

Survey	 of	 Software	 Quality	
Assurance	 and	 Code	 Verification	

Practices	 in	 CASL	 	
Michael	 Pernice	

Idaho	 National	 Laboratory	
Matt	 Sieger	

Oak	 Ridge	 National	 Laboratory	
March	 26,	 2013	

	

 INL/EXT-13-28675 CASL-U-2013-0079-000

CASL-U-2013-0079-000

DISCLAIMER
This information was prepared as an account of work sponsored by an

agency of the U.S. Government. Neither the U.S. Government nor any
agency thereof, nor any of their employees, makes any warranty, expressed
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness, of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. References herein to any specific commercial product,
process, or service by trade name, trade mark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the U.S. Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof.

While every effort has been made to ensure correctness of the findings
in this report, minor mistakes are inevitable when assimilating and
transcribing such a large volume of material. These errors are unintentional
and apologies are extended where needed. Corrections are welcome to
ensure accuracy of the findings.

CASL-U-2013-0079-000

CASL-U-2013-0079-000

Survey of Software Quality Assurance and Code Verification Practices in CASL

INL/EXT-13-28675 iii Consortium for Advanced Simulation of LWRs

Please complete sections appropriate for this record.

REVISION LOG

Revision Date Affected Pages Revision Description

Document pages that are:
Export Controlled __

IP/Proprietary/NDA Controlled__
Sensitive Controlled__

Requested Distribution:
To: Doug Kothe, CASL Director
 Douglas Burns, CASL Deputy Director
 Paul Turinsky, CASL Chief Scientist
 Jeff Banta, CASL Program Manager

Copy: John Turner, VRI/ORNL
 Randall Summers, VRI/SNL
 William Martin, RTM/University of Michigan
 Tom Evans, RTM/ORNL
 Chris Stanek, MPO/LANL
 Brian Wirth, MPO/UTK
 Mark Christon, THM/LANL
 Emilio Baglietti, THM/MIT
 Jess Gehin, AMA/ORNL
 Zeses Karoutas, AMA/WEC
 Steve Hess, AMA/EPRI
 Matt Sieger, QM/ORNL
 James Stewart, VUQ/SNL
 Vince Mousseau, VUQ/SNL
 William J. Rider, VUQ/SNL

CASL-U-2013-0079-000

Consortium for Advanced Simulation of LWRs iv INL/EXT-13-28675

CASL-U-2013-0079-000

Survey of Software Quality Assurance and Code Verification Practices in CASL

INL/EXT-13-28675 v Consortium for Advanced Simulation of LWRs

CASL-U-2013-0079-000

Consortium for Advanced Simulation of LWRs vi INL/EXT-13-28675

ABSTRACT

The Consortium for Advanced Simulation of Light Water Reactors (CASL)
is developing capabilities for multiphysics simulation of light water reactors that
couples state-of-the-art software components for neutron transport, thermal-
hydraulics, structural mechanics, coolant chemistry, and fuel performance. CASL
will establish confidence in its ability to simulate the performance of light water
reactors through extensive software quality assurance, including verification and
validation of selected challenge problems. In preparation for initial test stand and
alpha releases of CASL software, a survey of software quality assurance and
code verification practices was undertaken during the first half of Fiscal Year
2013. This report documents the findings of the survey and identifies best
practices and opportunities for improvement in both software quality assurance
and code verification practices.

CASL-U-2013-0079-000

Survey of Software Quality Assurance and Code Verification Practices in CASL

INL/EXT-13-28675 vii Consortium for Advanced Simulation of LWRs

CASL-U-2013-0079-000

Consortium for Advanced Simulation of LWRs viii INL/EXT-13-28675

SUMMARY
The Consortium for Advanced Simulation of Light Water Reactors (CASL) is developing capabilities

for multiphysics simulation of light water reactors that couple state-of-the-art software components for
neutron transport, thermal-hydraulics, structural mechanics, coolant chemistry, and fuel performance.
CASL will establish confidence in its ability to simulate the performance of light water reactors through
extensive software quality assurance, including verification and validation of selected challenge
problems. In preparation for initial test stand and alpha releases of CASL software, a survey of software
quality assurance and code verification practices was undertaken during the first half of Fiscal Year 2013.
This will be followed by a second survey of solution verification and validation practices for one of
CASL’s challenge problems during the second half of Fiscal Year 2013. These surveys are intended to
focus effort needed to support the test stand and alpha releases of CASL software.

The survey was conducted as a series of interviews with the developers of each of CASL’s physics
components. Both best practices and opportunities for improvement were identified by the survey. It was
found that the institution-specific software quality practices followed by the physics component software
development teams are generally adequate for ensuring an acceptable level of built-in quality.
Opportunities for improvement in defining and documenting component life cycles and measuring test
coverage have been identified, and several cases where considerable effort will be needed to provide
documentation required for public releases of CASL software have been noted.

It was also found that code verification is not widely practiced in CASL. In cases where code
verification is being performed, it is not well publicized and/or is focused on numerical benchmark
problems and code–code comparisons. A set of suggested guidelines for documenting code verification
problems have been provided and it is strongly recommended that these be widely discussed and a
finalized set of guidelines be adopted. In addition, it was found that no plans are in place for performing
code verification on coupled components. It is strongly recommended that CASL clearly define
responsibility for code verification of coupled components and begin planning for this activity as soon as
possible.

CASL-U-2013-0079-000

Survey of Software Quality Assurance and Code Verification Practices in CASL

INL/EXT-13-28675 ix Consortium for Advanced Simulation of LWRs

CASL-U-2013-0079-000

Consortium for Advanced Simulation of LWRs x INL/EXT-13-28675

ACKNOWLEDGEMENTS

Timely completion of this survey of code verification practices would not
have been possible without the participation of CASL’s physics software
component development teams, who took time from their busy schedules for the
initial interviews, reviews of interview notes, and reviews of the survey findings.

CASL-U-2013-0079-000

Survey of Software Quality Assurance and Code Verification Practices in CASL

INL/EXT-13-28675 xi Consortium for Advanced Simulation of LWRs

CONTENTS

ABSTRACT ... vi	

SUMMARY ... viii	

ACKNOWLEDGEMENTS .. x	

ACRONYMS .. xii	

1.	 INTRODUCTION .. 1	
1.1	 Scope ... Error! Bookmark not defined.	
1.2	 Document Organization .. Error! Bookmark not defined.	

2.	 ELEMENTS OF THE CODE VERIFICATION SURVEY ... 3	
2.1	 Software Quality Assurance ... 4	
2.2	 Code Verification ... 5	

3.	 CODE VERIFICATION PRACTICES BY COMPONENT ... 8	
3.1	 Cobra-TF .. 8	
3.2	 Hydra-TH ... 8	
3.3	 Denovo ... 9	
3.4	 MPACT .. 10	
3.5	 Peregrine ... 11	
3.6	 MAMBA .. 12	
3.7	 MAMBA-BDM .. 13	
3.8	 DTK .. 13	
3.9	 DAKOTA ... 14	

4.	 BEST PRACTICES AND OPPORTUNITIES FOR IMPROVEMENT ... 16	
4.1	 Best Practices ... 16	

4.1.1	 Requirements and Software Design .. 16	
4.1.2	 Management of Third-Party Libraries ... 16	
4.1.3	 Software Documentation ... 16	
4.1.4	 Framework Leverage ... 16	
4.1.5	 Code Verification Documentation .. 17	
4.1.6	 Code Verification Milestones .. 17	

4.2	 Opportunities for Improvement .. 17	
4.2.1	 Code Verification .. 17	
4.2.2	 Documentation .. 17	
4.2.3	 Testing ... 17	

5.	 SUMMARY AND CONCLUSIONS ... 18	

6.	 REFERENCES ... 19	

CASL-U-2013-0079-000

Consortium for Advanced Simulation of LWRs xii INL/EXT-13-28675

ACRONYMS
AMA Advanced Modeling Applications

ASC Advanced Simulation and Computing

CASL Consortium for Advanced Simulation of Light Water Reactors

CI continuous integration

CRUD Chalk River Unidentified Deposits

CSE computational science and engineering

FY fiscal year

INL Idaho National Laboratory

MMS method of manufactured solutions

MOC method of characteristic

ODE ordinary differential equation

ORNL Oak Ridge National Laboratory

PCMM Predictive Capability Maturity Matrix

PDE partial differential equation

PSU Pennsylvania State University

RHEL Red Hat Enterprise Linux

SNL Sandia National Laboratories

SQA software quality assurance

TPL third party libraries

V&V verification and validation

VERA Virtual Environmental for Reactor Applications

VRD VERA Requirements Document

VRI Virtual Reactor Integration

CASL-U-2013-0079-000

Survey of Software Quality Assurance and Code Verification Practices in CASL

INL/EXT-13-28675 xiii Consortium for Advanced Simulation of LWRs

CASL-U-2013-0079-000

CASL-U-2013-0079-000

Survey of Software Quality Assurance and Code Verification Practices in CASL

INL/EXT-13-28675 1 Consortium for Advanced Simulation of LWRs

SURVEY OF SOFTWARE QUALITY ASSURANCE AND
CODE VERIFICATION PRACTICES IN CASL

1. INTRODUCTION
The Consortium for Advanced Simulation of Light Water Reactors (CASL) is developing a

multiphysics software environment for science-based simulation of light water reactors. The Virtual
Environment for Reactor Applications (VERA) couples state-of-the-art physics software components for
neutron transport, thermal-hydraulics, structural mechanics, coolant chemistry, and fuel performance.
These modeling and simulation capabilities address essential issues in the design and operation of light
water reactors, such as life extension, power uprates, and assessment of design enhancements.

Modeling and simulation capabilities that are planned for VERA have the potential to play a
transformational role in risk-informed decision-making for nuclear energy applications. It is, therefore,
critical for CASL to establish confidence in the predictive capability of VERA through extensive software
quality assurance (SQA), including verification and validation (V&V).a Verification is the process of
determining the accuracy of computed results. It addresses mathematical aspects of software, and seeks to
answer the question: “Are the equations being solved correctly?” Validation is the process of determining
how accurately the computed results represent the modeled phenomena through comparison with
experimental measurements (NRC 2012). It addresses physical fidelity of the software and seeks to
quantify the relationship between model and reality by addressing the question: “Are the right equations
being solved?”

VERA is a large and complex suite of physics simulation components, utilities, and tools. This survey
is focused on the software components that implement VERA’s physics capabilities and their coupled
behavior. V&V of VERA will be demonstrated by conducting validation studies of specific challenge
problems that CASL has identified to guide its efforts. These challenge problems include Chalk River
Unidentified Deposits (CRUD) -induced power shifts, CRUD-induced localized corrosion, grid-to-rod
fretting, pellet-cladding interaction, and fuel assembly distortion. V&V of VERA will be facilitated
through integration of DAKOTA (Adams et al. 2011). A key aspect of DAKOTA is that it is non-
intrusive and requires no modification of the target application. With this capability, VERA users will be
able to directly conduct their own analyses (e.g., calibration or propagation of uncertainties), guided by
examples of DAKOTA-based V&V that will be included in each release of VERA.

