solution Verification Methodology Based On Optimization

The starting point for verification analysis is the definition of a postulated model for
the numerical error. The standard model is a power law (which we continue to
study albeit in modified form),

A =A+Ch (18)

where Ay is the value computed on the kth mesh, 4 is the (estimate of the) mesh
converged solution, C is a proportionality constant, hx is the mesh length scale (e.g.,
cell size in 1D), and p is the convergence rate. This ansatz is motivated by
conventional analysis (e.g., Richardson extrapolation). One should bear in mind,
however, that any such form is an assumption. Here we also use the set of angular
errors forms discussed above (equations 15, 16, 17). Therefore, one could explore
alternative models, but we do not in this work. Often verification (in particular, code

CASL-U-2013-0069-000

verification) focuses on the convergence rate, p as the key result and its congruence
with theoretical expectations, pseo- In solution verification, the focus can be
expanded to the overall error term, C h?, with specific application to error
estimation.

We repeat the important point that the theoretical convergence rate is dependent
not only upon the method used for computations, but also upon the nature of the
solution itself, the quantity whose convergence is being analyzed, and the metric
being considered. For example, a second-order method can be used to compute a
result, but the presence of a discontinuity can render the solution only first-order
convergent at best [Majda77]. Moreover, under these conditions the first-order
result can only be expected for an integrated quantity (e.g., in a hydrocode
simulation, the specific internal energy integrated over the domain), and a non-
integrated quantity (e.g., the specific internal energy at a point) might be expected
to be non-convergent. We have found that the neutronics literature does not contain
significant results regarding the expected rate of convergence for discrete ordinates
methods as a function of the angular order of the quadrature.

This model works well under the proviso that the mesh converged solution is being
approached asymptotically in a monotone fashion. Quite often, in practice, this is
simply not the case. Under such circumstances the standard model does not work
and, instead, we might expect the error to decrease in a power law fashion,

|| =ch? (19)

where Eyis the error. Alternatively, one might find that the solution is diverging,
which would be characterized by p<0. Such a result is often viewed as a failure, but,
in fact, for verification, it is a success: important feedback for a set of calculations
has been achieved. We make particular note that the error form in (19) has use in
code verification where the errors are computed a priori given knowledge of the
analytical solution.

In the following development, we will first apply the standard error model in an
attempt to achieve a “best-case” result. When this result is available, the error
should be defined as the distance between the solution and the best estimate, where
the notion of distance will be made precise in the metric used. This is a divergence
from the current standard practice for defining “numerical error bars” that are
symmetric about the finest mesh used as data. We note that this procedure can only
be utilized under the circumstance where the behavior is ideal. Should the data be
congruent with the underlying assumptions associated with this model, then this
estimate using the standard error model will be termed as a “best-estimate” result. If
the best estimate is available, then we can also produce an error bound using the
second (error) model, which we shall describe. In either case, the error model can
be used to bound the error. These estimates provide the foundation by which to
define error bars in the currently accepted standard manner, with the error bars
associated with the values computed on the finest mesh.

CASL-U-2013-0069-000

Given a set of metrics computed on a sequence of mesh resolutions, the standard
practice is to utilize nonlinear least squares to solve for the parameters in the error
model, Eq. (18). Usually this step is completed with little consideration of the
implications of this solution procedure. To help illuminate the significance of this
choice, we examine some basic properties of the least squares curve fit. First, the
least squares approach is directly associated with normal (Gaussian) statistical
assumptions regarding the errors in the parameter values [Bjork]. Specifically, the
nonlinear least squares fit is optimal if the errors in the parameters are normally
distributed about the optimal values. The least squares formulation has distinct
virtues for linear regression problem, because the solution is rendered linear by the
minimization of fit residual in the Lz norm. This property is lost when moving to
nonlinear models, such as those we will utilize here. Consequently, we lose little in
moving to a more general formalism for the regression and then implemented via
optimization in the work reported here.

We have replaced the regression with the equivalent, but more flexible practice of
optimization. This allows us to pose the minimization functional more generally as
well as access more robust solution techniques than the general nonlinear
regression methods allow. We are not limited by the specific implementation in the
regression package in software. In particular robust regression, Tihkonov
regularized least squares or LASSO regression can all be easily defined along with a
reliable solution to the L1, L1/2 and Linfinity regression problems.

The field of robust statistics has been developed to reduce the sensitivity of
regression procedures to outliers in a given data set. The simplest robust regression
approach is to minimize the L1 norm of the residual. In distinction to the least-
squares approach mentioned above, the L1 regression has a different statistical
connection. For L1 regression, the fit is optimal if the errors are distributed by
Laplace’s (double-exponential) distribution [Bjork]. The double-exponential
distribution is sharply peaked at the mean and has longer tails than the normal
distribution. At the other end of spectrum is the minimization of the Linfiity norm of
the residuals (also known as Chebyshev or minimax approximations). Unlike
minimization of the L1 norm, Linsiity -based regression is minimally robust because it
can be greatly influenced by outliers; nevertheless, this form of regression is indeed
optimal if the errors are distributed uniformly. There are other robust regression
procedures, such as least median deviation, we do not utilize such approaches here,
but they may prove useful for more general work. More broadly, there is an infinite
class of regressions defined by the norm that is chosen for minimization.

For the case we are considering, i.e., a set of metrics computed on a sequence of
mesh resolutions, the distribution of errors is unknown and, most likely, does not
correspond to any particular analytical probability distribution. There is no reason
to favor one distribution over another; that is, that the ensemble of errors should be
consistent with some particular distribution is not supported by existing theory or
empirical evidence. In particular, there is no reason that the Gaussian distribution

CASL-U-2013-0069-000

associated with standard least-squares regression should be favored, despite its
widespread use in applications, including verification.

Finally, we can provide an improvement in the regression via the application of
weighting the data. We do have the prior expectation that the results computed on
finer grids (i.e., with smaller mesh spacing) are “better.” This presumption is
essentially a restatement of our belief, ultimately, of convergence under mesh
refinement. To reflect this assumption quantitatively, the data can be weighted
inversely proportional to the mesh spacing (i.e., by 1/h)%. In this work we combine
the weights for space and angle for a weight, (n/h). That is, we judge a priori as
more “important” the values computed on the finer meshes. This weighting, while
usually plausible, is not associated with any particular analytical statistical
distribution, but nevertheless provides an alternative, rational approach to data
analysis.

Another approach based on prior information would be to utilize the expected
(theoretical) convergence rate in the regression. For example, the assumption that

the error model for a second-order method is 4, = 121+Ch]f would produce a linear

regression problem. Based on this prior knowledge, the observed convergence rate
could reasonably be expected to lie in a certain range, so that a model can be solved
using the bounds of this range. Such a line of thought can be extended to the general
regression problem by appealing to constrained regression using the above-stated
bounds as constraints to the regression problem in the chosen minimization norm.

Our first effort focused upon the implementation within regression software, but
upon the examination of results we found that direct optimization produced better
results within our chosen software tool, Mathematica™. Overall, the solution
methods used for the minimization are more flexible, reliable and robust. Moreover,
significant additional flexibility was gained in defining the functions being used for
regression. The allowed a number of robust regression procedures to be utilized in
the work including L1, and infinity norms as well as regularized functionals such as
Tikhonov and LASSO regularizations. The actual procedures utilized in the results
are shown in script form in an appendix to this report.

Robust statistics offer a set of models and regression techniques with which to form
estimates of the error and, consequently, of the converged solution. The values of
the parameters vary depending on the method used, and the level of variation in the
inferred parameters is a direct measure of how the values are distributed. Results
may be largely the reflection of outliers in the data set, in which case the parameters
themselves may be outliers. The conventional statistics for characterizing a set are
the mean and standard deviation, the latter of which is implicitly associated with a

4 Of course, this weighting could be modified to be inversely proportional to the mesh
spacing to some positive power, i.e., 1/h4, where q > 0. In this effort we also introduce the
weighting with respect to angle, i.e., a weight of n/h, or na /ha.

CASL-U-2013-0069-000

Gaussian distribution. These measures are known to be susceptible to the presence
of outliers [Huber]; that is, a single outlier can produce a substantial change in these
statistics. Of course, the determination of what constitutes an outlier depends upon
the statistical assumptions made (often implicitly) in the data analysis.

We contend that such sensitivity is not an appropriate characteristic for a “"best
estimate” of the result. We make this assertion based on our experience that
apparent outliers in the results of numerical calculations of computational science
and engineering are far from unknown. To help address this issue, we choose
instead the median of our estimates as the measure of central tendency. Unlike the
mean, the median of a data set is substantially more robust to outliers [Huber]. The
variation in the data can likewise be measured by the median deviation (analogous
to the standard deviation), which is the median of the deviation from the median
across the ensemble. Our procedure will regress the data using the error model and
a number of regression techniques elucidated above, and we will then apply median
statistics to identify the best estimate.

Another novel element of our approach it is the ability to examine the results in a
manner that does not assume the symmetry of the estimates. The primary analysis
is a best estimate of the mesh converged result, 4, which should not necessarily be
symmetric, but rather potentially have a bias. To accomplish this analysis we first
compute the median of A and then divide the list of estimates into two lists of
estimates: those less than the median value and those greater. We subtract the
median(4) from each element of these sets and then compute the median deviation
for each list. These values are signed, and provide an estimate of the negative or
positive bias in the analysis. On the other hand, the error estimate, |E| is symmetric
by construction and should be interpreted as such.

Finally, our approach possesses a number of characteristics of the statistics
technique known as bootstrapping. In the bootstrap, small data sets are resampled
to provide a better basis for statistical inference. In the case of verification, typically
a (very) small number of data points is available. In our analysis, the different
regressions provide the set of different statistical views of the data. By using
differing regressions and subsets of the data, a bootstrap of a sort is applied. If the
data are completely consistent with a certain convergence rate (i.e., the solutions
are all in the asymptotic range for the method), then the results of this ensemble will
be self-consistent. This will have the effect of producing accurate error estimates
with intrinsically small uncertainty. Conversely, if the data are not consistent, then
the error estimate will vary significantly, and a large uncertainty will be indicated.
Such behavior is ideal for the purposes of solution verification analysis. Our
examples will demonstrate this property.

Our New Solution Verification Algorithm based on Optimization Methods

Given this background we will define a sequence of steps to produce our overall
error estimates. These estimates will produce a best estimate if the data supports

CASL-U-2013-0069-000

this, and an estimate of the bounds of the error. While the procedure is congruent
across the possibilities of under-, exactly- or over-determined optimization there
are subtle differences that must be acknowledged. At a high level, the overall
algorithm is expressed below:

1. Produce an analysis of the numerical method used and the problem solved to
establish a theoretical rate of convergence with lower and upper bounds for
the convergence rate, piower and pupper. For the more complex error ansatz
with two discrete variables, bounds are entered for all variables. In addition,
the basic nature of the solution can be encoded as a constraint (such as
positive definiteness, or more specific upper or lower bounds).

2. Screen the data for the basic character (i.e., whether the convergence is
monotonically convergent, convergent, or divergent).

3. If the data is monotonically convergent (even weakly, using the end points of
the data sequence). Chose a data set starting with the finest mesh values
S1=[(hn-,nn-1,AN-1), (hynnAn)]j=1.

4. Using the subset of the data, S;, produce the following steps.

d.