To help guide efforts and to quantify progress toward the goal of science-based, predictive simulation
capability for light water reactors, CASL has adopted an augmented version of the Predictive Capability
Maturity Matrix (PCMM) (Oberkampf, Pilch, and Trucano 2007). The PCMM was developed in response
to the need to quantify the predictive maturity of modeling and simulation capabilities, and emphasizes
peer review, metrics, evidence, and documentation over expert judgment. It addresses the essential
elements of predictive modeling and simulation: physics modeling fidelity, code verification, solution
verification, and model validation and uncertainty quantification. CASL has added elements addressing
software modularity and extensibility and the capability to execute efficiently on current and future
high-performance computing systems. Note in particular that an appropriate level of code verification and
its supporting software quality assurance (SQA) practices are key elements of the PCMM. CASL has
developed quality requirements for VERA and its components. These requirements are specified in the
VERA Requirements Document (VRD) Hess (2012, which is primarily intended to address both
functional and quality requirements for VERA.

a. The terms “verification” and “validation” have different interpretations in different disciplines. We follow the definitions

established by the National Research Council (NRC 2012).

CASL-U-2013-0079-000

Consortium for Advanced Simulation of LWRs 2 INL/EXT-13-28675

CASL is preparing test stand and alpha releases of VERA during Fiscal Year (FY) 2013.
Requirements for this release are currently under development (Hess and Montgomery 2013). In addition
to an expected set of technical capabilities, the requirements include:

• Documentation of how to install, build, test, and execute VERA, and to post-process its results

• A collection of demonstration problems along with input files and reference output files to check
results and to verify correctness of the installation

• Code, theory, users, and V&V manuals for each of the component physics codes included in the test
stand and alpha distributions.

In particular, the installation documentation is required to contain enough information for a user to
check that the installation passes all tests (i.e., unit, regression, verification, and demonstration problems).
Unit and regression tests are by-products of SQA practices, while verification problems are by-products
of code verification practices. The demonstration problems are drawn from CASL’s collection of
benchmark progression problems, some of which are documented in detail in Godfrey (2012).

In CASL’s software development process, project teams at partner institutions develop the physics
software components and follow institution-specific SQA requirements. In addition, software components
currently planned for the test stand and alpha releases of VERA are at different stages of maturity. To
ensure availability and to determine the status of all required documentation, CASL conducted a survey of
current SQA and code verification practices performed by the physics code development teams in order to
document the current state of practice and to identify best practices and opportunities for improvement.
The survey constitutes an initial project-wide study of one row of the PCMM and consisted of a set of
interviews with the lead developers of VERA physics software components. Both SQA and code
verification practices were covered in the survey. Most of these interviews were conducted in person or
via CASL’s Vidyo™ teleconference facilities during collocation week in December 2012; three
remaining interviews that could not be scheduled at that time were done in January 2013 via telephone.
Narratives were derived from the interviews and reviewed by the participants. Findings were
communicated to code developers in Vidyo teleconferences during collocation week in February 2013.
Summaries of current practices in SQA and code verification were distilled from those narratives.

This report summarizes the results of the code verification survey and is organized as follows.
Section 2 discusses aspects of SQA and code verification addressed by the survey. The role of code
verification in the chain of SQA practices and its contribution to validation is also discussed. Section 3
summarizes SQA and code verification practices that are being performed for each of VERA’s physics
software components. Best practices and opportunities for improvement are addressed in Section 4, and
Section 5 contains a summary of the findings. Appendix A provides the survey questionnaire, while
Appendix B documents the narratives of each of the interviews that were conducted.

CASL-U-2013-0079-000

Survey of Software Quality Assurance and Code Verification Practices in CASL

INL/EXT-13-28675 3 Consortium for Advanced Simulation of LWRs

2. ELEMENTS OF THE CODE VERIFICATION SURVEY

As mentioned in the introduction, the code verification survey covered both SQA and code
verification. The objective of SQA is to ensure an acceptable level of quality in software. Effective SQA
practices either prevent the introduction of software defects or detect defects soon after they are
introduced. Because developers spend less time addressing defects and more time implementing new
functionality, effective SQA practices can reduce development time. Current CASL SQA practices are
based on requirements of DOE O 414.1D “Quality Assurance”; ISO 9001:2008, “Quality management
systems – Requirements”; and NQA-1-2008, Part IV, Subpart 4.2 “Guidance on Graded Application of
Quality Assurance (QA) for Nuclear-Related Research and Development.” However, independent
industry, government, and academic organizations are developing VERA’s physics software components
under a variety of SQA plans. CASL expects to support commercial-grade dedication efforts by Nuclear
Regulatory Commission licensees who apply VERA to safety-related computations, and to that end, has
endorsed the guidance of EPRI (2012). A first step in providing this support is to survey and comprehend
the level of SQA rigor that has been applied to VERA components. SQA practices provide confidence of
an acceptable level of built-in quality by assuring that the software was carefully designed and
implemented, and that controls are in place to detect and repair defects during development.

While SQA is necessary for ensuring general software quality, conventional SQA processes alone are
not sufficient to guarantee the correctness of scientific and engineering modeling and simulation software.
Algorithms and the numerical solution of partial differential equations (PDEs) dominate activities in
computational science and engineering (CSE). This introduces several distinct additional domain-specific
sources of error that SQA cannot identify, including lack of resolution in space and/or time, insufficient
accuracy in solution algorithms, and finite precision arithmetic (Oberkampf and Trucano 2002). These
sources of error are the result of the subtle and complex relationship between the governing equations
(i.e., the mathematical representation of the physical problem being studied, generally a system of
nonlinear PDEs), the discrete formulation of the governing equations (i.e., primarily a mapping of
derivatives and integrals to systems of algebraic equations), and translation of the discrete formulation
into software. Validation efforts that seek to assess the adequacy of the model described by the governing
equations must account for the difference between the solution of the governing equations and the
solution of the discrete problem, which is called the discretization error. While discretization errors
cannot be eliminated, they can be controlled; doing so requires knowledge of the behavior of the
discretization errors. Other desirable properties of the numerical scheme (e.g., monotonicity and
conservation) should also be tested, as well as other numerical aspects (e.g., exactness of interpolation
and quadrature rules). Consequently, any activities directed at ensuring quality of CSE software must also
include explicit testing of the numerical aspects of the application.

Following Oberkampf, Pilch, and Trucano (2007), ASME (2009), and NRC (2012),b CASL
distinguishes between code verification and solution verification. This is not merely a semantic
distinction. Code verification is an exercise in demonstrating that the software reproduces the correct
mathematical behavior and behaves as expected under mesh refinement. In particular, software that solves
PDEs should reproduce the correct rate of convergence of the discrete solution to the true solution of the

b. Code verification as an activity distinct from solution verification is recommended as a best practice by the National

Resource Council (NRC 2012).

verification: the process of determining how accurately a computer program (“code”)
correctly solves the equations of the mathematical model. This includes code verification
(determining whether the code correctly implements the intended algorithms) and solution
verification (determining the accuracy with which the algorithms solve the mathematical
model’s equations for specified […quantities of interest]). NRC (2012)

CASL-U-2013-0079-000

Consortium for Advanced Simulation of LWRs 4 INL/EXT-13-28675

governing equations. Because it is exceedingly difficult to prove this correctness for anything other than
the simplest software, it must be demonstrated by evaluating the error in a known solution. On the other
hand, knowledge of numerical error in the solution to a specific problem is critical to the overall
assessment of its uncertainty, and validation efforts must account for the contribution of numerical error.
Solution verification estimates the error in an unknown solution to a specific problem. Ideally solution
verification also provides information about the exact solution for use in validation.

Code verification helps to rule out encountering mathematical problems while performing solution
verification studies. For example, when assessing the error in a computed solution, code verification
exercises can uncover the need for tighter convergence tolerances in iterative methods,c stronger
numerical coupling between physics components, improved treatment of boundary conditions, better
mesh quality, finer mesh resolution to obtain asymptotic behavior of the error, or an alternative
discretization scheme. These or other numerical difficulties can be regarded to be defects that were
introduced upstream of validation efforts, which cannot proceed until the numerical difficulties are
identified and addressed. Failure to do so may produce misleading results, over-reliance on calibration,
and, in the worst case, a false sense of confidence. Decomposing overall SQA into the distinct processes
of SQA, code verification, solution verification, and solution validation allows each stage of the QA chain
to be documented and repeated independently, and facilitates re-verification of VERA when defects are
discovered and after installation in new operating environments. Examples of both code and solution
verification are provided in the ASME (2009). In CASL, Copps (2011) provides an example of code
verification and Rider and Kamm (2012) provides an example of solution verification.

2.1 Software Quality Assurance
SQA is focused on ensuring that software is reliable (implemented correctly and with minimal

defects) and produces repeatable results in specified hardware/software environments. SQA practices
have been developed in the computer science and software engineering communities, and numerous SQA
standards exist. Effective SQA supports early detection, communication, and correction of software
defects, which can lead to reduced development time and costs. It relies heavily on practices
(e.g., configuration management, configuration control, peer review, and unit/regression testing) to
develop documented and repeatable evidence of software correctness and conformance to requirements.
The basic elements of SQA comprise the following:

• Project management and quality planning

• Project risk management

• Requirements management

• Design

• Configuration management

• Procurement and supplier management

• Developer testing

• Software failure analysis

• V&V

• Problem reporting and corrective action.

In support of commercial-grade dedication of VERA, the emphasis is on surveying and
comprehending the SQA provenance of independently developed component codes, identifying CASL

c. This is especially important for multiphysics simulations in which the single physics components are loosely coupled

numerically.

CASL-U-2013-0079-000

Survey of Software Quality Assurance and Code Verification Practices in CASL

INL/EXT-13-28675 5 Consortium for Advanced Simulation of LWRs

requirements and critical characteristics of the codes, and providing evidence that those characteristics
have been correctly implemented through documented V&V reports, automated tests, and audits (code
reviews).

2.2 Code Verification
Code verification is directed at demonstrating that software reproduces the mathematical properties of

the methods and algorithms that it implements. This section briefly discusses procedures for code
verification and includes a recommendation for documenting benchmark problems used for code
verification. Rider, Kamm, and Weirs (2010) provide a full description of a code verification workflow.

Code verification must begin with a clear statement of the types of problems that the software can
solve and the methods used to obtain solutions. This includes the mathematical statement of the problem,
the discretization scheme that is used, and tolerances for any iterative methods that are used. In
multiphysics problems, the numerical coupling between single physics components must be specified
and, where data is exchanged between different grids, the interpolation methods that are used should also
be included. This information can then be used to determine the theoretical stability and accuracy
properties (in particular, a convergence rate) that the software is designed to deliver through selection of
the underlying discretization scheme.d

The essential idea behind code verification is simple to state: identify a test problem with a known
reference solution, solve the test problem on a sequence of successively finer grids, and compare the
computed solutions to the reference solution. The results of such mesh convergence studies are then
combined to determine the numerical convergence rate. The numerical convergence rate is compared to
the theoretical convergence rate. Any discrepancies should then be resolved by modifying the software,
reconsidering the test problem, or re-evaluating theoretical understanding. An important side benefit of
this process is a deeper understanding of the behavior of the software and the methods it implements.
While simple to state, code verification is difficult and time-consuming to perform. For example,
selecting an appropriate sequence of grids is still very much a research topic, and different techniques for
comparing computed to reference solutions can produce different results. Code verification for coupled
multiphysics problems is largely unexplored. More detailed discussions can be found in Rider, Kamm,
and Weirs (2010) and Oberkampf and Trucano (2008).

An important issue to consider is the selection of the reference solution. Errors that may be present in
evaluating the reference solution can obscure small errors in the software being tested, making it difficult
to draw sensible conclusions on the numerical convergence rate. Four different approaches to selecting a
reference solution are described in Oberkampf and Trucano (2008):

1. The method of manufactured solutions (MMS) (Roache 2002)

2. Analytical solutions to special cases of the governing equations

3. Numerical solutions to ordinary differential equations (ODEs) derived from special cases of the
governing equations

4. Numerical benchmarks.

Each approach has its strengths and weaknesses.

MMS uses a prescribed “exact” solution, which is substituted into the governing equations to generate
a source term. Solutions in MMS must be chosen carefully to reflect solution features that are typically
encountered in practice (e.g., boundary layers, singularities, and discontinuities) and to exercise all the
terms in the governing equations. MMS is the preferred method of ASME (2009). While considerable

d. Some methods used in VERA (e.g., method of characteristics and subchannel flow) do not readily lend themselves to

conventional notions of discretization error. The relationship between computed solutions and governing equations must,
nevertheless, be characterized.

CASL-U-2013-0079-000

Consortium for Advanced Simulation of LWRs 6 INL/EXT-13-28675

effort has been made in applying MMS to single physics components, this can be very difficult for
complex multiphysics software (e.g., VERA). MMS is intrusive in the sense that an artificial source term
must be inserted into the code. Furthermore, MMS can generate very complex source terms that must be
subjected to SQA and verification practices to ensure accurate evaluation. Symbolic manipulation
software can be helpful for generating source terms for MMS. Open source software for generating
manufactured solutions to specific problems is available through the MASA (i.e., Manufactured
Analytical Solution Abstraction) website.

Analytical solutions to special cases of the governing equations most often take the form of infinite
series or complex integrals. This raises issues in accurate evaluation that are similar to those encountered
in MMS source terms. Another weakness of this type of benchmark is that analytical solutions exist only
for relatively simple problems.

ODE formulations of simplified problems can be obtained, for example, through reduction of the
governing equations to one dimension or through similarity transformations. The ODE formulation may
not reflect the modeling assumptions of the original model; this can lead to small differences that fail to
differentiate between modeling assumptions and software defects. Further, the reference solution must be
computed to high accuracy by an ODE solver that has been rigorously verified to assure correctness.

Numerical benchmarks are useful to check software against functional requirements by demonstrating
software capabilities, but these must be carefully evaluated for purposes of code verification.e This
category includes what is usually referred to as “code-to-code comparisons,” but such comparisons do not
constitute code verification. Numerical benchmark problems published in the open literature often do not
provide numerical values for the benchmark solutions, which often leads to subjective, non-rigorous
comparisons (aka, the “view graph norm”). Comparing the computed and reference solution almost
always requires mapping data between meshes at different resolutions (and possibly different mesh
topologies). This introduces another source of numerical error (which must also be tested) that can
contaminate the results of mesh convergence studies. The reference solution must be computed on a mesh
that is much finer than planned for the mesh convergence study, and the numerical reliability of the
reference solution must be demonstrated to be the highest quality through documented, rigorous SQA of
the software that produced it. This includes code verification in the sense discussed herein, developing as
much objective evidence as possible, and minimizing the amount of expert judgment needed to evaluate
the benchmark. Given these considerations, a more reliable approach would be to simply adopt the
verification tests of the software that was used to generate the numerical benchmark. If documentation of
those tests is not available, then the value of the numerical benchmark for the purposes of code
verification is questionable.

Most software development, as currently practiced in CASL, already involves some aspects of code
verification. CASL must proceed with more formality, developing a defensible record in the form of
objective reproducible evidence, in order to document the accuracy of VERA results. In particular, code
verification benchmark problems must be carefully documented to unambiguously communicate those
aspects of the software that are tested and how the benchmark solution was obtained. Benchmark
specifications should be complete and specific enough to enable others to understand the process followed
to develop and execute the benchmark comparison. Examples of verification benchmark problem
documentation that conforms to these guidelines may be found in Kamm et al. (2009). The following
guidelines for documenting code verification benchmark problems are distilled from recommendations
for strong-sense benchmarksf described in Oberkampf and Trucano (2008).

1. Conceptual description of the verification benchmark. The following details should be included:

e. Some argue that numerical benchmarks and highly accurate numerical reference solutions are simply unsuitable for the

purposes of code verification.
f. Introduced in Oberkampf, Trucano, and Hirsch (2004), strong-sense benchmarks are essentially engineering standards that

should be maintained by professional societies, academic institutions, and nonprofit organizations.

CASL-U-2013-0079-000

Survey of Software Quality Assurance and Code Verification Practices in CASL

INL/EXT-13-28675 7 Consortium for Advanced Simulation of LWRs

a. Physics that is modeled in the benchmark problem

b. Initial and boundary conditions, spatial domain (problem geometry)

c. Examples of applications where the benchmark problem is relevant

d. Type of benchmark problem (MMS, analytic, reduced problem, numerical benchmark)

e. Algorithms and code features tested by the problem; single physics or multiphysics test.

2. Mathematical description of the benchmark problem:

a. Governing equations, including all secondary models and sub-models.

b. If the benchmark problem is based on MMS or an analytic solution that is not in closed form,
specification of the MMS source term or evaluation of the analytic solution must be provided.
A code fragment showing the implementation should also be provided.

c. Output value(s) being assessed for accuracy. This could be a single scalar value (e.g., heat flux
through a surface) or a solution variable (e.g., fluid pressure on a surface). For CASL, it is
particularly useful to test outputs that serve as inputs to other VERA components in a coupled
simulation (in particular, for challenge problems).

3. Accuracy assessment:

a. Specification of the sequence of meshes used to assess accuracy

b. Specification of how solution error is measured

c. Additional calculations (e.g., interpolation) needed to implement comparison to the reference
solution.

4. Additional user information, including:

a. Computing system(s) on which the benchmark was performed

b. Operating system and version

c. Compiler, version, options used

d. Precision (single or double)

e. Programming language

f. Execution time for each benchmark problem

g. Authorship and contact information

h. Additional information specific to the benchmark problem

i. Relevant peer-reviewed publications.

CASL-U-2013-0079-000

Consortium for Advanced Simulation of LWRs 8 INL/EXT-13-28675

3. CODE VERIFICATION PRACTICES BY COMPONENT
The following subsections summarize the survey findings for each physics software component that

is anticipated for inclusion in the test stand and alpha releases of VERA.

3.1 COBRA-TF
Interviewees: Robert Salko, Pennsylvania State University; Rod Schmidt, Sandia National

Laboratories.

COBRA-TF is a thermal-hydraulics sub-channel code that is widely used for evaluation of safety
margins in nuclear reactors. Originally developed at Pacific Northwest Laboratory in the early 1980s, this
software has been adapted, modified, and developed by numerous academic and industrial organizations.
There is no de facto standard version of COBRA-TF. This particular version is currently in use at
Pennsylvania State University. The provenance of this software is discussed in (Avramova, 2007). CASL
selected COBRA-TF for use because of a need for a non-proprietary sub-channel code.

Some benchmark comparisons have been made with COBRA-TF. Some comparisons of results to
experiment have also been performed. Current development work at the Pennsylvania State University
(PSU) is focused on performance optimization and is under source control. These existing benchmarks
are used in a set of regression tests to ensure that no new defects are introduced. More tests are being
developed.

Virtual Reactor Integration (VRI) is working to establish a software quality pedigree for COBRA-TF.
COBRA-TF has been integrated into the VERA development environment, bringing any changes to this
version under CASL SQA practices. In particular, regression tests are run automatically when code
changes are committed and reported using standard practices for VERA. Unit tests and acceptance tests
have yet to be developed. A synchronization server has been set up to ensure consistency between
versions at PSU and VERA. With establishment of this synchronization, work is proceeding to devise
further tests to obtain full coverage.

Formal code verification for COBRA-TF presents an interesting challenge. The nature of sub-channel
flow precludes mesh refinement studies in the usual sense. Some additional analysis of sub-channel flow
models will be needed to devise approaches for developing evidence of mathematical correctness of the
implementation.

3.2 Hydra-TH
Interviewee: Mark Christon, Los Alamos National Laboratory.

Hydra-TH is a hybrid finite element/finite volume incompressible/low-Mach number fluid dynamics
code. Hydra-TH uses cell-centered transport variables and conservative discretization that features a
high-resolution monotonicity-preserving advection algorithm and capabilities for both explicit and
implicit advection. Time integration methods include the unconditionally stable first-order backward
Euler method (used primarily to drive solutions to steady state) and the neutrally dissipative second-order
trapezoidal method. The trapezoidal method provides transient calculations that are unconditionally stable
for the scalar transport equations and conditionally stable for the momentum transport equations.
A second-order incremental projection algorithm forms the basis for the Hydra-TH solver, with
development of a fully implicit approach currently underway. Several turbulence models are
implemented, including Spalart-Allamaras, k-ε, implicit large-eddy simulation, and detached-eddy
simulation. The Hydra-TH Theory Manual (Christon 2011) provides details.

Hydra-TH development follows SQA practices based on experiences in commercial software
development, but these practices are not documented. The project uses GanttProjectg to track

g. GanttProject is an open source tool for project scheduling and management. http://www.ganttproject.biz/

CASL-U-2013-0079-000

Survey of Software Quality Assurance and Code Verification Practices in CASL

INL/EXT-13-28675 9 Consortium for Advanced Simulation of LWRs

requirements and progress. Requirements are determined by CASL needs; software features that are
needed to satisfy these requirements are identified through group discussion and then scheduled for
implementation. Every iteration of the design and development process includes a design review, and
every commit of new code must pass all regression tests on two different platforms. Two other team
members perform a code review after the potential commit passes these regression tests. This process
often identifies a revision or a potential software defect that does not get introduced into the repository
and is strictly enforced in the Hydra project. These extensive review processes ensure that every member
of the Hydra development team is familiar with all of the software.