CASL-U-2013-0069-000

Using the data pairs (hiniAx) produce a set of constrained regressions
using several techniques L1, Lz, Linfinity, weighted Lz, ptheo L2, Plower L2,
and pupper L2. In addition, L4, Lg, Tikhonov, LASSO, and weighted
variants of each using (n/hx).

Examine the results to see whether the computed estimates of p
match either the lower or upper bound. This is a warning sign that
probably precludes the completion of a “best estimate” of A. These
estimates will be provided for spatial, or angular errors alone, or their
coupled error.

Work through the data points from the finest resolution, adding
additional (coarser) data points and producing new regression fits for
each set of data. This aspect of the procedure is predicated upon the
assumption that finer grids produce more accurate results. Thus, for
each part of the full data set, one obtains a set of regressions, with the
results biased toward the finer grids. Return to step 4a until the data
is exhausted.

Find the median of the A edian €stimates, the median deviation, Y. median-
The estimate of the mesh converged solution is Amediant3 Y median. Here,
the value 3}’ nedian provides a bound analogous to the 95% confidence
interval sought with other solution verification procedures.

Conduct the asymmetric analysis of the results by separating a sorted
list of the A into two equal lists, one with elements less than Apmegian
and the other greater than Amedian. Compute the median of each of
these sets and subtract Amedian, which provides a negative and positive
bias, 3)- and 33, in Apmedian.

For all results, one can produce a “GCI-like” result in terms of
percentage as GCI=3Y /A * 100.

(This overall procedure is implemented as a Mathematica™ script in
Appendix A).

5. If the absolute value of the error is monotonically convergent (this includes
the monotonically convergent case) Note: this form of analysis is excluded
from this study due to the focus on angular discretziation:

a. Compute the absolute difference between the solutions at adjoining
meshes, (hi,nihi-1,/Ax-Ar-1/) (define AAkk-1:= [Ak-Ak-1]-

b. Produce a set of regressions using the data above L, Lz, Linfinity,
weighted L2, piheo L2, plower L2, and pupper L2) for the error model, C|hi? -
hi-1P| where the additional constraint that C>0 is used.

c. Screen the results of the regression for anomalous behavior in
convergence rates. Return to step 5a until the data is exhausted.

d. For the best estimate of error, use the median of the error model, C h,?
regressions evaluated at h,, where n is the finest grid available. This is
the best estimate of the error bar.

e. Additionally find the max(C hn?) to produce the bound of the
numerical error at the finest grid.

6. Ifthe errors diverge, compute the rate of divergence and exit.*

7. lIf there are unused coarse grid data points j:=j+1 ;(if j<N-1), S;=[(hn;An),

..(hnAn)]; and return to step 3. This algorithm is given in Appendix A.

* For under-determined (2 grid) cases, this cannot be explicitly determined. We
further note that the error examination has been excluded from this study for
brevity.

It is worthwhile to make a few comments on the procedure. Expert judgment is
added to the process in several key places: the determination of the expected
convergence, the screening of the data (with potential rejection of anomalous
solutions, and the screening of the regression results). The use of robust statistics
can provide some relief from this step, but expert opinion remains a necessary
element in this activity. If the data are very well behaved, one produces both a best
estimate with a numerical error bar that is not symmetrically placed with regard to
the finest solution, and a bounding estimate that is congruent with existing practice.
Finally, the procedures eliminate the use of an empirical safety factor, rather instead
upon the diversity of estimates and the use of a maximum over those estimates to
provide safety in the estimations.

For code verification the basic procedure is the same except no error estimate is
needed, as it is explicitly available. We use the same basic error form as before, Ex =
C hip. There are only two unknowns, the constant and the convergence rate. The
procedure we use is otherwise no different than that used for solution verification.
The actual script used for the analysis is reproduced in Appendix B.

Example: First-order ODE integration
To clearly demonstrate these techniques we apply both the code and solution

verification methodology to a simple problem as an example. To this end, we will
solve a classical linear ODE, dA/dt = -A, with initial condition A(0) = 1, for the

CASL-U-2013-0069-000

solution at time t = 2, using the first-order accurate forward Euler method, A™*1 = A"
- h An. The analytical solution is A(2) = 0.135335. By utilizing the exact solution, we
demonstrate our code verification methodology, and by ignoring the exact solution

we demonstrate (and quantify the accuracy of) the solution verification techniques.

Being a simple problem we can compute the results in any number of ways, namely
code, Mathematica™, Excel™, etc.; in this case, we use Excel™. We solve the problem
at a number of time step sizes as given in Table 1 below. Using the exact solution we
can compute errors to enable code verification, and ignoring these results, errors
can be estimated.

Time Step Size | Solution at t=2 | Exact Error at t=2
0.4 0.0777600000 | 0.057575283
0.25 0.1001129150 | 0.035222368
0.2 0.1073741820 | 0.027961101
0.1 0.1215766550 | 0.013758628
0.08 0.1243642870 | 0.010970996
0.04 0.1285121570 | 0.005449489
0.02 0.1326195560 | 0.002715727
0.01 0.1339796750 | 0.001355608
0.008 0.1342511570 | 0.001084126
0.005 0.1346580430 | 0.00067724
0.004 0.134793581 | 0.000541702

Table 1. First order forward Euler solution of an ODE for varying time step sizes.

The code verification results can be computed using the standard techniques with a
single linear regression (including a standard deviation computed using Gaussian
statistics). In this case, the data in Table 1 gives a convergence rate of 1.03150 *
0.0029816. Our new methodology provides very nearly the same result, but, by
applying a range of regressions on subsets of the data, uncertainty in the
convergence rate is also estimated, with the result: 1.00436 + 0.003465, based on
77 different regression fits. Our procedure provides a result that focuses upon the
fine grid results and provides great confidence that the integrator is implemented
correctly.

The same sequence of actions can be applied while ignoring the exact solution to
produce numerical error estimates. Using the simplest case of Roache’s estimator
and standard regression produces the following estimates for the error and
convergence rate. In contrast the new procedure provides a more self-contained
error estimate with uncertainty together with a convergence rate and uncertainty.
Roache’s estimate produces a numerical error of 0.0005178 (GCI £0.0517851%
does not properly bound the error, and neither does the standard deviation of the
extrapolated mesh solution £0.0000420147), and a rate of 1.0378 (GCI
+(0.00328027). Xing and Stern’s estimator produces a numerical uncertainty of
0.0009263 (CGI £0.0926339%). Our procedure, on the other hand, produces a

CASL-U-2013-0069-000

median convergence rate of 1.0219+0.0154 with a median extrapolated solution of
0.135316+0.000138247 (£0.102166%). Applying the asymmetric analysis to these
results reveals more texture with the bias in the estimated results being large and
slightly negative, 3)- =-0.000451116, 3):* = +0.0000447998 (GCI- = -0.333378%,
GCI+ = +0.0331074%). Here, we have constrained the convergence rate to lie in the
interval 0.5 < p < 1.5 in the analysis. The new procedure is clearly more accurate for
this well-behaved case, where the older ad hoc approaches are not properly
bounding the error in one case. The analysis uses 121 different regression fits to
subsets of the data, providing a broad basis for statistical inference utilizing our
bootstrap-like approach described above. Figures 1 and 2 provide a snapshot
picture of the sample provided by our procedure. On the other hand, our bounding
error estimate is 0.0005351+0.0000154, which is extremely accurate given the
exact value for the error given in Table 1.

50 -

40+

30

10

A I B e AR RN HPN oo s BN cremere|
0.1351 0.1352 0.1353 0.1354 0.1355 0.1356

Figure 1. Calculated histogram (i.e., the effective PDF) of the estimated mesh
converged result A for the ideal case in our ODE example verification example. Note
that the histogram is non-symmetric and biased toward values less than the peak.
The exact solution is contained in the bin associated with the peak of the PDF. This
bias is well described by the difference in the computed median deviation values)"

and)'*, where the negative deviation is ten times larger than the positive deviation.

CASL-U-2013-0069-000

0.135 [

0.130 -

0.125 -

0.120 -

0.115

0.110 -

I I I I I
0.02 0.04 0.06 0.08 0.10

Figure 2. The ensemble of the 99 different solution models derived for the ODE case.
Most of the models lie at the upper part of the plot, which strongly influences the
estimates and uncertainty. The corresponding histogram (i.e., the effective PDF) is
definitely not Gaussian in shape, as shown in Figure 1, the values for which the
quantities shown on the ordinate of this plot, i.e., the values for h(4t)=0.

This is an almost ideal case that should be a “slam dunk” for almost any reasonable
methodology. We can make this problem more realistic—and difficult—by simply
analyzing the four coarsest data points given in Table 1. Such a small data set more
closely resembles the applied CFD examples in the following sections and situations
often encountered in real-world engineering simulations. In the case of code
verification, standard regression applied to these four values provides a
convergence rate of 1.03851 (¥0.00223336), while the new procedure gives a
similar value of 1.02712 + 0.00403. Using the same data in solution verification
mode, we produce an estimate of the mesh converged solution A= 0.13462 +
0.001159 with a convergence rate of p=1.06202+ 0.009148. The new estimate
captures the exact solution due to the effective bounding procedure, in which the
inclusion of the lower and upper bounds on the convergence rate is essential. On the
other hand, the bounding error estimate, Unum= 0.001359, captures the error in the
solution nicely. Roache’s estimate is A= 0.13462 (x0.0000643967), with Unum=
0.016304, and Xing and Stern’s approach gives A= 0.13462, with Unum= 0.03411.
Both of these uncertainty estimates are greater than that of the new method by
approximately an order of magnitude, while the estimated converged solutions are
nearly identical to several significant figures.

CASL-U-2013-0069-000

An interesting observation from our example is the significant difference between
the standard errors computed from the linear regression in the standard approach
augmented by the ad hoc error estimation procedures of either Roache or Xing and
Stern. We believe that the differences are most significantly due to the reliance of
the standard estimates on a single nonlinear regression as compared with multiple
regressions on multiple subsets of the data. For this reason our analysis is more
complete (and much more computationally intensive in the analysis phase). The
regression standard errors implicitly assume Gaussian statistics and generally
under-estimate the actual error, while the numerical uncertainty estimates over-
estimate the error. In defense of these estimates, the necessity of over-estimation
appears to be a built-in “feature.” The only concern would the magnitude of the
over-estimation of the uncertainty estimates, and its basis in the statistically biased
regression that is used to drive the process. We believe that the new approach
removes much of the intrinsic bias in regression, replacing it with elements of
robust statistics.

Results For The Neutronics Code, Denovo

Denovo [EvalZ2] is a discrete ordinates radiation transport method used to solve the
Boltzmann transport equation (time-independent),

Q-Vl//(X,Q,E)+G(x,E)1//(x,Q,E):
[dE'| o (x.Q-QF —E)y(xQ F)

X\E): , N)

%jdE LﬂdQ vo (x,Q-QE —E)y(x,QE) (19)
describing the behavior of neutron populations in space. The methodology used by
Denovo is referred to as deterministic transport to distinguish it from statistical
methods based on the Monte Carlo method [Met49] although Denovo does contain
the capacity to compute Monte Carlo solutions. The code contains the capability to
use several different spatial approximations to the streaming term in equation (19)
as well as different quadrature formula for the integral term. We will not examine
the codes capacity to solve eigenvalue (criticality) problems in this study although
future work could include this.

The spatial approximation to the first-order streaming term includes the step
characteristic method (i.e., donor cell or upwind in the parlance of hydrodynamics
methods), and linear discontinuous (i.e., discontinuous Galerkin), trilinear
discontinuous and the classical diamond differencing with negative flux fix-up.
These methods each carry certain advantages and have been examined extensively
in the literature [Lar82,LM84]. The spatial grid can be 1-, 2-, or 3-dimensional and
non-uniform in nature.