Source code and serial and parallel regression tests are currently maintained in an internal
subversionh repository, which periodically gets pushed to the central VERA repository. There are
some unit tests, but current efforts are focused on integrated tests. Current plans call for moving the
Hydra repository to an external-facing server to support continuous integration (CI). Both serial and
parallel tests are executed on a nightly basis on three platforms, and test results are reported internally
through a custom testing and reporting capability. Test coverage is not measured, but the developers
consider feature coverage in the regression tests to be good.

Doxygeni is used to generate a developers’ manual from annotated source code, which is used daily.
A comprehensive Theory Manual (Christon 2011) documents Hydra’s discretization and solution
algorithms for single-phase flow; theory and documentation for multiphase flow is being developed and
may appear in a separate manual for manageability. There is also an extensive User’s Manual (Christon,
Bakosi, and Lowrie 2012) that includes documentation of how to run the software, code input, and several
sample problems. Instructions for building the code are provided with the source distribution.

Verification of Hydra-TH is proceeding along several different paths. The Theory Manual includes
mesh convergence studies for a pair of pure advection problems. Milestone-driven assessment of
single-phase large-eddy simulation is underway for a set of well-documented large-eddy simulation test
cases, using available experimental data and references in the open literature. Additional verification
studies are currently underway using sample problems from the User Manual and the regression tests.
These are numerical benchmark problems that are extensively studied in the fluid dynamics literature.

3.3 Denovo

Interviewee: Tom Evans, Oak Ridge National Laboratory

Denovo is a three-dimensional discrete ordinates (Sn) deterministic radiation transport code. Features
of Denovo include use of Cartesian grids, efficient Krylov subspace solvers, diffusion synthetic
acceleration for preconditioning, multigroup energy approximation, multiple spatial discretization
schemes (including several variants of diamond differencing and discontinuous Galerkin finite element
discretization), and a wave front parallel sweep algorithm for efficient parallel scaling. Evans et al. (2010)
provides more details, including an early numerical benchmark comparison.

Denovo follows ISO-9000 standards and the SQA policy that is internal to the Reactors and Nuclear
Science Division at Oak Ridge National Laboratory (ORNL). The developers use fogbugzj and kanbank

sites at ORNL to track deliverables and requirements from CASL and other customers. An informal
planning process is documented in a calendar-based schedule. An electronic notebook application is also
used. Formal documentation follows a “tech-note” process, in which all the major features to be

h. subversion is an open source version control system. http://subversion.apache.org/
i. Doxygen is open source software for generating documentation directly from source code.

http://www.stack.nl/~dimitri/doxygen/index.html
j. fogbugz is a commercial bug-tracking system. http://www.fogcreek.com/fogbugz/
k. kanban is an agile technique for efficiently managing the software development process.

CASL-U-2013-0079-000

Consortium for Advanced Simulation of LWRs 10 INL/EXT-13-28675

implemented are documented: derivation of equations, linear algebraic structure, and algorithmic
components (e.g., energy decomposition). The tech-note process is also useful for tracking changes in
requirements. Simple Unified Modeling Language is used in informal code design, and unit tests are used
to control changing requirements. Code standards that principally address clarity, consistency, and
completeness are documented in a development environment manual and are enforced in code reviews.
Third-party libraries (TPLs) are qualified as optional (i.e., hdf5, silo, brl-cad, sprng, SCALE, and
SuperLU) or required (i.e., Trilinos, LAPACK, and BLAS), and TPLs under development are updated
continuously. This is supported by writing tests directly to the TPL’s application programming interface
for the functionality required by Denovo. Source code, documentation, tests, and examples are maintained
in a gitl repository.

Denovo uses the TriBITS build system (Bartlett, Heroux, and Willenbring 2012) for consistency with
VERA. CI tests, consisting of 343 unit tests and 110 python tests, are run every 4 hours on an internal
cluster at ORNL. Tests are also run on VERA platforms. Logs of test results are maintained, and failed
tests trigger notification emails. BullseyeCoveragem measures test coverage at greater than 84% function
points. An additional set of more stringent acceptance tests are run weekly and consist of extensive
numerical tests of limiting cases that either have closed form solutions or known solution structure (e.g.,
symmetry or parity).

Doxygen is used to generate developers, methods, and algorithms (aka, theory), and user
documentation. This documentation leverages content generated by the tech-note design process. The user
documentation includes a development environment and standards manual. Currently, documentation for
installation is in flux, as Denovo transitions to the CMake-based build system under TriBITS. With
adoption of CI, any commit that doesn’t trigger a failed test is, in principle, releasable; periodically issued
release notes associated with a tagged version of Denovo principally documents the current set of
software dependencies. A SCALE release of Denovo occurs every 6 to 12 months.

Denovo has several approaches to code verification. Convergence studies are run for problems with
semi-analytic solutions, and recent work evaluating eigenvalue convergence with respect to angular
quadrature will be published soon. Some of the acceptance tests use MMS. Denovo can generate
verification problems with its Sn-MC module, which runs Monte Carlo on the exact same discretization.

3.4 MPACT
Interviewees: Ben Collins, Brendan Kochunas, University of Michigan.

MPACT is a two- and three-dimensional radiation transport code for high-fidelity light-water reactor
analysis using the method of characteristics (MOC) for whole-core transport calculations with neutron
flux information provided at the sub-pin level. An initial evaluation of MPACT (Godfrey, Franceschini,
and Palmtag 2012) showed good code-to-code agreement for the second Advanced Modeling
Applications (AMA) benchmark progression problem (Hess 2012; Godfrey2012).

MPACT has defined its own informal SQA standard that is documented on an internal Trac site.
Feature requests are reviewed to determine requirements, and code design is built from this. The process
is documented using Trac’s ticketing system. When requirements change, the developers review these
for impact on old requirements and repeat this process. Fortran coding standards to get uniform
implementation are documented on the internal Trac site and enforced in code reviews. TPLs are selected
for their functionality and are automatically tested when they are optionally enabled. Processes for
managing TPLs are still being worked out. Source code, documentation, tests, and examples are
maintained in a git repository.

For consistency with VERA, MPACT uses TriBITS. A CI server checks for changes every
10 minutes. If changes are found, the code is rebuilt, and both serial and parallel unit tests are run. Nightly

l. git is an open source distributed software version control system. http://git-scm.com/

CASL-U-2013-0079-000

Survey of Software Quality Assurance and Code Verification Practices in CASL

INL/EXT-13-28675 11 Consortium for Advanced Simulation of LWRs

unit and regression tests are run on a variety of compilers and configurations. Due to their expense, the
regression tests are run for one configuration. Test coverage is measured at about 90% lines of code by
gcov.m

Developers and users manuals are generated from annotated source code using Doxygen.
Installation procedures are documented on an internal website, and a README file provided with the
distribution documents build options. While there is no detailed tutorial or examples, the regression tests
provide examples of input files. A theory manual is in the planning stages. Releases are planned for every
1 to 3 months, and are annotated with git tags.

Code verification is not being performed for MPACT. There may be some open questions about
the convergence behavior of MOC that must be addressed before code verification can be done.
The developers are considering generating fixed source solutions on a Cartesian grid for comparison,
MMS, and comparing MOC calculations to highly resolved Monte Carlo calculations. There is also
the opportunity to leverage Denovo’s suite of verification problems.

3.5 Peregrine
Interviewees: Robert Montgomery, Pacific Northwest National Laboratory; Chris Stanek, Los Alamos
National Laboratory.

Peregrine is a fuel performance code that is being developed to provide three-dimensional fuel
performance modeling capability for CASL. Initial code-to-code comparisons with FALCON
(EPRI 2004), which is a two-dimensional axisymmetric industry-standard fuel performance code,
demonstrates that Peregrine is able to calculate thermal expansion, cracking, and relocation of the fuel
pellet; heat transfer across the pellet cladding gap; and gap closure leading to pellet-cladding contact
(Montgomery et al. 2012). These studies have highlighted the need for improved material and behavior
models in Peregrine, particularly for fission gas release.

Peregrine uses the MOOSE framework (Gaston et al. 2009), which follows NQA-1 software quality
practices (Lackner and Schulmeyer 2012). Consequently, Peregrine leverages MOOSE software quality
practices and software dependencies. This includes, in particular, an extensive set of verification tests that
are under revision control and execute automatically after nightly builds, dashboard reporting of test
results in an internal Trac site, a central subversion code repository, MOOSE-based code design and
standards, defect identification and tracking via Trac’s ticketing system, an automated build system, a
Doxygen-generated developer’s manual, and documented installation procedures. Code design is strictly
enforced to conform to MOOSE’s software architecture, and design reviews are conducted in
collaboration with the MOOSE development team to ensure compliance. MOOSE leverages a
considerable amount of third-party software, including discretization capabilities from libMesh
(Kirk et al. 2006), nonlinear solver capabilities from PETSc (2012), and scalable algebraic multigrid
capabilities from hypre (Falgout, Jones, and Meier Yang 2006). Other significant third-party tools include
CUBIT for mesh generation, Exodus for input/output, and Paraview for visualization.

Requirements are determined by CASL’s need for modeling and simulation of nuclear fuel
performance. Selection of models is determined by experience, and many models used in FALCON have
stood the test of time. When the adequacy of a FALCON model comes into question, alternatives are
sought in the literature. New model components (e.g., constitutive model frameworks for mechanical and
thermal behavior, currently being developed) are incorporated into Peregrine by first determining the
required inputs, implementing the component, and developing tests for the component in a local software
repository. The tests are generally single element tests for correct evaluation of the model component, and
once these are deemed satisfactory, the new capabilities are integrated back into the central MOOSE
software repository. Unit tests are often hard to compose. For example, current results for fission gas

m. gcov is a software test coverage tool that is bundled with the GNU compiler suite.

CASL-U-2013-0079-000

Consortium for Advanced Simulation of LWRs 12 INL/EXT-13-28675

release are not satisfactory, but there is no unit test for fission gas release because the large number of
inputs into fission gas release makes it hard to isolate. Material properties for fuel and cladding are taken
from MATPRO, which is a material properties database that has been used extensively in fuel
performance and severe accident codes.

A user manual for Peregrine is currently being written. A theory manual does not yet exist. While
code-to-code comparisons with FALCON have been largely positive and extremely useful, code
verification studies in the sense discussed in Section 2 have not yet been devised. There is some question
about whether responsibility for this effort should reside with the framework (MOOSE), with the
application (Peregrine), or shared in some manner.