The angular discretization includes the classical level symmetric method, which is

its default. The order of the quadrature can take even values from 2 to 24. Other
available quadratures are Gauss-Legendre, Quadruple Range, Galerkin, and a linear

CASL-U-2013-0069-000

discontinuous finite element (LDFE) approach. We will examine these quadratures
with respect to mesh convergence in the angular variable although expectations for
the rate of convergence are sparse in the literature. Denovo employs the Koch-
Baker-Alcouffe sweep method for solution along with accelerated source iteration.
The code can compute in parallel. Denovo is capable of using the full spectrum of
modern computing hardware from laptops to the largest supercomputers. For this
study relatively small computers were used (a Macintosh desktop with 2-6 Core
3GHz processors, and up to 24 way parallel computations using MPI on threads).
The parallel processing is necessary due to the high-dimensional nature of the
transport equation (it is six dimensional in the time independent case). For the
study provided in this report, we have solved over one-and-a-half billion unknowns
on our most refined grid despite the relative simplicity of the problems chosen.

Figure 3. Example of the placement of quadrature points for the level symmetric
quadrature for the S2, S4, S6 and S8. A single octant of the solid sphere is displayed
with the location of the integration points.

Such flexibility in approximation is not available for the discretization in energy.
This reflects the usually complex structure associated with cross section
information as a function of neutron energy that does not lend itself to a well-
controlled approximation theory. Nonetheless, the behavior of such codes with
regard to energy would be a useful study for the future. We note in passing that
photon (gamma) transport has been studied with respect to convergence in energy
discretization due to its intrinsically better behaved character and second-order
convergence has been demonstrated [She10].

CASL-U-2013-0069-000

DB: tupverif_coarse.silo
Cycle: 0

DB: tupverif_superfine silo
Cycle: 0

Mesh
Var. ki

BA mesh

user; wiider
Tue Feb 12 09:48:35 2013

Figure 4. Coarse and fine grids used in our stud};. These are the coarsest and finest
spatial grids utilized for the upscatter problem. The angular grid varied from S2 to
S24 level symmetric quadratures.

4 user: wiiider
02 Tue Feb 12 09:39:59 2013

DB: tupverif_superfine silo
Cycle: 0

ccccccc

user: wjrider user: wirider
Tue Feb 12 10:01:26 2013 Wed Jan 23 10:32:16 2013

Figure 5. A contour plot of the integrated scalar flux for the energy group 5 on the
finest and coarsest meshes for 5 different values of the flux. It is a smooth isotropic
problem as shown, which should give relatively well-behaved results in the
verification study. Sné6 is used for the angular integration.

We have examined two relatively simple problems used in the Denovo testing suite.
Each problem is defined on a coarse grid and low-order angular quadrature, which
are systematically refined with a specified number of energy groups. The energy
group structure is not modified although as noted this would be an excellent future
study. The problems used are focused upon separate physical effects, either
upscatter (scattering where the neutron moves to a higher energy), or downscatter
(where the neutron moves to lower energy). The upscatter problem uses five
energy groups, and the downscatter problem uses two. Each problem has an

CASL-U-2013-0069-000

isotropic source and amenable to an analytical solution although this solution was
not made available to us, it may be applicable to classical code verification.

The basic results for the upscatter problem are summarized in Table 2 for the
different spatial and angular “meshes” used. These results will then be analyzed
with regard to the first separate spatial and angular convergence, and then again for
the coupled error. The results in Table 2 indicate to the casual observer that the
solution is quite well “mesh-resolved” in both space and angle for the finest “meshes’
chosen. The analysis using the new verification methodology is provided in Table 3.
Given the median statistics used in our methodology all of the results for converged
fluxes and convergence rates are consistent well within the 95% stated confidence
interval. It has been noted that this problem is not useful for measuring spatial
convergence because the approximation becomes semi-analytical. This accounts for
high rate of convergence for the spatial differencing and the lack of distinction
between the step and LD methods. Our proposed error form for the angular
quadrature appears to hold up to the examination nominally confirmed
approximately a second-order convergence for the level-symmetric approach.

)

h (Ax) n | LD int. flux | Step int. flux
0.25000 | 2 0.16124 0.14930
0.12500 | 2 0.11277 0.11017
0.06250 | 2 0.10791 0.10684
0.03125| 2 0.10754 0.10703
0.01563 | 2 0.10752

0.25000 | 4 0.16398 0.15387
0.12500 | 4 0.11685 0.11423
0.06250 | 4 0.11188 0.11069
0.03125| 4 0.11148 0.11087
0.01563 | 4 0.11145

0.25000 | 6 0.16477 0.15555
0.12500 | 6 0.11762 0.11541
0.06250 | 6 0.11268 0.11170
0.03125| 6 0.11227 0.11177
0.01563 | 6 0.11224

0.25000 | 8 0.16517 0.15599
0.12500 | 8 0.11800 0.11581
0.06250 | 8 0.11307 0.11209
0.03125| 8 0.11266 0.11216
0.01563 | 8 0.11262

0.25000 | 12 0.16549 0.15647
0.12500 | 12 0.11829 0.11619
0.06250 | 12 0.11336 0.11243
0.03125 | 12 0.11295 0.11247

CASL-U-2013-0069-000

0.01563 | 12 0.11292
0.25000 | 16 0.16563 0.15670
0.12500 | 16 0.11841 0.11636
0.06250 | 16 0.11348 0.11258
0.03125 | 16 0.11307 0.11261
0.01563 | 16 0.11304
0.25000 | 20 0.16570
0.12500 | 20 0.11848
0.06250 | 20 0.11355
0.03125 | 20 0.11314
0.01563 | 20 0.11311
0.25000 | 24 0.16575 0.15689
0.12500 | 24 0.11852 0.11651
0.06250 | 24 0.11359 0.11271
0.03125 | 24 0.11318 0.11273
0.01563 | 24 0.11315

Table 2. The raw results for the integrated scalar flux from the upscatter problem
are shown for space-angle discretizations. The verification analysis is shown in
Table 3 using this data. Note: we keep much greater accuracy in the data used in the
actual verification analysis.

Case Converged | +flux Spatial | trate Angular | trate
Flux Rate rate

Step 0.112767 | 0.000212 3.57327 | 0.13475 1.80497 | 0.85473
space-

angle

LD 0.113143 | 0.000126 3.66037 | 1.05584

space

LD 0.113615 | 0.000081 2.23472 | 0.70415
angle

LD 0.113222 | 0.000141 3.28949 | 0.04058 1.62063 | 0.54076
space-

angle

Table 3: Convergence results for the downscatter problem, the step method is
examined with coupled analysis, while the LD (linear discontinuous) is examined for
space and angle alone as well as coupled space-angle for the convergence. We note
that the smallest uncertainties are achieved with the coupled method (this is where
the different error models (16) and (17) are tested). This problem is noted as being
inapplicable to analyzing the spatial operators because of the nature of the
transport rendering the step method to be uncharacteristically accurate.

Figures 6, 7 and 8 provide more texture to the results showing the results of the
models solved given the above data. The effectiveness of the median statistics

CASL-U-2013-0069-000

removes irregular results that can result from the roughness of the data or
unreliability of the optimization solution. The other primary sources of difficulty

are the results obtained with the coarsest angular quadrature, Sn2, which produces
results and convergence uncharacteristic of the refined quadratures. We note, again,
that the optimization or regression can sometimes spectacularly fail, and these
results must be discarded to avoid corrupting results. The box-and-whisker plots
are the best depiction of the relative persistence of outliers in the approach.

017t

0161

015

014t

0131

005 0.10 015 020

Figure 6. Ensemble of models for space and angular error for the coupled space-
angle convergence analysis. Both sets of discretizations appear to be very well
behaved despite a handful of outliers (which are removed by the action of the
median statistics).

60|

(\.‘Il (|‘I2 34 ?
Figure 7. PDFs of the converged solution, spatial convergence rate and angular
convergence rate.

‘0’—‘ e NN ===== wwwn|

4 15 20 25 30 35 40

L T
0.13 0.14 30

—_— 42 Jaof

s2f Jist
ok] 15
s0F Jiok

Figure 8. The “box-and-whisker” plots for the same three measures. For the mesh
converged result the prescence of outliers is undeniable and necessitates robust
statistics be used.

CASL-U-2013-0069-000

DB: twd_coarse.silo
Cycle: 0

Mesh
Var: KBA_mesh

,o,

“w,
0:,0
()
0‘0
0’:
0'0
0‘0
9
i
%0
i

\\\\\;‘:’

i

=
\\\\\\\‘:‘-‘f
X

S
N

=
=

,A.
N
N
—
R

X
=

=
S

-

20
(5
K55
(58
K
(i
(S50
{68

Sy
\\‘3.3\\\\\\\\\

N

s

T
SN

SR

S
—
SR

=
S

LLTT 777
S

LT T T 777
S

Y
s
LR

.

77
LIIT 77775

S
iy
A

IIIIIIII”""”"
IIIII’I””"”"'
SN

77
‘Illlllllll”l””"

77
7

L7
L7

LL7

user: wirider
Tue Feb 12 09:50:19 2013

DB: twd_coarse.silg
Cycle: 0 o
‘h/A:'shKMmesh \v:rshKBA,mesh
Contour
Var flux_1

Contour
- 00255
_ 002084

Var. flux 0

002550

—0.02064
oo,

6
7
oy Y9 b
Vin: 0001068 DAL

4
7z
R
&Y 2 o
é x -
user: wirider
Wed Feb 13 12:33:102013

user: wirider
Wed Feb 13 12:37:09 2013

Figure 10. Downscatter results on a medium grid using Sn12 for the integrated
scalar flux in the two energy groups used.

The basic data used to examine convergence is given in Tables 4, 6, and 8. This
problem is capable of distinquishing between differing spatial differencing
approachs. We also examine several of Denovo’s available angular quadratures
including the method developed by Jarrell (LDFE, [Jar10]) for which convergence
results exist. Jarrell found roughly 4th order convergence on simple problems, a
property consistent with our results. The analysis is summarized in Tables 5, 7, and
9. We find a distinct difference between the step characteristic and LD schemes
with results showing some degree of super-convergence, but the 95% confidence
intervals contain the theoretically expected 1st and 274 order accuracy.

CASL-U-2013-0069-000

h(Ax) | n Step flux pO | Step flux p1 | LD flux pO | LD flux p1 | DD Flux pO | DD flux p1
0.1000 | 12 0.089181 0.010295 | 0.088047 | 0.009856 0.087919 | 0.009867
0.0500 | 12 0.088635 0.010086 | 0.088015 | 0.009862 0.087855 | 0.009859
0.0333 | 12 0.088442 0.010014 | 0.088010 | 0.009862 0.087949 | 0.009866
0.0250 | 12 0.088341 0.009977 | 0.088007 | 0.009862 0.087983 | 0.009867
0.0200 | 12 0.088278 0.009955 | 0.088007 | 0.009862 0.087982 | 0.009865
0.0167 | 12 0.088236 0.009940 | 0.088007 | 0.009862 0.087994 | 0.009865
0.0125 | 12 0.088181 0.009921 | 0.088007 | 0.009862 0.087998 | 0.009864

0.0250 2 0.076944 | 0.007179
0.0250 4 0.086811 | 0.009460
0.0250 6 0.087747 | 0.009723
0.0250 8 0.087963 | 0.009809
0.0250 | 10 0.087965 | 0.009837
0.0250 | 12 0.088007 | 0.009862
0.0250 | 14 0.088058 | 0.009880
0.0250 | 16 0.088130 | 0.009898
0.0250 | 18 0.088195 | 0.009911
0.0250 | 20 0.088240 | 0.009921
0.0250 | 22 0.088262 | 0.009927
0.0250 | 24 0.088281 | 0.009933

Table 4. The raw results for the integrated scalar flux from the downscatter problem
are shown for space-angle discretizations. The verification analysis is shown in
Table 5 using this data. Note: we keep much greater accuracy in the data used in the
actual verification analysis.