3.6 MAMBA
Interviewee: Brian Kendrick, Los Alamos National Laboratory.

MAMBA is an engineering-scale code for modeling CRUD deposition. Mass and heat are transported
via convection, evaporation, charge-driven ionic movement, and diffusion. These phenomena are
modeled at the engineering scale by numerically solving an appropriate set of coupled transport
equations. Boundary conditions are provided by coupling to other VERA components and include
thermal and radiation fluxes at the surface of the fuel cladding, the thermal-hydraulics at the interface
between the CRUD and the coolant, and the particulate/soluble concentrations of the various chemical
species in the coolant.

MAMBA is based on ChemPac and follows an internally documented SQA plan for ChemPac that
also follows DOE O 414.1D for SQA. Development roughly follows a spiral life cycle, occurring in
stages of design, code, test, validate, and enhance. Requirements are determined by the CASL MPO
CRUD group for fundamental models of CRUD deposition. Software interface requirements are also
obtained from other VERA physics components that couple to MAMBA (in particular, MAMBA-BDM).
The requirements are captured informally in a set of action items and meeting minutes. Software design is
based on a combination of ChemPac experience and MOOSE requirements, and implementation consists
of modifying existing code and writing new code. Code reviews for ChemPac are done within the
development team, but MAMBA is still too immature to follow this process. Code designs are
documented in README files associated with the source code and provide an idea of the code structure.
There are no formal coding standards. Besides ChemPac, MAMBA relies on MUMPS (MUMPS 2012)
for direct solution of sparse systems of linear equations. The primary considerations in selecting TPLs are
licensing and efficiency.

Software configuration control is done manually using a directory-based structure with version-based
names. This is modeled on the approach currently used for ChemPac. Tests are associated with each
version and are controlled in the same manner. MAMBA’s build system uses make, but dependencies
and configuration are managed manually. Slightly different versions of the makefile are needed for
different platforms. The frequency of builds depends on the level of development activity and occurs on a
daily to weekly basis on a variety of Linux-based platforms (e.g., workstations, laptops, and high-
performance computing systems).

Validation of MAMBA, using different levels of tests, is just getting underway. Some of the tests
have known solutions, while others are regression tests. Simple, inexpensive tests are selected with efforts
made to exercise the entire code; however, test coverage is not measured. Regression tests are run after
active periods of code development, and results are written to output files that summarize results. Failures
are either fixed or documented and reported to the team.

Releases of MAMBA are tagged with version numbers associated with the directory-based version
control practices and occur approximately yearly. When a defect in a released version is reported, either a
patch or a pre-release of the next version of MAMBA is provided, depending on the severity of the defect.

CASL-U-2013-0079-000

Survey of Software Quality Assurance and Code Verification Practices in CASL

INL/EXT-13-28675 13 Consortium for Advanced Simulation of LWRs

Instructions for building and using MAMBA are documented in a README file. In addition, a
subdirectory of examples is available, along with input files and sample results.

A theory manual is under development, and manuscripts describing applications of MAMBA are in
preparation. MAMBA uses the Crank-Nicolson method for time stepping, second-order finite volume
discretization for the diffusion operator, and tight (10-9) tolerances for nonlinear solve operations, so the
code is expected to be second-order accurate in space and time. Advective velocities normal to the fuel
rod are obtained from local mass evaporation and boiling rates and could be large enough to shorten the
residence time scale; time steps must be selected to properly resolve this. While properties of the
numerical methods are understood, MAMBA solves complex advection-diffusion-reaction problems with
precipitation and deposition, and it is difficult to identify representative verification problems. When
analytic solutions for simplified test cases are available, they are used to quantify errors; otherwise,
code-to-code comparisons are done. A Courant stability condition, together with regular refinement, is
used to select mesh resolution and time step sizes in mesh and time step convergence studies. A
maximum percentage difference is used to measure differences in the computed and reference solutions,
and a rate of convergence is found by plotting this maximum percentage difference against mesh size, and
measuring the slope. However, these test problems are not formally documented, and no reports on these
verification activities have been written.

3.7 MAMBA-BDM
Interviewee: Michael Short, Massachusetts Institute of Technology.

MAMBA-BDM is a first-principles, physics-based, mesoscale model that focuses on simulating
temperature, fluid velocity, and species concentration profiles inside the CRUD around a single boiling
chimney. This level of resolution is too fine for MAMBA to handle efficiently, and MAMBA-BDM can
be used to provide MAMBA with quantities calculated at the mesoscale, such as overall CRUD
temperature, surface CRUD temperature, peak cladding temperature, boron mass loading, and the total
fraction of heat flux due to wick or nucleate boiling.

MAMBA-BDM uses the MOOSE framework, and, like Peregrine, leverages MOOSE’s software
quality practices. Tests are written for every piece of physics that has been finalized and are structured to
ensure that the proper physics is being reproduced. Test coverage is low since MAMBA-BDM is still
under development, with current efforts focused on migrating from single-phase flow to multiphase flow.

A detailed user manual is available (Short et al. 2012) and is updated every month. In addition to
detailed information on how to run MAMBA-BDM (along with a full input file), this includes an
extensive review of prior work on CRUD models, a description of the MAMBA framework, specification
of correlations used for physical and chemical properties, and a set of results on simulating CRUD
scrapes. In addition, some parameter sensitivity studies are included. Some limited convergence studies
have been performed to check the convergence properties of MAMBA-BDM, but these have not been
documented.

3.8 DTK
Interviewees: Roger Pawlowski, Sandia National Laboratories; Stuart Slattery, University of
Wisconsin-Madison.

DTK is a data-transfer toolkit that enables mesh searching and data transfer between different physics
components in VERA. Because each physics software component in VERA typically defines its own
computational mesh—which is often tuned to the requirements of the physics captured in that
component—some interpolation operations are needed to move data from one mesh to another. DTK
handles the case of overlapping meshes, and implements this volumetric exchange of data using a
geometric rendezvous algorithm (Plimpton, Hendrickson, and Stewart 2004).

CASL-U-2013-0079-000

Consortium for Advanced Simulation of LWRs 14 INL/EXT-13-28675

DTK was implemented during a CASL summer internship at ORNL, following SQA drawn from
both the Trilinos and Denovo projects. Requirements are determined by the need to transfer data between
meshes having different topology and different mappings onto large parallel computing systems.
Requirements for DTK are clearly defined by data requirements for volumetric interpolation and mapping
of data onto parallel computing systems, and are documented in Plimpton, Hendrickson, and Stewart
(2004). DTK currently resides in VERA and uses VERA automated build, testing, test reporting, and
installation procedures. A strict set of unit tests is run under CI. The data transfer problem is conceptually
simple, the underlying interpolation theory is well understood, and a small number of exact analytic tests
are provided. A user manual is generated using Doxygen from annotated source code. A theory manual
(Slattery 2012) describes the domain model for mesh, fields, and parallel topology maps based on the
concept of geometric rendezvous.

3.9 DAKOTA
Interviewees: Dena Vigil, Michael Eldred, and Brian Adams, Sandia National Laboratories.

DAKOTA is a toolkit for large-scale engineering optimization and uncertainty analysis. It provides
methods for optimization, propagation of uncertainty, parameter estimation, and sensitivity/variance-
based analysis that can be used in a completely non-intrusive manner (i.e., no changes to the target
simulation code are needed). This is accomplished through use of scripting and hierarchical input
specifications, which allows for additional composite analyses (e.g., hybrid optimization, surrogate-based
optimization, and optimization under uncertainty). See Adams et al. (2011) for details.

DAKOTA development does not follow a specific SQA standard, but SQA processes are documented
internally and are assessed against the Advanced Simulation and Computing (ASC) Software Quality
Plan (Minana et al. 2009). Funding programs (e.g., ASC, U.S. Department of Energy Office of Science,
the Nuclear Energy Advanced Modeling and Simulation program, CASL, and Cooperative Research and
Development Agreements) provide programmatic requirements. Other users request requirements, and
DAKOTA developers may identify requirements through code reviews, helping customers, or routine
development and maintenance activities. All requirements are collected and reviewed in a more formal
planning process, and most are followed in an issue tracking system. Requirements are reviewed and
prioritized and must include a test plan. Code reviews are performed at different levels of formality,
depending on the importance or priority of the feature request, and on an as-needed basis. Designs are
reviewed in the context of a “design notebook,” which documents the design.

Source code, tests, documents, examples, and software project infrastructure reside in a
subversion repository. Third-party components are first integrated into the development environment
and evaluated against the test suite. Source code for TPL components that are in active development are
pulled into the source tree using the subversion externals feature; otherwise, snapshots are used.
Builds are fully automated and under CI, and any commit triggers a build job within an hour on a Red Hat
Enterprise Linux (RHEL) 6 CI server. Nightly tests are also run on other platforms (e.g., Mac, Windows,
internal Sandia National Laboratories (SNL) clusters). Integration with other software (e.g., Trilinos and
VERA) is also tested on a nightly basis.

A full suite of 1,500 regression tests is run, with pass/fail status closely monitored on the RHEL 6 CI
server. A tight relative numerical tolerance (10-10) is used to compare against a previously computed gold
standard to determine success, and small numerical differences are expected on the other testing
platforms. The tests are determined at the design phase and mostly involve problems with known
(typically scalar-valued) solutions. Tests are reported through email notification. A report is generated
every morning, with links to dashboards that display the results. When found, software defects are tracked
using Trac’s issue tracking system and a ticket is created. Defects are prioritized, and high priority defects
in released codes are fixed, and patches are distributed.

CASL-U-2013-0079-000

Survey of Software Quality Assurance and Code Verification Practices in CASL

INL/EXT-13-28675 15 Consortium for Advanced Simulation of LWRs

User, reference, theory, and developers’ manuals are available on the DAKOTA website.n A stable
(i.e., nightly development version) and two versioned releases of DAKOTA and corresponding
documentation are maintained. Doxygen is used to generate the reference and developers’ manuals from
annotated source code. The users’ and theory manuals are updated when releases are done to reflect new
capabilities. Releases use major/minor version numbers and are roughly annual, but efforts are being
made to shorten this to semiannual releases. Extensive references documenting DAKOTA are listed on
the public website. Tutorials and examples are provided with each DAKOTA distribution, and installation
instructions are provided in a text file that accompanies distribution.

DAKOTA performs code verification to the extent possible. It provides a single interface to a wide
variety of analysis capabilities, some of which are not amenable to code verification practices. Some
methods (e.g., genetic algorithms for global optimization) are not well analyzed. Others (optimization
algorithms) have expected rates of convergence that are tested. Still others (e.g., numerically generated
polynomial bases for histograms and gradient-enhanced Hermite polynomials) are known to produce bad
results under certain use cases (e.g., very high order polynomials can produce oscillatory results). Many
of DAKOTA’s methods are not mesh-based. For example, for collocation methods, selection of mesh
points is mostly determined by theoretical results that identify optimum location of quadrature points.
When possible, well-known problems in peer-reviewed publications with known analytic solutions are
used for verification. DAKOTA acknowledges a hierarchy of test problems: known analytic solutions, a
middle ground that is compared against highly resolved Monte Carlo calculations, and a weakest level
that can be characterized as “best we’ve found.” In this latter case, testing is performed to ensure that
performance does not degrade, with the intent to push toward greater rigor with continuous improvement
over time. Many reference problems and solutions are documented in peer-reviewed publications that
document a baseline that is used as a gold standard in making comparisons.

n. http://dakota.sandia.gov/index.html

CASL-U-2013-0079-000

Consortium for Advanced Simulation of LWRs 16 INL/EXT-13-28675

4. BEST PRACTICES AND OPPORTUNITIES FOR IMPROVEMENT
This survey of code verification practices performed by CASL’s physics software development teams

illustrates the wide range of maturity levels of individual physics components across the project. VERA
physics components with lower levels of maturity can benefit from improvements in clearly identifiable
areas, and components with higher levels of maturity can provide examples of best practices. This section
identifies best practices and opportunities for improvement for SQA and code verification.

4.1 Best Practices
4.1.1 Requirements and Software Design

Verification and validation of scientific and engineering software cannot proceed without
specification of the equations that are being solved. This, along with translation to discrete form, must be
carefully documented. Moreover, in a dynamic environment where new requirements are being generated
and new models are being incorporated, it is important to have a flexible and efficient way to document
requirements and translate them to software. Denovo’s tech-memo process (see Section 3.3) illustrates
one way to do this in a manner that generates material that can be re-used in other contexts
(e.g., publications and presentations). DAKOTA follows a similar “design notebook” process (Section
3.9).

4.1.2 Management of Third-Party Libraries
TPLs are essential to the efficient development of advanced applications that target high-performance

computing platforms. This approach leverages considerable past investment in software tool development
but carries inherent risk for TPLs that are under active development. One way to manage this is to use
snapshots of the TPL, sometimes placing the snapshot under source control when local customizations are
needed. This runs the risk of embedding existing bugs or not taking advantage of new optimizations and
capabilities of TPLs that are actively being developed. Upgrading to a new version can be painful or
impossible if the snapshot lags the development of the TPL by too much. Another approach is to tap into
a continuous feed of the developer’s version of a TPL. This requires close coordination between the
project and the TPL developers and exposes the project to increased maintenance costs in case software
defects are discovered in the development version. An alternative is to identify the functionality needed in
a TPL, and develop tests to the native application program interface for this functionality. This practice
has the advantage of familiarizing the developers with the TPL capabilities and allowing detection of
defects, changes in functionality, or changes in application program interface. A new version of the TPL
can be adopted once it passes all the tests.

4.1.3 Software Documentation
The need for clear and complete documentation to accompany VERA releases has recently been

articulated. Currently, the physics components are in various states of readiness for this. The Hydra-TH
theory (Christon 2011) and users (Christon, Bakosi and Lowrie 2012) manuals and the DAKOTA theory
and users manuals provide examples of high quality documentation that meets these requirements.

4.1.4 Framework Leverage
Stand-alone codes must define and create their own SQA practices and tools to support these

practices. Each set of practices must be evaluated for its compliance with requirements, leading to a good
deal of duplication of effort and consequent increased cost. Leveraging a common software framework
such as MOOSE minimizes both software development efforts and software engineering activities. This
gives SQA by inheritance. The trade-off lies in ownership and control.

CASL-U-2013-0079-000

Survey of Software Quality Assurance and Code Verification Practices in CASL

INL/EXT-13-28675 17 Consortium for Advanced Simulation of LWRs

4.1.5 Code Verification Documentation
DAKOTA documents its code verification results in peer-reviewed publications. Publication-based

documentation of baseline code verification is highly recommended. It performs several distinct
functions, and it has built-in incentives. By its very nature, a peer-reviewed code verification study has
received some external examination and a degree of approval from the scientific community. The
motivation to publish the study encourages innovative approaches to code verification and helps ensure an
appropriate level of effort. The results are archived in the scientific literature, and these documented
results can be a gold standard that ensures through regression testing that performance does not degrade
over time.

4.1.6 Code Verification Milestones
One motivation for conducting this survey of code verification practices was the observation that

there is little evidence in CASL of code verification activities. Because it is a time-consuming and
resource-intensive activity, code verification should not be relegated to a set of background activities.
Defining and executing code verification milestones can result in greater visibility of code verification
activities and results.

4.2 Opportunities for Improvement
4.2.1 Code Verification

With a few exceptions, formal code verification in the sense discussed herein is not being widely
practiced in CASL. Even in cases where code verification is being practiced, it is not being called out. In
some cases, disciplinary notions of code verification (not those described in ASME (2009) and NRC
(2012)) are being practiced, or developers are not aware of an expectation for code verification. In other
cases, there is some disagreement about where the responsibility for code verification lies. In particular,
when a CASL physics component is built on top of another framework, it is unclear whether the
responsibility for code verification lies with the component developers or the framework developers. It is
certainly the case that every CASL code development team has some practices in place to convince
themselves of the correctness of their software; the challenge is to develop evidence that is convincing to
others, both technical and non-technical. CASL must formulate requirements for code verification and
schedule the resources needed to meet these requirements, possibly adjusting the scope of other project
technical deliverables. The risk is that CASL does not implement all of the quality measures needed to
support rigorous V&V consistent with ASME (2009) and NRC (2012).

4.2.2 Documentation
AMA is in the process of drafting requirements for documentation of software to be included in the

test stand and alpha releases of VERA. Generally speaking, development of theory manuals lags
development of user and installation manuals, especially for the less mature codes. Resources need to be
allocated to ensure timely availability of the required documentation. Resource constraints may require
trade-offs with the amount of available physics capabilities. Requirements for documentation of
verification benchmarks should be discussed and defined; an initial set of guidelines given in Section 2.2,
“Code Verification,” provides a starting point for discussion.

4.2.3 Test Coverage
While unit and regression tests, together with automated reporting, are widely used across CASL,

some additional effort is needed to measure test coverage. Tools for measuring test coverage are available
and could readily be used more widely.

CASL-U-2013-0079-000

Consortium for Advanced Simulation of LWRs 18 INL/EXT-13-28675

5. SUMMARY AND CONCLUSIONS
This report has summarized the findings of a survey of code verification practices in CASL that was

undertaken in the first half of FY 2013 in advance of test stand and alpha releases of VERA. The principal
finding of this survey is that code verification in the sense of ASME (2009) and NRC (2012) is not widely
practiced in CASL. In cases where code verification is being performed, it is not well publicized and/or is
focused on numerical benchmark problems and code-code comparisons. For some capabilities (e.g., MOC
and sub-channel flow), theoretical work may be needed to more fully articulate the relationship between
computed solutions and the governing equations. A set of suggested guidelines for documenting code
verification problems were provided, and it is strongly recommended that these be widely discussed and a
finalized set of guidelines be adopted. Project scope may need to be adjusted to accommodate the
time-consuming nature of code verification.

The survey also addressed SQA practices in CASL. Although there is considerable variation in the
level of maturity of the components slated for inclusion in the test stand and alpha releases of VERA, the
institution-specific SQA practices followed by the physics software component development teams are
generally adequate for ensuring that VERA’s physics software components possess an adequate level of
built-in quality. Opportunities for improvement in defining and documenting component life cycles and
measuring test coverage have been identified. In particular, while a high-level specification of
requirements is provided in Hess (2012), features and functionality for individual VERA components are
not always well documented. Several cases were noted where considerable effort will be needed to
provide documentation required for the test stand and alpha releases of VERA. One case was identified
where use of automated software configuration control would be beneficial. Finally, CASL should
consider criteria and mechanisms to identify and track the level of maturity of each physics component in
VERA.

Moving forward, this initial survey of code verification practices in CASL identified additional
opportunities for improvement that are not specific to a single physics component in VERA. Coupling of
single physics components is essential for modeling and simulation of reactor systems, and currently,
extensive activity is being directed at achieving several pair-wise and three-way couplings. The question
of code verification of these couplings is not being addressed. CASL needs to clearly define where
responsibility for this aspect of code verification resides. Code verification of coupled multiphysics
software, which may require extension of techniques (e.g., MMS) is currently an open area of research.
Because code verification is, in many senses, an additional aspect of SQA directed at the mathematical
aspects of software quality, VRI should drive this effort, with substantial input and support from the
Validation and Uncertainty Quantification Focus Area to help develop techniques and participation from
the focus areas responsible for the individual codes being coupled.

CASL-U-2013-0079-000

Survey of Software Quality Assurance and Code Verification Practices in CASL

INL/EXT-13-28675 19 Consortium for Advanced Simulation of LWRs

6. REFERENCES
Adams, B., K. Dalbey, M. Eldred, L. Swiler, W. Bohnhoff, J. Eddy, D. Vigil, P. Hough, and S. Lefantzi,

2011, DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization,
Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 5.2 User's
Manual, SAND2010-2183, Sandia National Laboratories, December 2009, updated November 2011.

ASME, 2009, Standard for Verification and Validation in Computational Fluid Dynamics and Heat
Transfer, ASME V&V 20-2009, American Society of Mechanical Engineers, 2009.

Avramova, M., 2007, “Development of an Innovative Spacer Grid Model Utilizing Computational Fluid
Dynamics Within a Subchannel Analysis Tool,” Ph.D. thesis, Pennsylvania State University, 2007.

Bartlett, R., M. Heroux, and J. Willenbring, 2012, TriBITS Lifecycle Model Version 1.0: A Lean/Agile
Software Lifecycle Model for Research-based Computational Science and Engineering and Applied
Mathematical Software, SAND2012-0561, Version 1.0, Sandia National Laboratories, February
2012.

Christon, M., 2011, “Hydra-TH Theory Manual,” LA-UR-11-05387, Los Alamos National Laboratory,
September 26, 2011.

Christon, M., J. Bakosi, and R. Lowrie, 2012, “Hydra-TH User’s Manual,
Version: LA-CC-11120, Dated: December 1, 2011,” LA-UR-12-23181, Los Alamos National
Laboratory, July 19, 2012.

Copps, K., 2011, Verification of the Coupled Fluid/Solid Transfer in a CASL Grid-to-Rod-Fretting
Simulation, SAND2011-9153, Sandia National Laboratories, December 2011.

DOE O 414.1D, 2011, “Quality Assurance,” U.S. Department of Energy, April 25, 2011.

EPRI, 2004, Fuel Analysis and Licensing Code: FALCON MOD01: Volume 1: Theoretical and
Numerical Bases, EPRI Report 1011307, Electric Power Research Institute, December 2004.

EPRI, 2012, Plant Engineering: Guideline for the Acceptance of Commercial-Grade Design and Analysis
Computer Programs Used in Nuclear Safety-Related Applications, EPRI Report 1025243, Electric
Power Research Institute, June 4, 2012.