One key point to examine from Table 5 are the differences between the classical CGI
approach and our new approach. First, the GCI approach provides no uncertainty
on the convergence rates despite these rates being undeniably uncertain. In some
cases, the solution uncertainty is radically different calling into question whether
the CFD experience used is valid for neutronics, and the unreliability of a single
regression analysis for ascertaining the converged properties of the scheme and/or
calculation. In most cases, the two approaches share consistency in that the CGI
solution is within the 95% confidence interval given.

CASL-U-2013-0069-000

Case | Fluxp0 Flux p1 Rate p0 space | Rate p1 Rate p0 Rate p1
space angle angle

Step 0.0880849+ 0.000183 0.00990086+ 0.000061 1.52187+1.28362 | 1.76222+1.8659

Step 0.0879945% 0.000559 0.00985842 0.000078 0.889216 0.938243

GCI

LD 0.0880065+0.00000077 | 0.00986165+0.00000008 | 3.2795+1.92338 | 4.21889+1.0533

LD 0.0880066%0.0000011 0.00986191+0.0000008 | 2.17422 5.09874

GCI

DD 0.0880019+0.0000062 0.00986435+0.0000029 | 2.48781+1.8980 | 3.27643+1.3603

DD 0.0879984+0.0113321 0.00986454+0.0000004 | 0.0148108 3.79242

GCI

LD+Sn | 0.0882982+0.0001678 | 0.00993549+0.0000446 2.5473+1.10376 | 2.6598+0.6907

LD+Sn | 0.0881712+0.0003307 | 0.00991214+0.0000619 3.0029 2.5183

GCI

Table 5. Convergence results for separate space and angle for the downscatter
problem are shown.

Tables 6 and 7 show the examination of quadrature options in Denovo. Clearly, the
standard LS quadrature is less accurate than the other options. Note given here, the
other options are much more expensive. Work to be done might include a study of
the efficacy/efficiency of each method. This would require the accuracy to be
examined in direct relation to the expense. The rates of convergence for GL roughly
equals the LS approach, but the QR and LDFE quadratures produce approximately
twice the rate of convergence. This may imply that these quadratures would be
favored in efficiency for high accuracy demands.

h (Ax) | order | Flux p0SnLS | Flux p1 SnLS | Flux pO GL | Flux p1 GL | Flux p0 QR | Flux p1 QR
0.1000 2 0.076895 0.007182 | 0.086357 | 0.009447 0.090612 0.010341
0.0167 2 0.076944 0.007178 | 0.086584 | 0.009496 0.090778 | 0.010385
0.0250 4 0.086811 0.009460 | 0.087808 | 0.009841 0.088517 | 0.009992
0.0200 6 0.087746 0.009723 | 0.088130 | 0.009915 0.088430 | 0.009974
0.0333 8 0.087962 0.009809 | 0.088241 | 0.009939 0.088439 | 0.009975
0.0500 10 0.087971 0.009837 | 0.088292 | 0.009949 0.088401 0.009971
0.0250 12 0.088007 0.009862 | 0.088330 | 0.009958 0.088405 0.009972
0.1000 14 0.088078 0.009871 | 0.088314 | 0.009946 0.088371 0.009957
0.0167 16 0.088130 0.009898 | 0.088363 | 0.009964 | 0.088406 | 0.009973

Table 6. Results for couple space-angle convergence analysis for the downscatter
problem using different quadratures all using the linear discontinuous spatial

discretization.

Case Flux 0 Flux 1 Rate space 0 Rate space 1 Rate angle 0 Rate angle 1
LD+LS 0.0881292+.000107 0.00989828+0.000051 3.54647+2.01723 | 3.83988+1.5191 | 3.09999+0.493128 | 2.97501+0.95442
LD+GL | 0.0883773+0.000051 | 0.00996246+0.000019 2.87656+4.6925 4.4019+1.8682 2.23472+0.7042 3.10852+1.4019
LD+QR | 0.088405+0.000011 0.00997225+0.0000017 | 3.46771+2.0334 4.23981+1.8452 | 4.52494+1.5232 3.84999+2.1127

Table 7. Mesh converged solution and convergence rate for the coupled space-angle
discretization using different quadratures all using the linear discontinuous spatial
discretization.

CASL-U-2013-0069-000

0.0886 -

0.0885 -

0.0884

0.0883

0.0882 -

0.0881 1

0.0880 -

L
005

L
0.10 0.15

\ \
020 025

10 15

20

Figure 11. The Spatial and angular variation in models gives a good sense of the
need for dismissing outliers from the analysis, which is given further support by the

sometimes outlandish results from standard analysis.

Ax n | LD space flux 0 | LD space flux 1
0.0333 | 2 0.090842 0.010372
0.0333 | 4 0.088147 0.009937
0.0333| 8 0.088387 0.009970
0.0333 | 16 0.088405 0.009972
0.0333 | 32 0.088406 0.009972
0.0333 | 64 0.088406 0.009972

Table 8. Study of the LDFE quadrature method was carried out on a single mesh
(Ax=0.033333) to examine the convergence of the quadrature.

Case converged Converged Rate flux 0 Rate flux 1

flux 0 flux 1
LD-LDFE 0.0883713+0.0000002 | 0.0099723+0.0000007 | 4.9852+2.70105 | 4.77744+1.9618
LD-LDFE CGI 0.088322+0.000148 0.00997226+0.0000002 | 10.8249 7.24046

Table 9. Results for angle convergence analysis for the downscatter problem using
the LDFE quadrature.

0.0886 |-

00885 |-

0.0884

0.0883

00882 -

0.0881 |-

0.0880 -

005

0.10 0.15

0.20 0.25

Figure 12. LDFE convergence models for the PO and P1 integrated flux. The
variation in direction is indicative of the non-monotonic convergence of the flux as
opposed to any unreliability of the optimization solutions.

CASL-U-2013-0069-000

6L]
wf []

20}

— |
Figure 13. The histogram PDF view of the angular convergence rate and the
complimentary box-and-whisker plot showing the relative consistency and spread

in estimated convergence rate.

Despite the extreme simplicity of the problems chosen, the verification landscape is
enormously complex. We have found a great deal of texture in both the nature of
spatial and angular convergence with far too much uncertainty regarding the
expected nature. We expect that this nature will rear its head on more applied
problems and represents a distinct source of uncertainty moving forward.

We note in closing that each problem has an analytical result, but its closed form
was not made available to us. These solutions are evaluated on a reference grid,
which was denoted as our “coarse” grid. As such, the comparison with analytical is
not code verification, but rather a form of regression testing. True code verification
would be a worth future study, and would add significant value to our knowledge of
Denovo and the detailed nature of neutron transport in general.

Finally, the impact of the variance of the nonlinear curve fit should be incorporated
into the uncertainty in the convergence/error analysis. A preliminary investigation
indicates that for many of the estimates, the variance is quite substantial in
comparison to the estimated error. Another aspect of the analysis that has not been
significantly explored here is the asymmetric estimation of the bias in the solution.
Generally, the error is not symmetric with respect to the estimated solution, but
rather preferential depending on the nature of the case, resolution and numerical
method. This is important is determining whether the solution has a bias toward
higher or lower values, which could have profound consequences for applied
circumstances.

Acknowledgements

The author thanks Tim Trucano and James Kamm for many fruitful discussions
regarding code verification that have helped inform this work. The installation of
the working Denovo executable was accomplished through the diligent efforts of
Dena Vigil, and the work could not have proceeded without her skill. Tom Evans
and the Denovo team have provided support throughout this effort. The
development of the verification analysis methodology (RMR) was partially

CASL-U-2013-0069-000

supported by the DOE-ASC V&V program managed by Mary Gonzales, Rich Hills and
Walt Witkowski of SNL.

Sandia National Laboratories is a multi-program laboratory managed and operated
by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation,
for the U.S. Department of Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000.

CASL-U-2013-0069-000

References

[Bjork] A. Bjork, Numerical Methods for Least Squares Problems, SIAM, 1996.

[Eca06] Eca, L., Hoekstra, M., “Discretization Uncertainty Estimation Based on a
Least Squares Version of the Grid Convergence Index,” in Proceedings of
the Second Workshop on CFD Uncertainty Analysis, Lisbon, Oct. 2006.

[Eca08] Eca, L., Hoekstra, M., eds., Proceedings of the 1st, Znd, and 3rd Workshops on
CFD Uncertainty Analysis,
http://maretec.ist.utl.pt/html files/CFD_workshops/

[Eval0] T. Evans, Denovo, Denovo: A radiation transport code for nuclear applications,
SciDAC SciADS 2010, Snowbird Utah, ORNL, 2010.

[Hoaglin] Hoaglin, D. C.; F. Mosteller and J. W. Tukey, Understanding Robust and
Exploratory Data Analysis. John Wiley & Sons, 1983.

[Huber] P. J. Huber, Robust Statistical Procedures, SIAM 1996.

[Jar10] J.]. Jarrell, An Adaptive Angular Discretization Method For Neutral-Particle
Transport in Three-Dimensional Geomtries, PhD Dissertation, Texas A&M
University, 2010.

[Lar82] E. W. Larsen and P. Nelson, Finite-difference approximations and
superconvergence for the discrete-ordinate equations in slab geometry,
SIAM Journal of Numerical Analysis, 19(2), pp. 334-349, 1982.

[LM84] E. E. Lewis and W. P. Miller, Numerical Methods for Neutron Transport,
Wiley Interscience, 1984.

[Maj77] Majda, A., Osher, S., “Propagation of error into regions of smoothness for
accuracte difference approximations to hyperbolic equations,” Comm. Pure
Appl Math. 30, pp. 671-705 (1977).

[Met49] N. Metropolis and S. Ulam, The Monte Carlo Method, Journal of the
American Statistical Association, 44 (247), pp. 335-341, 1949.

[Obe10]Oberkampf, W. L., Roy, C.]., Verification and Validation in Scientific
Computing, Cambridge University Press, New York (2010).

[Rid10] Rider, W.]., Kamm, |. R.,, Weirs, V. G., Code Verification Workflow in CASL,
Sandia National Laboratories report SAND2010-7060P (2010).

[Rid11] Rider, W.]., Kamm,]. R., Weirs, V. G., Verification, Validation and Uncertainty
Quantification Workflow in CASL, Sandia National Laboratories report
SAND2011-(to be determined)(2011).

[Rid12] Rider, W.]. and Kamm,]. R., Advanced Solution Verification of CFD Solutions
for LES of Relevance to GTRF Estimates, Sandia National Laboratory Report
SAND 2012-7199P, 2012.

[Roa98] Roache, P., Verification and Validation in Computational Science and
Engineering, Hermosa Publishers, Albuquerque (1998).