Evans, T., A. Stafford, R. Slaybaugh, and K. Clarno, 2010, “Denovo: A New Three-Dimensional Parallel
Discrete Ordinates Code in SCALE,” Nuclear Technology, Vol. 171, pp. 171–200, 2010.

Falgout, R., J. Jones, and U. Meier-Yang, 2006, “The Design and Implementation of hypre, a Library of
Parallel High Performance Preconditioners,” Numerical Solution of Partial Differential Equations on
Parallel Computers, Are Magnus Bruaset and Aslak Tveito, Eds., Vol. 51, New York City: Springer-
Verlag, 2006, pp. 267–294.

Gaston, D., C. Newman, G. Hansen, and D. Lebrun-Grandié, 2009, “MOOSE: A parallel computational
framework for coupled systems of nonlinear equations,” Nuclear Engineering and Design, Vol. 239,
Issue 10, pp. 1768–1778, October 2009.

Godfrey, A., 2012, VERA Core Physics Benchmark Progression Problem Specifications,
CASL-U-2012-0131-001, U.S. Department of Energy Nuclear Energy, Oak Ridge National
Laboratory, Consortium for Advanced Simulation of LWRs, October 31, 2012.

CASL-U-2013-0079-000

Consortium for Advanced Simulation of LWRs 20 INL/EXT-13-28675

Godfrey, A. (ORNL), F. Franceschini (Westinghouse), S. Palmtag (Core Physics), and J. Stout (ORNL),
2012, Analysis of Two-Dimensional Lattice Physics Verification Problems with MPACT, CASL-U-
2012-0172-0000, U.S. Department of Energy Nuclear Energy, Oak Ridge National Laboratory,
Consortium for Advanced Simulation of LWRs, December 21, 2012.

Hess, S. and R. Montgomery, 2013, “VERA Release Plan (Draft),”
CASL-U-XXXX, U.S. Department of Energy Nuclear Energy, Oak Ridge National Laboratory,
Consortium for Advanced Simulation of LWRs, 2013 (in preparation).

Hess, S., 2012, VERA Requirements Document, CASL-U-2011-0074-002, Rev. 1, U.S. Department of
Energy Nuclear Energy, Oak Ridge National Laboratory, Consortium for Advanced Simulation of
LWRs, March 30, 2012.

ISO 9001:2008, “Quality management systems – Requirements,” ISO Standards, 2008.

Kamm, J., J. Brock (LANL); S. Brandon, D. Cotrell, B. Johnson (LLNL); P. Knupp, W. Rider,
T. Trucano, and G. Weirs (SNL); 2009, Enhanced Verification Test Suite for Physics Simulation
Codes, Los Alamos National Laboratory Report LA-14379, Lawrence Livermore National
Laboratory Report LLNL-TR-411291, Sandia National Laboratories Report SAND2008-7813, 2009.

Kirk, B., J. Peterson, R. Stogner, and G. Carey, 2006,“libMesh: A C++ library for parallel adaptive mesh
refinement/coarsening simulations,” Engineering with Computers, Vol. 22, Issue 3, pp. 237–254,
December 2006.

Lackner, M. and G. Schulmeyer, 2012, “MOOSE Software Development Project NQA-1 2008/1a-2009
Assessment November 5-9, 2012: Final Assessment Report,” Idaho National Laboratory, INL
Assessment ID: IAS131254, November 28, 2012.

MASA, 2013, “MASA (Manufactured Analytical Solution Abstraction),”
https://red.ices.utexas.edu/projects/software/wiki/MASA, Website last visited March 14, 2013.

Minana, M., J. Turgeon, M. Pilch, and P. Hackney, 2009, Sandia National Laboratories Advanced
Simulation and Computing (ASC) Software Quality Plan: ASC Software Quality Engineering
Practices, Version 3.0, SAND 2008-5517, Sandia National Laboratories, January 2009.

Montgomery, R. (PNL); D. Sunderland, W. Liu, H. Wallin (ANATECH Corp.); C. Stanek (LANL); N.
Capps, B. Wirth (University of Tennessee); R. Williamson, J. Hales, and B. Spencer (INL),
Peregrine: Initial Verification and Benchmark Evaluations Against Halden Fuel Rod Data and
Falcon, Consortium for Advanced Simulation of LWRs, August 2012.

MUMPS, 2013, “MUMPS: A MUltifrontal Massively Parallel sparse direct Solver,”
http://graal.ens-lyon.fr/MUMPS, website last visited March 18, 2013.

NQA-1-2008, 2008, “Quality Assurance requirements for Nuclear Facility Applications (QA),” American
Society of Mechanical Engineers, 2008.

NRC, 2012, Assessing the Reliability of Complex Models: Mathematical and Statistical Foundations of
Verification, Validation, and Uncertainty Quantification, National Research Council,
Washington, D.C.: National Academies Press, 2012.

CASL-U-2013-0079-000

Survey of Software Quality Assurance and Code Verification Practices in CASL

INL/EXT-13-28675 21 Consortium for Advanced Simulation of LWRs

Oberkampf, W. and T. Trucano, 2008, “Verification and validation benchmarks,” Nuclear Engineering
and Design, Vol. 238, Issue 3, pp. 716–743, March 2008.

Oberkampf, W. and T. Trucano, 2002, “Verification and validation in computational fluid dynamics,”
Progress in Aerospace Science, Vol. 38, Issue 3, pp. 209–272, April 2002.

Oberkampf, W., M. Pilch, and T. Trucano, 2007, Predictive Capability Maturity Model for
Computational Modeling and Simulation, SAND2007-5948, Sandia National Laboratories,
October 2007.

Oberkampf, W., T. Trucano, and C. Hirsch, 2004, “Verification, validation, and predictive capability in
computational engineering and physics,” Applied Mechanics Reviews, Vol. 57, Issue 5, pp. 345–384,
December 2004.

PETSc, 2012, “Portable, Extensible Toolkit for Scientific Computation (PETSc),”
http://www.mcs.anl.gov/petsc, Version 3.3, released June 5, 2012, webpage last visited
March 18, 2013.

Plimpton, S., B. Hendrickson, and J. Stewart, 2004, “A parallel rendezvous algorithm for interpolation
between multiple grids,” Journal of Parallel and Distributed Computing, Vol. 64, Issue 2, pp. 266–
276, February 2004.

Rider, W. and J. Kamm, 2012, Advanced Solution Verification of CFD Solutions for LES of Relevance to
GTRF Estimates,” SAND2012-7199P, Sandia National Laboratories, August 31, 2012.

Rider, W., J. Kamm, and G. Weirs, 2010, “Code Verification Workflow in CASL,” Sandia National
Laboratories, September 2010.

Roache, P., “Code Verification by the Method of Manufactured Solutions,” ASME Journal of Fluids
Engineering, Vol. 124, Issue 1, pp. 4–10, March 2002.

Short, M., D. Hussey, B. Kendrick, D. Gaston, C. Permann, T. Bessmann, J. Li, S. Yip, 2012,
“3D Modeling of Real CRUD Scrapes Using MAMBA-BDM v2.0 (MPO Advanced Model for Boron
Analysis - Boron Deposition Model)” (available from the author).

Slattery, S., 2012, “A Geometric Rendezvous-Based Domain Model for Data Transfer,” internal report,
Consortium for Advanced Simulation of Light Water Reactors, 2012.

CASL-U-2013-0079-000

Consortium for Advanced Simulation of LWRs 22 INL/EXT-13-28675

CASL-U-2013-0079-000

Survey of Software Quality Assurance and Code Verification Practices in CASL

INL/EXT-13-28675 A-1 Consortium for Advanced Simulation of LWRs

Appendix A
Code Verification Survey

Following is the survey of software quality assurance and code verification practices that was used to
solicit information about these practices from the VERA physics software component development teams.

I. Software Quality Assurance

Code verification is one part of the larger SQA process. This section focuses on discovering SQA
practices and identifying available documentation of these practices.

General

1. Does the project adhere to an SQA standard (NQA-1, ISO 9001, DOE 414.1x, IEEE 1492, etc)?

2. Is there a documented SQA plan?

3. Does the software development follow a defined life-cycle process?

Requirements and Planning

1. How are software features or requirements determined?

2. How are requirements documented?

3. How are new features or requirements reviewed and approved before being implemented?

4. How are changes in requirements handled?

Design

1. How is the software architecture determined?

2. How are requirements transformed into code?

3. What reviews are conducted on designs?

4. How is the design documented?

Coding

1. Are coding standards used, and if so how are they enforced?

2. What types of code reviews or inspections are conducted?

3. How are third party components determined to be acceptable for use?

Configuration Control

1. How is source code controlled?

2. How are tests controlled?

3. How are third party component versions controlled?

Building and Testing

1. Is the build process automated?

CASL-U-2013-0079-000

Consortium for Advanced Simulation of LWRs A-2 INL/EXT-13-28675

2. How frequently do you build the software?

3. What platforms do you test your build process on?

4. How are tests determined?

5. How frequently are regression tests run?

6. Is system testing automated?

7. How are test results reported?

8. Is test coverage measured, if so what coverage is achieved?

9. What types of compare criteria are used to determine pass or fail?

10. Are there coverage requirements for unit tests?

11. How is reporting of unit test results accomplished?

12. How frequently are unit tests run?

13. Do you have estimates of the code coverage of these tests?

14. How are defects found in the software recorded?

15. What process is used to address any defects found?

16. What types of tools are used?

Documentation

1. Is a user manual available?

2. How frequently is the user manual updated?

3. Is the user manual verified against the software?

4. Is a tutorial or examples provided with the software?

5. Are installation or build instructions provided?

Release Management and Support

1. How are code/binary releases qualified?

2. How often are releases made?

3. How is versioning done?

4. How are bugs and other issues dealt with?

II. Supporting Theory

Computer simulations are built from software implementations of mathematical models that specify the
problem being solved. This section focuses on discovering the cited supporting theory for the model and
identifying available documentation of the theory.

1. Is a theory manual available?

2. How frequently is the theory manual updated?

3. Are there publications documenting the models or methods used in the code?

CASL-U-2013-0079-000

Survey of Software Quality Assurance and Code Verification Practices in CASL

INL/EXT-13-28675 A-3 Consortium for Advanced Simulation of LWRs

III. Code Verification

Code verification focuses on the correctness and accuracy of software that solves a mathematical model.
This section focuses on discovering current practices for code verification and identifying available
documentation of these practices and the results of verification.

1. an analysis of the accuracy and stability properties of the numerical methods you are using?