[Roa09] Roache, P., Fundamentals of Verification and Validation, Hermosa Publishers,
Albuquerque (2009).

[Roy10]Roy, C.]., “Review of Discretization Error Estimators in Scientific
Computing,” 48th AIAA Aerospace Sciences Meeting, January 2010,
Orlando, FL, AIAA 2010-126 (2010).

[She10] A. I. Shestakov, R. M. Vignes,]. S. Stolken, Derivation and Solution of
Multifrequency Radiation Diffusion Equations for Homogeneous

CASL-U-2013-0069-000

Refractive Lossy Media, LLNL-JRNL-422310, Lawrence Livermore
National Laboratory, 2010.

[Ste01] Stern, F., Wilson, R. V., Coleman, H. W,, Paterson, E. G., “Comprehensive
Approach to Verification and Validation of CFD Simulations—Part 1:
Methodology and Procedures,” . Fluids Engrng 123, pp. 793-802 (2001).

[Ste06] Stern, F., Wilson, R. V., Shao,], “Quantitative V&V of CFD Simulations and
Certification of CFD Codes,” Int. J. Num. Meth. Fluids 50, pp. 1335-1355
(2006).

[Tru06] Trucano, T. G., Swiler, L. P, Igusa, T., Oberkampf, W. L., Pilch, M.,
“Calibration, validation, and sensitivity analysis: What’s what,” Reliab.
Engrng. Syst. Safety 92, pp. 1331-1357 (2006).

[Weber] P. Weber,]. Shadid, E. Cyr, R. Pawlowski, T. Smith, “Initial Drekar: CFD
Verification and Validation Study,” Sandia National Laboratories,
Albuquerque, 2012.

[Xin10] Xing, T., Stern, F., “Factors of Safety for Richardson Extrapolation,” J. Fluids
Engrng 132, pp. 061403-1- 061403-13 (2010).

CASL-U-2013-0069-000

Appendix A: Mathematica™ Script for Solution Verification Coupled Space and
Angular

psth = 3.; psL = 1; psH = 5.0; ptth = 1.; ptL = 0.5; ptH = 3.0;
model = £0 + bs h"ps + bt /t"pt;
model0 = £f0 + bs h"psth + bt /t"ptth;
modellL = £0 + bs h”psL + bt /t"ptL;
modelU = £0 + bs h"psH + bt /t"ptH;
fm[h , £t , u, n_] := Abs[model - u]”n
’ Abs[model0 - u]”n
, Abs[modellL - u]”n
.t Abs[modelU - u]”n
cons = {psL <= ps <= psH, ptlL <= pt <= ptH};
Min2L[dat_] := (sum = 0;
For[k = 1, k <= Length[dat], k++,
h = dat[[k, 1]]; t = dat[[k, 2]]; u = dat[[k, 3]];
sum += fmL[h, t, u, 2]]; Return[(sum)”0.5])
Min2U[dat_] := (sum = 0;
For[k = 1, k <= Length[dat], k++,
h = dat[[k, 1]]; t = dat[[k, 2]]; u = dat[[k, 3]];
sum += fmU[h, t, u, 2]]; Return[(sum)”0.5])
Min20[dat_] := (sum = 0;
For[k = 1, k <= Length[dat], k++,
h = dat[[k, 1]]; t = dat[[k, 2]]; u = dat[[k, 3]];

— e
.
I

sum += fmO[h, t, u, 2]]; Return[(sum)”0.5])
MinlL[dat_] := (sum = 0;
For[k = 1, k <= Length[dat], k++,
h = dat[[k, 1]]; t = dat[[k, 2]]; u = dat[[k, 3]]; sum += fm[h, t, u, 1]1];

sum += 0.00001 (Abs[f0/£f00] + Abs[bs/bs0] + Abs[ps/ps0] + Abs[bt/bt0] +
Abs[pt/pt0]); Return[sum])

Min2T[dat_] := (sum = 0;
For[k = 1, k <= Length[dat], k++,
h = dat[[k, 1]]; t = dat[[k, 2]]; u = dat[[k, 3]]; sum += fm[h, t, u, 2]];

sum += 0.0000000001 ((£0/£00)"2 + (bs/bs0)"2 + (ps/ps0)”2 + (bt/
bt0)"2 + (pt/pt0)”"2); Return[(sum)”0.5])
Min2[dat_] := (sum = 0;
For[k = 1, k <= Length[dat], k++,
h = dat[[k, 1]]; t = dat[[k, 2]]; u = dat[[k, 3]];
sum += fm[h, t, u, 2]]; Return[(sum)”0.5])
Minl2[dat_] := (sum = 0;
For[k = 1, k <= Length[dat], k++,
h = dat[[k, 1]]; t = dat[[k, 2]]; u = dat[[k, 3]];
sum += fm[h, t, u, 0.5]]; Return[sum”2])
Minl[dat_] := (sum = 0;
For[k = 1, k <= Length[dat], k++,
h = dat[[k, 1]]; t = dat[[k, 2]]; u = dat[[k, 3]];
sum += fm[h, t, u, 1]]; Return[sum])
Min4[dat_] := (sum = 0;
For[k = 1, k <= Length[dat], k++,
h = dat[[k, 1]]; t = dat[[k, 2]]; u = dat[[k, 3]];
sum += fm[h, t, u, 4]]; Return[sum”0.25])
Min8[dat_] := (sum = 0;
For[k = 1, k <= Length[dat], k++,
h = dat[[k, 1]]; t = dat[[k, 2]]; u = dat[[k, 3]];
sum += fm[h, t, u, 8]]; Return[sum”0.125])
Mini[dat_] := (sum = 0;
For[k = 1, k <= Length[dat], k++,
h = dat[[k, 1]]; t = dat[[k, 2]]; u = dat[[k, 3]];
sum = Max[sum, fm[h, t, u, 1]1]1]; Return[sum])
MinlLw[dat_] := (sum = 0;
For[k = 1, k <= Length[dat], k++,
h = dat[[k, 1]]; t = dat[[k, 2]]; u = dat[[k, 3]];
sum += fm[h, t, u, 1] (t/h)];
sum += 0.00001 (Abs[£f0/f00] + Abs[bs/bs0] + Abs[ps/ps0] + Abs[bt/bt0] +

CASL-U-2013-0069-000

Abs[pt/pt0]); Return[sum])
Min2Tw[dat_] := (sum = 0;
For[k = 1, k <= Length[dat], k++,
h = dat[[k, 1]]; t = dat[[k, 2]]; u = dat[[k, 3]];
sum += fm[h, t, u, 2] (t/h)];
sum += 0.0000001 ((£f0/£00)"2 + (bs/bs0)"2 + (ps/ps0)”2 + (bt/bt0)"2 + (pt/
pt0)"2); Return[(sum)”0.5])
Min2w[dat_] := (sum = 0;
For[k = 1, k <= Length[dat], k++,
h = dat[[k, 1]]; t = dat[[k, 2]]; u = dat[[k, 3]];
sum += fm[h, t, u, 2] (t/h)]; Return[(sum)”0.5])
Minl2w[dat_] := (sum = 0;
For[k = 1, k <= Length[dat], k++,
h = dat[[k, 1]]; t = dat[[k, 2]]; u = dat[[k, 3]];
sum += fm[h, t, u, 0.5] (t/h)]; Return[sum”2])
Minlw[dat_] := (sum = 0;
For[k = 1, k <= Length[dat], k++,
h = dat[[k, 1]]; t = dat[[k, 2]]; u = dat[[k, 3]];
sum += fm[h, t, u, 1] (t/h)]; Return[sum])
Mindw[dat_] := (sum = 0;
For[k = 1, k <= Length[dat], k++,
h = dat[[k, 1]]; t = dat[[k, 2]]; u = dat[[k, 3]];
sum += fm[h, t, u, 4] (t/h)]; Return[sum”0.25])
Min8w[dat_] := (sum = 0;
For[k = 1, k <= Length[dat], k++,
h = dat[[k, 1]]; t = dat[[k, 2]]; u = dat[[k, 3]];
sum += fm[h, t, u, 8] (t/h)]; Return[sum”0.125])
Miniw[dat_] := (sum = 0;
For[k = 1, k <= Length[dat], k++,
h = dat[[k, 1]]; t = dat[[k, 2]]; u = dat[[k, 3]];
sum = Max[sum, fm[h, t, u, 1] (t/h)]]; Return[sum])
data = {{0.25, 2, 0.16124268249677}, {0.25, 4, 0.16397843360126}, {0.25, 6,
.16476546214289}, {0.25, 8, 0.16517334950802}, {0.25, 12,
.16549090885325}, {0.25, 16, 0.16562667923887}, {0.25, 20,
.16570035457266}, {0.25, 24, 0.16574608186218}, {0.125, 2,
.11277180736310}, {0.125, 4, 0.11684673059776}, {0.125, 6,
.11762107978317}, {0.125, 8, 0.11800166094432}, {0.125, 12,
.11829094418725}, {0.125, 16, 0.11841380207920}, {0.125, 20,
.11848072931917}, {0.125, 24, 0.11852219490744}, {0.0625, 2,
.10790905108521}, {0.0625, 4, 0.11188154163333}, {0.0625, 6,
.11267733558198}, {0.0625, 8, 0.11306818708312}, {0.0625, 12,
.11336094569033}, {0.0625, 16, 0.11348295719131}, {0.0625, 20,
.11354850316339}, {0.0625, 24, 0.11358871942618}, {0.03125, 2,
.10754399341971}, {0.03125, 4, 0.11147735795780}, {0.03125, 6,
.11226648352730}, {0.03125, 8, 0.11265504708102}, {0.03125, 12,
.11294794194459}, {0.03125, 16, 11307073474320}, {0.03125, 20,
.11313677174308}, {0.03125, 24, 11317725200587}, {0.015625, 2,
.10751869507894}, {0.015625, 4, 11144841371227}, {0.015625, 6,
.11223644771749}, {0.015625, 8, 11262436432804}, {0.015625, 12,
.11291677116577}, {0.015625, 16, 0.11303940127514}, {0.015625, 20,
.11310538230224}, {0.015625, 24, 0.11314585451941}};
ti = TimeUsed[]; t0 = ti; h =.; t =.; d =.;
rates = {}; ratet = {}; sol0 = {}; mod = {}; resid = {};

0.
0.
0.
0.

OO OO O0ODO0ODO0ODO0ODO0ODO0ODO0OO0OO0OO0OOOOOO

m = NMinimize[{Min20[data]}, {f0, bs, bt}, Method -> "NelderMead",
MaxIterations -> 1000];

£f00 = Abs[f0 /. m[[2]]]; bsO = Abs[bs /. m[[2]]]; psO = psth; bt0 =

Abs[bt /. m[[2]]]; pt0 = ptth;

r0 = m[[1]];

Print["£f00 = ", £00]; Print["bs0 = ", bs0]; Print["bt0 = ", bt0];

Print["r0 = ", r0];

m = NMinimize[{Min2L[data]}, {f0, bs, bt}, Method -> "NelderMead",

MaxIterations -> 1000];
fOL = £0 /. m[[2]]; bsL = bs /. m[[2]]; btL = bt /. m[[2]];

CASL-U-2013-0069-000

m = NMinimize[{Min2U[data]}, {f0, bs, bt}, Method -> "NelderMead",
MaxIterations -> 1000];
fOU = £f0 /. m[[2]]; bsU = bs /. m[[2]]; btU = bt /. m[[2]];

f01 = Min[fOL, £f0U]; £02 = Max[fOL, £f0U];
bsl = Min[bsL, bsU]; bs2 = Max[bsL, bsU]; psl = psL; ps2 = psH;
btl = Min[btL, btU]; bt2 = Max[btL, btU]; ptl = ptL; pt2 = ptH;
For[j = 0, j < Length[data], j++, Print[j];

If[{j == 0, ldata = data, ldata = Delete[data, Jj]1;

Print["local data = ", ldata];

m = NMinimize[{Min20[ldata]}, {f0, bs, bt}, Method -> "NelderMead",
MaxIterations -> 10007];

AppendTo[sol0, £0 /. m[[2]]];

h=.; t=.;

AppendTo[resid, m[[1]]1];

AppendTo[mod, model0 /. m[[2]]];

Print["pth model = ", model0 /. m[[2]]];

Print["resid = ", m[[1]]];

m = NMinimize[{Min2L[ldata]}, {f0, bs, bt}, Method -> "NelderMead",
MaxIterations -> 10007];

AppendTo[sol0, £0 /. m[[2]]];

h=.; t=.;

AppendTo[resid, m[[1]]1];

AppendTo[mod, modelL /. m[[2]]];

Print["pL model = ", modelL /. m[[2]]];

Print["resid = ", m[[1]]];

m = NMinimize[{Min2U[ldata]}, {f0, bs, bt}, Method -> "NelderMead",
MaxIterations -> 10007];

AppendTo[sol0, £0 /. m[[2]]];

h=.; t=.;

AppendTo[resid, m[[1]]];

AppendTo[mod, modelU /. m[[2]]];

Print["pH model = ", modelU /. m[[2]]];
Print["resid = ", m[[1]]1];
tl = TimeUsed[]; Print["Time solve 1 = ", tl - t0]; t0 = t1;

m = NMinimize[{Min2[ldata],
cons}, {{f0, f01, f02}, {bs, bsl, bs2}, {ps, psl, ps2}, {bt, btl,
bt2}, {pt, ptl, pt2}}, Method -> "SimulatedAnnealing",
MaxIterations -> 1000];
AppendTo[sol0, £0 /. m[[2]]];
AppendTo[rates, ps /. m[[2]]];
AppendTo[ratet, pt /. m[[2]]]
AppendTo[resid, m[[1]]1];
h =.; t =.; AppendTo[mod, model /. m[[2]]];

r

Print["L2 model = ", model /. m[[2]]];
tl = TimeUsed[]; Print["Time solve 1 = ", tl - t0]; t0 = t1;
Print["resid = ", m[[1]]1];

m = NMinimize[{Min4[ldata],
cons}, {{f0, f01, f02}, {bs, bsl, bs2}, {ps, psl, ps2}, {bt, btl,
bt2}, {pt, ptl, pt2}}, Method -> "SimulatedAnnealing",

MaxIterations -> 1000];

AppendTo[sol0, £0 /. m[[2]]];

AppendTo[rates, ps /. m[[2]]];

AppendTo[ratet, pt /. m[[2]]1];

AppendTo[resid, m[[1]]1];

h =.; t =.; AppendTo[mod, model /. m[[2]]];

Print["L4 model = ", model /. m[[2]]];

CASL-U-2013-0069-000

tl = TimeUsed[]; Print["Time solve 1 = ", tl - t0]; t0 = t1;
Print["resid = ", m[[1]]];

m = NMinimize[{Min8[ldata],
cons}, {{f0, f01, £f02}, {bs, bsl, bs2}, {ps, psl, ps2}, {bt, btl,
bt2}, {pt, ptl, pt2}}, Method -> "DifferentialEvolution",
MaxIterations -> 10007];
AppendTo[sol0, £0 /. m[[2]]];
AppendTo[rates, ps /. m[[2]]];
AppendTo[ratet, pt /. m[[2]]]
AppendTo[resid, m[[1]]1];
h =.; t =.; AppendTo[mod, model /. m[[2]]];

r

Print["L8 model = ", model /. m[[2]]];
tl = TimeUsed[]; Print["Time solve 1 = ", tl - t0]; t0 = t1;
Print["resid = ", m[[1]]1];

m = NMinimize[{Minl2[ldata],
cons}, {{f0, f01, £f02}, {bs, bsl, bs2}, {ps, psl, ps2}, {bt, btl,
bt2}, {pt, ptl, pt2}}, Method -> "RandomSearch",

MaxIterations -> 1000];
AppendTo[sol0, £0 /. m[[2]]];
AppendTo[rates, ps /. m[[2]]];
AppendTo[ratet, pt /. m[[2]]]
AppendTo[resid, m[[1]]1];

h =.; t =.; AppendTo[mod, model /. m[[2]]];

’

Print["L 1/2 model = ", model /. m[[2]]];
tl = TimeUsed[]; Print["Time solve 1 = ", tl1l - t0]; t0 = t1;
Print["resid = ", m[[1]]];

m = NMinimize[{Minl[ldata],
cons}, {{f0, f01, £f02}, {bs, bsl, bs2}, {ps, psl, ps2}, {bt, btl,
bt2}, {pt, ptl, pt2}}, Method -> "RandomSearch",
MaxIterations -> 10007];
AppendTo[sol0, £0 /. m[[2]]];
AppendTo[rates, ps /. m[[2]]];
AppendTo[ratet, pt /. m[[2]]];
AppendTo[resid, m[[1]]];
h =.; t =.; AppendTo[mod, model /. m[[2]]];

Print["Ll model = ", model /. m[[2]]];
tl = TimeUsed[]; Print["Time solve 1 = ", tl - t0]; t0 = t1;
Print["resid = ", m[[1]]1];

m = NMinimize[{Mini[ldata],
cons}, {{f0, f01, f02}, {bs, bsl, bs2}, {ps, psl, ps2}, {bt, btl,
bt2}, {pt, ptl, pt2}}, Method -> "RandomSearch",

MaxIterations -> 1000];
AppendTo[sol0, £0 /. m[[2]]];
AppendTo[rates, ps /. m[[2]]];
AppendTo[ratet, pt /. m[[2]]]
AppendTo[resid, m[[1]]1];

h =.; t =.; AppendTo[mod, model /. m[[2]]];

Print["Linf model = ", model /. m[[2]]];

tl = TimeUsed[]; Print["Time solve 1 = ", tl - t0]; t0 = t1;
Print["resid = ", m[[1]]];

’

m = NMinimize[{MinlL[ldata],
cons}, {{f0, f01, f02}, {bs, bsl, bs2}, {ps, psl, ps2}, {bt, btl,
bt2}, {pt, ptl, pt2}}, Method -> "RandomSearch",
MaxIterations -> 1000];
AppendTo[sol0, £0 /. m[[2]]];
AppendTo[rates, ps /. m[[2]]];
AppendTo[ratet, pt /. m[[2]]1];
AppendTo[resid, m[[1]]1];
h =.; t =.; AppendTo[mod, model /. m[[2]]];
Print["Ll lasso model = ", model /. m[[2]]];

CASL-U-2013-0069-000

tl = TimeUsed[]; Print["Time solve 1 = ", tl1l - t0]; t0 = t1;
Print["resid = ", m[[1]]];

m = NMinimize[{Min2T[ldata],
cons}, {{f0, f01, £f02}, {bs, bsl, bs2}, {ps, psl, ps2}, {bt, btl,
bt2}, {pt, ptl, pt2}}, Method -> "SimulatedAnnealing",
MaxIterations -> 10007];
AppendTo[sol0, £0 /. m[[2]]];
AppendTo[rates, ps /. m[[2]]];
AppendTo[ratet, pt /. m[[2]]]
AppendTo[resid, m[[1]]1];
h =.; t =.; AppendTo[mod, model /. m[[2]]];

r

Print["L2 ridge model = ", model /. m[[2]]1];
tl = TimeUsed[]; Print["Time solve 1 = ", tl - t0]; t0 = t1;
Print["resid = ", m[[1]]1];

m = NMinimize[{Min2w[ldata],
cons}, {{f0, f01, £f02}, {bs, bsl, bs2}, {ps, psl, ps2}, {bt, btl,
bt2}, {pt, ptl, pt2}}, Method -> "SimulatedAnnealing",
MaxIterations -> 10007];
AppendTo[sol0, £0 /. m[[2]]];
AppendTo[rates, ps /. m[[2]]];
AppendTo[ratet, pt /. m[[2]]]
AppendTo[resid, m[[1]]];
h =.; t =.; AppendTo[mod, model /. m[[2]]];

’

Print["weighted L2 model = ", model /. m[[2]]];
tl = TimeUsed[]; Print["Time solve 1 = ", tl1l - t0]; t0 = t1;
Print["resid = ", m[[1]]];

m = NMinimize[{Mindw[ldata],
cons}, {{f0, f01, £f02}, {bs, bsl, bs2}, {ps, psl, ps2}, {bt, btl,
bt2}, {pt, ptl, pt2}}, Method -> "SimulatedAnnealing",

MaxIterations -> 1000];

AppendTo[sol0, £0 /. m[[2]]];

AppendTo[rates, ps /. m[[2]]];

AppendTo[ratet, pt /. m[[2]]];

AppendTo[resid, m[[1]]];

h =.; t =.; AppendTo[mod, model /. m[[2]]];

Print["weighted L4 model = ", model /. m[[2]]];
tl = TimeUsed[]; Print["Time solve 1 = ", tl - t0]; t0 = t1;
Print["resid = ", m[[1]]1];

m = NMinimize[{Min8w[ldata],
cons}, {{f0, f01, f02}, {bs, bsl, bs2}, {ps, psl, ps2}, {bt, btl,
bt2}, {pt, ptl, pt2}}, Method -> "DifferentialEvolution",
MaxIterations -> 1000];
AppendTo[sol0, £0 /. m[[2]]];
AppendTo[rates, ps /. m[[2]]];
AppendTo[ratet, pt /. m[[2]]]
AppendTo[resid, m[[1]]1];
h =.; t =.; AppendTo[mod, model /. m[[2]]];

’

Print["weighted L8 model = ", model /. m[[2]]];
tl = TimeUsed[]; Print["Time solve 1 = ", tl - t0]; t0 = t1;
Print["resid = ", m[[1]]1];

m = NMinimize[{Minl2w[ldata],
cons}, {{f0, f01, f02}, {bs, bsl, bs2}, {ps, psl, ps2}, {bt, btl,
bt2}, {pt, ptl, pt2}}, Method -> "RandomSearch",
MaxIterations -> 1000];
AppendTo[sol0, £0 /. m[[2]]];
AppendTo[rates, ps /. m[[2]]];
AppendTo[ratet, pt /. m[[2]]];
AppendTo[resid, m[[1]1]1];
h =.; t =.; AppendTo[mod, model /. m[[2]]];
Print["weighted L 1/2 model = ", model /. m[[2]]];

CASL-U-2013-0069-000

tl = TimeUsed[]; Print["Time solve 1 = ", tl1l - t0]; t0 = t1;
Print["resid = ", m[[1]]];

m = NMinimize[{Minlw[ldata],
cons}, {{f0, f01, £f02}, {bs, bsl, bs2}, {ps, psl, ps2}, {bt, btl,
bt2}, {pt, ptl, pt2}}, Method -> "RandomSearch",

MaxIterations -> 10007];
AppendTo[sol0, £0 /. m[[2]]];
AppendTo[rates, ps /. m[[2]]];
AppendTo[ratet, pt /. m[[2]]]
AppendTo[resid, m[[1]]1];

h =.; t =.; AppendTo[mod, model /. m[[2]]];

r

Print["weighted L1 model = ", model /. m[[2]]];
tl = TimeUsed[]; Print["Time solve 1 = ", tl - t0]; t0 = t1;
Print["resid = ", m[[1]]];

m = NMinimize[{Miniw[ldata],
cons}, {{f0, f01, f02}, {bs, bsl, bs2}, {ps, psl, ps2}, {bt, btl,
bt2}, {pt, ptl, pt2}}, Method -> "RandomSearch",

MaxIterations -> 1000];
AppendTo[sol0, £0 /. m[[2]]];
AppendTo[rates, ps /. m[[2]]];
AppendTo[ratet, pt /. m[[2]]]
AppendTo[resid, m[[1]]];

h =.; t =.; AppendTo[mod, model /. m[[2]]];

’

Print["weighted Linf model = ", model /. m[[2]]];
tl = TimeUsed[]; Print["Time solve 1 = ", tl1l - t0]; t0 = t1;
Print["resid = ", m[[1]]];

m = NMinimize[{MinlLw[ldata],
cons}, {{f0, f01, £f02}, {bs, bsl, bs2}, {ps, psl, ps2}, {bt, btl,
bt2}, {pt, ptl, pt2}}, Method -> "RandomSearch",
MaxIterations -> 10007];
AppendTo[sol0, £0 /. m[[2]]];
AppendTo[rates, ps /. m[[2]]];
AppendTo[ratet, pt /. m[[2]]];
AppendTo[resid, m[[1]]];
h =.; t =.; AppendTo[mod, model /. m[[2]]];

Print["weighted L1 lasso model = ", model /. m[[2]]];
tl = TimeUsed[]; Print["Time solve 1 = ", tl - t0]; t0 = t1;
Print["resid = ", m[[1]]1];

m = NMinimize[{Min2Tw[ldata],
cons}, {{f0, £f01, f02}, {bs, bsl, bs2}, {ps, psl, ps2}, {bt, btl,
bt2}, {pt, ptl, pt2}}, Method -> "SimulatedAnnealing",
MaxIterations -> 1000];
AppendTo[sol0, £0 /. m[[2]]];
AppendTo[rates, ps /. m[[2]]];
AppendTo[ratet, pt /. m[[2]]]
AppendTo[resid, m[[1]]1];
h =.; t =.; AppendTo[mod, model /. m[[2]]];

’

Print["weighted L2 ridge model = ", model /. m[[2]]];
tl = TimeUsed[]; Print["Time solve 1 = ", tl - t0]; t0 = t1;
Print["resid = ", m[[1]]1];
1i
Print["Median Residuals =", Median[resid]];
Print["Median Deviation Residuals =", MedianDeviation[resid]];

mmed = Median[sol0]; meddev = MedianDeviation[sol0];

Print["median solution = ", mmed]; Print["median deviation in solution = ", \
meddev];

rsmed = Median[rates]; rsdev = MedianDeviation[rates];

Print["median spatial convergence rate = ", rsmed];

CASL-U-2013-0069-000

n

Print["median deviation in spatial convergence rate = ", rsdev];

rtmed = Median[ratet]; rtdev = MedianDeviation[ratet];

Print["median angular convergence rate = ", rtmed];
Print["median deviation in angular convergence rate = ", rtdev];
Print["number of models = ", Length[sol0]];

Print["Models = ", mod];

Print["constant = ", sol0];

Print["spatial power = ", rates];

tf = TimeUsed[]; Print["total time = ", tf - ti];

Print["Histograms plots"];
Histogram[solO0]
Histogram[rates]
Histogram[ratet]

Print["Model plots"];
t = 24; Show[ListPlot[data], Plot[mod, {h, 0, 0.25}]] Plot[mod, {h, 0, 0.25}]
h = 0.01; Show[ListPlot[data], Plot[mod, {t, 2, 24}]] Plot[mod, {t, 2, 24}]

Print["Box and Whisker plots"];
BoxWhiskerChart[resid, "Median"]
BoxWhiskerChart[rates, "Median"]
BoxWhiskerChart[ratet, "Median"]
BoxWhiskerChart[sol0, "Median"]

CASL-U-2013-0069-000

Appendix B - Python Input For Upscatter

EEELEEEEEEEEEEEEELELELELEEE LS LEL

tstupscatter.py
Thomas M. Evans

Mon Oct 15 16:34:07 2007
$Id: tstupscatter.py,v 1.5 2009/02/06 15:32:26 9te Exp $
i FE SRS SESSEESEESS RIS LRSS SRS EESSEESEETSIEESEE
Copyright (C) 2007 Oak Ridge National Laboratory, UT-Battelle, LLC.
S EE RS SES SRS E RS R SESS RS EESS RIS LRSS SRS SRS EESEETISIEESEE

import sys

#from sc import *
from 1d import *

#from tld import *

import tester

from tester import 1n

REFERENCE
ref=[

OC0O00000D0DO0DO0DO0DO0DO0DO0DO0O0O0O0O0OO0O0O0OO0O0OOO0OOOOOOOOOOO

initialize(sys.argv)

CASL-U-2013-0069-000

.0204834930722,
.0262652370099,
.0414342507292,
.0293849659463,
.0414342507292,
.0574493440752,
.0262652370099,
.034848766099,

.0293849659463,
.0255958929703,
.0334755672169,
.0635608964631,
.0380653157153,
.0635608964631,
.142490636319,

.0334755672169,
.0468502780307,
.0380653157153,
.0255958929703,
.0334755672169,
.0635608964631,
.0380653157153,
.0635608964631,
.142490636319,

.0334755672169,
.0468502780307,
.0380653157153,
.0204834930722,
.0262652370099,
.0414342507292,
.0293849659463,
.0414342507292,
.0574493440752,
.0262652370099,
.034848766099,

.0293849659463,

0.0262652370099,
0.0204834930722,
0.0414342507292,
0.0414342507292,
0.0293849659463,
0.0574493440752,
0.034848766099,

0.0262652370099,
0.0293849659463,
0.0334755672169,
0.0255958929703,
0.0635608964631,
0.0635608964631,
0.0380653157153,
0.142490636319,

0.0468502780307,
0.0334755672169,
0.0380653157153,
0.0334755672169,
0.0255958929703,
0.0635608964631,
0.0635608964631,
0.0380653157153,
0.142490636319,

0.0468502780307,
0.0334755672169,
0.0380653157153,
0.0262652370099,
0.0204834930722,
0.0414342507292,
0.0414342507292,
0.0293849659463,
0.0574493440752,
0.034848766099,

0.0262652370099,
0.0293849659463,

.0293849659463,
.0262652370099,
.034848766099,

.0574493440752,
.0293849659463,
.0414342507292,
.0414342507292,
.0204834930722,
.0262652370099,
.0380653157153,
.0334755672169,
.0468502780307,
.142490636319,

.0380653157153,
.0635608964631,
.0635608964631,
.0255958929703,
.0334755672169,
.0380653157153,
.0334755672169,
.0468502780307,
.142490636319,

.0380653157153,
.0635608964631,
.0635608964631,
.0255958929703,
.0334755672169,
.0293849659463,
.0262652370099,
.034848766099,

.0574493440752,
.0293849659463,
.0414342507292,
.0414342507292,
.0204834930722,
.0262652370099,

0.0293849659463,
0.034848766099,

0.0262652370099,
0.0574493440752,
0.0414342507292,
0.0293849659463,
0.0414342507292,
0.0262652370099,
0.0204834930722,
0.0380653157153,
0.0468502780307,
0.0334755672169,
0.142490636319,

0.0635608964631,
0.0380653157153,
0.0635608964631,
0.0334755672169,
0.0255958929703,
0.0380653157153,
0.0468502780307,
0.0334755672169,
0.142490636319,

0.0635608964631,
0.0380653157153,
0.0635608964631,
0.0334755672169,
0.0255958929703,
0.0293849659463,
0.034848766099,

0.0262652370099,
0.0574493440752,
0.0414342507292,
0.0293849659463,
0.0414342507292,
0.0262652370099,
0.0204834930722]

timer = Timer();
timer.start();

db = DB("tstTransport_Solver")

db.insert("num_cells_i", 12)
db.insert("num_cells_j", 12)
db.insert ("num_cells_k", 8)

db.insert("num_z_blocks", 1)

db.insert ("Pn_order", 0)
db.insert("num_groups", 5)
db.insert ("downscatter", 0, 1)

db.insert ("tolerance", 1.0e-8)
db.insert("max_itr", 1000)
db.insert("aztec_diag", 0)
db.insert("aztec_output", 0)

db.insert("delta_x", 0.125)

db.insert("delta_y", 0.125)

db.insert("delta_z", 0.125)

db.insert ("boundary"”, "vacuum")

db.insert ("upscatter"”, "gauss_seidel")
db.add_db("upscatter_db", "upscatter");

db.insert ("upscatter_db", "upscatter_acceleration", 0, 1)
db.insert ("upscatter_db", "up_group_solver", "SI")
db.insert ("upscatter_db", "inner_itr", 1)
db.insert ("upscatter_db", "tolerance", 1.0e-8)
db.insert("problem_name", "2_ana")

DECOMPOSITION

if nodes() == 1:

db.insert("num_blocks_i", 1)
db.insert("num_blocks_j", 1)

elif nodes() == 2:

db.insert("num_blocks_i", 2)
db.insert("num_blocks_j", 1)

elif nodes() == 4:

db.insert("num_blocks_i", 2)
db.insert("num_blocks_j", 2)

nbnds = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
pbnds [1

db.insert("neutron_bnd", nbnds)
db.insert ("photon_bnd", pbnds)

Angular options

db.add_db("quadrature_db", "quad_options")
db.insert("quadrature_db", "Sn_order", 24)

CASL-U-2013-0069-000

manager = Manager()

mat = Mat ()

source = Isotropic_Source()
angles = Angles()

manager.partition(db, mat, angles)

mapp = manager.get_map()

Material setup
Ng = 5

m00 = [[5.0], [5.0], [5.0], [5.0], [5.0]]
m0l = [[4.0], [6.0], [6.0], [6.0], [6.0]]
m02 = [[3.0], [5.0], [7.0], [7.0], [7.0]]
m03 = [[2.0], [4.0], [6.0], [8.0], [8.0]]
m04 = [[1.0], [3.0], [5.0], [7.0], [9.0]]

m0 = [mO00, mO1l, mO2, m03, m04]
sigma_0 = [0.0] * Ng
for g in xrange(Ng):
sigma_0O[g] = 1.0
for gp in xrange(Ng):
sigma_O[g] = sigma_O[g] + mO[gp][g][0]

ml0 = [[0.5], [0.5], [0.5], [0.5], [0.5]]
mll = [[0.4], [0.6], [0.6], [0.6], [0.6]]
m12 .31, [0.5], [0.7], [0.7], [0.7]]
m13 .2], [0.4], [0.6], [0.8], [0.8]]
ml4 = [[0.1], [0.3], [0.5], [0.7], [0.9]]

nn
——
————
o o

ml = [ml10, mll, ml2, ml3, ml4]
sigma_l1l = [0.0] * Ng
for g in xrange(Ng):
sigma_1l[g] = 1.0
for gp in xrange(Ng):
sigma_1[g] = sigma_1[g] + ml[gp][g][0]

mat.set_num(2)
c=1[[1,2,3,4], [2, 3, 4], [3, 4], [4], []]
for g in xrange(5):

mat.assign_upscatter(0, g, sigma_O[g], c[g], mO[g])
mat.assign_upscatter(l, g, sigma_1[g], c[g], ml[g])

q = Vec_Dbl (mapp.num_global(), 0.2)
matids = Vec_Int(mapp.num_global(), 1)
srcids = Vec_Int(mapp.num_global(), O0)
indexer = manager.get_indexer()

for k in xrange(1l, 3):
for j in xrange(2, 4):
for i in xrange(2, 4):
n = indexer.g2g(i, j, k)
matids[n] = 0
q[n] =1.0

mat.assign_global_ids(matids)

manager.partition_energy(mat, angles)

CASL-U-2013-0069-000

External source setup
manager.setup (source)
shapes = Vec_Dbl(Ng, 1.0)

source.set(l, shapes, srcids, q)

Verify setup

#manager.verify()

Solve

manager.solve(angles)

CHECK OUTPUT
phi = Moments (0)

get mapping and mesh objects

mapp = manager.get_map()
indexer = manager.get_indexer()
mesh = manager.get_mesh()

global and local cell numbers
Gx = indexer.num_global (X)
Gy = indexer.num_global (Y)
Gz = mesh.num_cells_dim(Z)
Nx = mesh.num_cells_dim(X)
Ny = mesh.num_cells_dim(Y)
Nz = mesh.num_cells_dim(Z)

if node() == O:
print ">>> Partitioned global mesh with %i x %i x %i cells" \
% (Gx, Gy, Gz)

flux = Vec_Dbl(Gx*Gy*Gz, 0.0)

sum_flux = 0.0
for k in xrange(Nz):
for j in xrange(Ny):
for i in xrange(Nx):

gcell = indexer.l2g(i,j, k)
cell = mesh.convert (i, j, k)
flux[gcell] = phi.scalar_flux(cell)
sum_flux += flux[gcell]

sum_flux /= (Gx*Gy*Gz)
print "%i %26.16e " % (Gx*Gy*Gz, sum_flux)

sum the flux over all processors
total_sum_flux = gsum_double(sum_flux)
print "%i %26.16e " % (Gx*Gy*Gz, total_sum_flux)

#if node() == O:

print "—---- manager----- "
print dir(manager)

print "----- db---—- "

print dir(db)

print "-—---- mesh-——-- "

CASL-U-2013-0069-000

print dir (mesh)

print "-—-—- tester----- "
print dir(tester)
print "----- indexer----- "

H == H

print dir(indexer)

mesh = manager.get_mesh()

#for cell in xrange(mesh.num_cells()):
n = mapp.l2g(cell)

if not tester.soft(phi(cell, 0, O, 0O, EVEN), ref[n], 1.0e-6):
tester.fails(1ln())
T ##

timer.stop()
time = timer.wall_clock()

keys = timer_keys()

if len(keys) > 0 and node() == O:
print "\n"
print "TIMING : Problem ran in %16.6e seconds." % (time)
Print e e "

if time > O0.:
for k in xrange(len(keys)):
print "$30s : %16.6e" % (keys[k], timer_value(keys[k]) / time)

print M —- e e
#p-————————————————————————— - ##
#H-————————————————————————— - ##
#p-———————————————————————— - ##
OUTPUT
#p-————————————————————————— - ##

graphics =1

if graphics == 1:
make SILO output
silo = SILO()
silo.open("tupverif_ medium")

output scalar flux by group

flux = Vec_Dbl(mesh.num cells(), 0.0)
#Ng = manager.num_groups()

Ng = mat.num_groups()

for g in xrange(Ng):
phi = Moments (g)
for cell in xrange(mesh.num cells()):
flux[cell] = phi.scalar_ flux(cell)
silo.add("flux_%i" % (g), flux)

silo.close()

tester.passes("tstupscatter correctly matches reference output.")

manager.close()
finalize()

RS E RS SRS SR SRS EEEEEEEE S S S S ES TS L L
end of tstupscatter.py

CASL-U-2013-0069-000

CEEELEEEEEEEEEEELELELELELEEE LS EL

CASL-U-2013-0069-000

Appendix C — Python Input for Downscatter

i FE SRS EESEESSEESSESSEESSESS SRS EESEE
tsttwd.py

Thomas M. Evans

Mon Oct 15 16:34:07 2007

$Id: tsttwd.py,v 1.6 2008/10/01 19:54:13 9te Exp $

i EE RIS E RS RS ESS RS EESSEESSESE LRSS SRS EESSEESEETIIEES L
Copyright (C) 2007 Oak Ridge National Laboratory, UT-Battelle, LLC.

i EE SRS ARSI AR RIS ARSI SRS EETSIEESEE

import sys

does not work in parallel
#print "Space scheme"

#print "1 = step characteristic"”

#print "2 = LD"

#print "3 = Trilinear Discont”

#print "4 = weighted diamond differnce with flux fixup"
#print "5 = theta weighted diamond"

#scheme = input('scheme selection # (1-5) ='")

#refine = input('refinement amount =')

#order = input('Sn order - even 2-24 =')

scheme = 1

refine = 5

order = 10

if (scheme == 1): from sc import *

if (scheme == 2): from 1ld import *

if (scheme == 3): from tld import *

if (scheme == 4): from wdd_£ff import *

if (scheme == 5): from twd import *

- e ##
initialize(sys.argv)

timer = Timer();

timer.start();
T T e T ##

db = DB("tsttwd")

db.insert("num_cells_i", 7*refine)
db.insert("num_cells_j", 6*refine)
db.insert("num_cells_k", 3*refine)

db.insert("num_z_blocks", 1)

db.insert ("Pn_order", 0)
db.insert("num_groups", 2)
db.insert ("downscatter", 1, 1)

db.insert("tolerance", 1.0e-6)
db.insert("max_itr", 1000)
db.insert("aztec_diag", 0)
db.insert("aztec_output", 0)

db.insert("delta_x", 0.1/refine)
db.insert("delta_y", 0.1/refine)
db.insert("delta_z", 0.1/refine)

DECOMPOSITION

CASL-U-2013-0069-000

if nodes() == 1:

db.insert("num_blocks_i", 1)
db.insert ("num_blocks_j", 1)

elif nodes() == 2:

db.insert("num_blocks_i", 2)
db.insert("num_blocks_j", 1)

elif nodes() == 4:

db.insert("num_blocks_i", 2)
db.insert("num_blocks_j", 2)

elif nodes() == 8:

db.insert("num_blocks_i", 4)
db.insert("num_blocks_j", 2)

elif nodes() == 12:

db.insert("num_blocks_i", 4)
db.insert("num_blocks_j", 3)

elif nodes() == 16:

db.insert("num_blocks_i", 4)
db.insert("num_blocks_j", 4)

elif nodes() == 24:

db.insert("num_blocks_i", 6)
db.insert("num_blocks_j", 4)

BOUNDARY CONDITIONS

empty = Vec_Dbl(2)
xbnd = Vec_Dbl(2)
xbnd[0] = 1.0

db.insert ("boundary"”, "isotropic")
db.add_db("boundary_db", "bnd_conditions")

db.insert ("boundary_db", "plus_x phi", empty)
db.insert("boundary_db", "plus_y phi", empty)
db.insert ("boundary_db", "plus_z_phi", empty)

db.insert ("boundary_db", "minus_x_phi", xbnd)
db.insert("boundary_db", "minus_y_phi", empty)
db.insert ("boundary_db", "minus_z_phi", empty)
db.insert("within_group_solver", "SI")

Angular options

db.add_db("quadrature_db", "quad_options")

db.insert("quadrature_db", "Sn_order", order)

db.output ()

manager = Manager()
mat Mat ()

CASL-U-2013-0069-000

source = General_Source()
angles = Angles()

manager.partition(db, mat, angles)

Material setup

sigma_0
sigma_1l

[[0.4]]
[[0.6], [0.8]]

cells = []

mat.set_num(1l)
mat.assign_id (0, cells)

mat.assign_xs(0, O,

4, sigma_0)
mat.assign_xs(0, 1, 5,

1.
1. sigma_1)

manager.partition_energy(mat, angles)

External source setup
manager.setup (source)

source.set_num(1l)
source.assign_id (0, cells)

source.assign_isotropic(0, 0, 0.0)
source.assign_isotropic(0, 1, 0.0)
Verify setup

manager.verify()

Solve

manager.solve(angles)

Check output

phi = Moments (0)
phil = Moments (1)

testing precision
tol = 1.0e-8

mapp = manager.get_map()
indexer = manager.get_indexer()
mesh = manager.get_mesh()

global and local cell numbers
Gx = indexer.num_global (X)
Gy = indexer.num_global(Y)
Gz = mesh.num_cells_dim(Z)
Nx = mesh.num_cells_dim(X)
Ny = mesh.num_cells_dim(Y¥)
Nz = mesh.num_cells_dim(Z)

if node() == O:
print ">>> Partitioned global mesh with %i x %i x %i cells" \

CASL-U-2013-0069-000

% (Gx, Gy, Gz)

flux = Vec_Dbl(Gx*Gy*Gz, 0.0)
fluxl = Vec_Dbl (Gx*Gy*Gz, 0.0)

sum_flux = 0.0

sum_fluxl = 0.0

for k in xrange(Nz):

for j in xrange(Ny):
for i in xrange(Nx):

gcell = indexer.l2g(i,j,k)
cell = mesh.convert(i,j, k)
flux[gcell] = phi.scalar_flux(cell)
sum_flux += flux[gcell]
fluxl[gcell] = phil.scalar_flux(cell)
sum_fluxl += fluxl[gcell]

sum_flux /= (Gx*Gy*Gz)
sum_fluxl /= (Gx*Gy*Gz)
print "%i %26.16e " % (Gx*Gy*Gz, sum_flux)
print "%i %26.16e " % (Gx*Gy*Gz, sum_fluxl)

sum the flux over all processors

total_sum_flux = gsum_double(sum_flux)

print "flux0 = %i cells %26.16e " % (Gx*Gy*Gz, total_sum_flux)
total_sum_fluxl = gsum_double(sum_f£fluxl)

print "fluxl = %i cells %26.16e " % (Gx*Gy*Gz, total_sum_fluxl)

timer.stop()
time = timer.wall_clock()

= mm m 4
= m m 4
= m T
OUTPUT

= m m #

graphics =1

if graphics == 1:
make SILO output
silo = SILO()
silo.open("twd_coarse")

output scalar flux by group

flux = Vec_Dbl(mesh.num cells(), 0.0)
#Ng = manager.num_groups()

Ng = mat.num_groups()

for g in xrange(Ng):
phi = Moments (g)
for cell in xrange(mesh.num cells()):
flux[cell] = phi.scalar_flux(cell)
fluxl[cell] = phil.scalar_flux(cell)
silo.add("flux_%i" % (g), flux)
silo.add("flux_%i" % (g), fluxl)

silo.close()
keys = timer_keys()
if len(keys) > 0 and node() == O:

print "\n"
print "TIMING : Problem ran in %216.6e seconds." % (time)

CASL-U-2013-0069-000

"

print M- "
if time > O.:
for k in xrange(len(keys)):
print "%$30s : %16.6e" % (keys[k], timer_value(keys[k]) / time)

"

print

manager.close()
finalize()

GRS EES IS SRS EEEESI LSS SIS EEESIS TSI EEEESII LTSS L
end of tsttwd.py

CEEELEELELEEELEEELELEL

CASL-U-2013-0069-000