2. How does the accuracy and stability of numerical methods change with the character of the problems
being solved?

3. How do you identify a problem to solve for verification purposes?

4. How do you identify a reference solution as a basis for comparison?

5. Is the reference solution itself verified, and on what basis?

6. Has the error in the reference solution been determined?

7. Is the code implementation for reference solutions itself subjected to code SQA?

8. Are the reference problems and solutions documented?

9. Do you use the method of manufactured solutions for code verification?

10. How do you select grids for conducting the convergence analysis?

11. What metrics do you use to compare the numerical and reference solutions?

12. How do you determine the rate of convergence from these metrics?

13. How do you address any discrepancies between the theoretical and observed rates of convergence?
What difference in rate of convergence is considered a discrepancy?

14. How do you report the results of code verification activities?

15. Do you measure lines of code or features covered by code verification problems?

16. Is verification done automatically? If not, how often is code verification conducted?

17. Are the code verification problems, documentation, reference solutions, and associated code under
version control?

CASL-U-2013-0079-000

Consortium for Advanced Simulation of LWRs A-4 INL/EXT-13-28675

CASL-U-2013-0079-000

Survey of Software Quality Assurance and Code Verification Practices in CASL

INL/EXT-13-28675 B-1 Consortium for Advanced Simulation of LWRs

Appendix B
Interview Narratives

Following are the narratives of the interviews with each of the VERA physics software component
developers. In some cases the narratives are closer to the raw notes taken while completing the survey.

Appendix B1: COBRA-TF (CTF)

The current COBRA-TF effort is focused on performance optimization (without changing any of the
models and physics) as well as setting up validation and verification cases.

COBRA-TF was originally developed by Pacific Northwest Lab in 1980 under sponsorship of the
Nuclear Regulatory Commission. This original version was implemented into the COBRA-TRAC code
system and further validated and refined as part of the FLECHT-SEASET 163-Rod Blocked Bundle Test
and analysis program. This version was transferred to PSU for analysis of the Rod Bundle Heat Transfer
Testing Facility data. This version has been adopted by the Reactor Dynamics and Fuel Management
Group at PSU under the name CTF. Other versions of COBRA-TF do exist at other institutions and other
research groups. There is no de-facto standard version of COBRA-TF but, rather, a scattered collection of
individually maintained versions; however, the CTF version is the most updated, maintained, and further
developed.

There have been many advances at various places and the genealogy of the code is complex and
probably not traceable. Versions are mostly forked (that is: v4 does not mean that v3 is part of it). A lot of
validation work has been done on it, but it has passed hands so many times some of the validation work
has been lost and/or can’t be traced to any specific version. NRC uses this extensively.

The most recent verification that has been done for the PSU version was done in 2005 as part of work
contracted by AREVA. The verification involved PWR steady-state cases, PWR flow-reduction cases,
PWR power-rise transients, PWR pressure-reduction transients, and a PWR main-steam-line-break
transient. These were verification cases, which did not compare results to experimental data, though
some results were compared to a different COBRA version, COBRA 3C. The cases used in this study
may be useful for testing COBRA-TF between source code changes and also to increase code coverage.

Validation work was also done for AREAVA-NP on GE 3x3 and ISPRA 4x4 experiments and results
have been documented in publications. Recently, RDFMG, PSU has performed validation of CTF on
OECD/NRC BFBT and PSBT benchmarks.

Current code development, being performed by the CASL participants is all under configuration
control using the git version tracking system. No specific code development standards are currently in
place.

A growing set of problems that test certain aspects of the code is used to assure results obtained are
compared against previous results. This problem set started with the 17x17-pin assembly found in the
VERA benchmark progression plan (Problem 3). Multi-assembly problems were built off of this single-
assembly problem, leading to a 2x2-assembly case, a 4x4-assembly case, and a 7x7-assembly case. A
3x3-rod case with a central guide tube has also been created for the purpose of getting quick results. The
3x3-rod case and 17x17-rod case are used to test for changes in code results after source code changes are
made.

Most often, a source code optimization leads to no results changes. Code results are compared by
performing a diff on the standard COBRA-TF output files. However, some changes, such as enabling the
user to specify the energy boundary condition as temperature instead of just enthalpy, did lead to some
significant changes in code output. Note, though, that this leads to a different steam table being used,

CASL-U-2013-0079-000

Consortium for Advanced Simulation of LWRs B-2 INL/EXT-13-28675

therefore changing the boundary conditions. There is currently no criteria in place for determining
acceptable levels of change in results after performing source code changes which lead to results changes.

There are plans to remedy this problem by including more test cases in the COBRA-TF repository.
To date, the Series 5, Series 6, and Series 7 PSBT tests have been modeled using COBRA-TF (open data
only). These 35 tests include experimental data for void fraction at 3 axial locations in 5x5 rod bundle
tests. The bundle geometry is changed by replacing the central rod with a guide tube and the axial and
radial power distributions are also varied between test series. The PSBT tests also include data for DNB
tests (location of CHF) as well as transient tests (power increase, flow reduction, depressurization,
temperature increase) where void and DNB was measured. In addition to the PSBT tests, there are also
BFBT tests which provide open data that can be used to increase the number of test cases in the
COBRA-TF validation matrix. The BFBT tests include void measurements, pressure drop measurements
(single-phase and two-phase), as well as critical power measurements on an 8x8 rod bundle geometry
containing several configurations of guide tubes.

COBRA-TF was selected because CASL needed a non-proprietary sub-channel code. Developing the
capability ourselves was judged too expensive. CASL is aware of the complex genealogy of the code and
selected this PSU version because it was determined to be the most up-to-date and well maintained. VRI
has made some modifications to enable interoperability and integration in VERAs build/test system.
These modifications include breaking the main program into setup and solve subroutines to allow
COBRA-TF to be built as a library and linked into an executable containing other applications codes. The
transient solve routine has also been broken into subroutines that allow operator split time integration
alongside other transient applications codes, eg neutronics. In CASL, the build system has been
augmented with cmake text files to allow COBRA-TF to build under Tribits (a cmake-based Trilinos
configure, build and test capability) which allows for continuous and nightly integrated testing.

Configuration control uses a password-protected account on GitHub. It builds with Intel’s Math
Kernal Library for BLAS and SparsKit for solving the pressure correction equation. Other than that it is
self-contained.

On GitHub, the utility is used to build the code, but the configuration step has to be done by hand.
The GitHub site offers a README, which provides instructions for how to do this. COBRA-TF is now
integrated into the VRI build system Cmake/TriBITS, pulling source from GitHub, and manually merging
conflicts that arise in the merge process. Efforts are being made to automate the process, but now just
have periodic snapshots. Tests are run whenever the source changes; there is essentially only one
developer. Russ, Rod & Scott also make changes and perform tests on the CASL side. There is no
check-in test script to automatically run tests.

The user manual that is updated whenever a change is made to anything through the input deck.
A separate user manual is used for the preprocessor.

The theory manual covers such information as conservation equations, how they’re set up, solution
algorithm, and correlations. Again: no changes in the models/physics, so no need to update the theory
manual. Models are taken from the literature, and accuracy of the model is determined by comparison.
The theory manual references 80 papers and studies, and most of the models have references in the
literature.

No studies are being performed regarding grid convergence. There should be plenty of validation
studies in places (e.g., American Nuclear Society). We don’t know whether the validation studies were
done on this particular fork? The problem here is we don't have a record back to the origin of the source
that's being used. CASL will have to develop a suite of tests using the current version of COBRA-TF as a
baseline.

We may be able to cobble together a chain of validation, Making sure COBRA-TF can do the
problems that we care about. VRI may be developing tests and code verification studies to more fully

CASL-U-2013-0079-000

Survey of Software Quality Assurance and Code Verification Practices in CASL

INL/EXT-13-28675 B-3 Consortium for Advanced Simulation of LWRs

assess COBRA-TF. Some feel the verification process should not have any problems, and that
COBRA-TF is probably in better shape than VIPRE-W.

John explains channel flow to the uninitiated. Matt finds NRC has no problems using COBRA-TF.
Jim and Mike are unsure whether code verification in the strict sense can be done on this code.

B1.1 List of Publications on CTF Validation:

1. J. Kronnenberg, M. Avramova, and F. Burtak, 2003, “COBRA-TF - a Core Thermal-Hydraulic
Code: Validation Against GE 3x3 Experiment,” Annual Meeting on Nuclear Technology 2003,
Proceedings, ISSN 0720-9207, pp. 105–109, 2003.

2. M. Avramova, 2003, “COBRA-TF Development, Qualification, and Application to LWR Analysis,”
MS Thesis, Pennsylvania State University, 2003.

3. M. Avramova, K. Ivanov, and L. E. Hochreiter, 2007, “Analysis of Steady State and Transient Void
Distribution Predictions for Phase I of the OECD/NRC BFBT Benchmark using CTF/NEM,”
Proceedings: 12th International Topical Meeting on Nuclear Reactor Thermal Hydraulics
(NURETH-12), paper 140, Pittsburgh, Pennsylvania, October, 2007.

4. M. Avramova, A. Velazquez-Lozada, and A. Rubin, “Comparative analysis of CTF and TRACE
Thermal-Hydraulic Codes using OECD/NRC PSBT Benchmark Void Distribution Database,”
Proceedings: 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics
(NURETH-14), paper ID 151, Toronto, Ontario, Canada, September 25–29, 2011.

CASL-U-2013-0079-000

Consortium for Advanced Simulation of LWRs B-4 INL/EXT-13-28675

Appendix B2: Hydra-TH

Multiphase flow will be very expensive and very difficult to fully verify and validate.

A small team performs Hydra development. They follow formal practices that closely follow what
Mark has done for Abaqus/CFD, but they are not documented. Software design documentation is
maintained for the Hydra development team, but is not public.

Features needed to satisfy requirements are identified and then scheduled for implementation. Design
reviews are done on the implementation at each iteration of the design/development process.

Every code commit must pass all serial and parallel regression tests on two distinct platforms
(generally from a pool of available machines). Two other persons on the team perform a code review after
the potential commit passes regression tests. A code comparison tool is used, every file gets “diffed” for
code inspection. This process often finds a revision or a potential bug that does not get introduced into the
repository. There is no tolerance for not following this process: “commit anyway, back it out if needed”
creates more work for everyone. (VRI created problems by not following this process and committing to
the ORNL git repository for Hydra-TH.)

Effort is being made to keep the development and documentation process agile. Unfortunately, a
single development, V&V process doesn’t scale for all code teams, i.e., the many “academic” models are
too heavy and monolithic for the Hydra team which is small and trying to remain agile.

The review process means that everyone gets a chance to look at all parts of the code.

There is an implicit life cycle in the above.

When THM pushes code out to the repository, their life cycle ends. They rely on VRI to handle the
deployment. THM is trying to be a good CASL citizen, but they have other customers. Hydra-TH is a
subset of Hydra. Hydra-TH is a branch off the main trunk (identified with a set of tags) and gets pushed to
the ORNL repository. At that time the 2 repos are in sync. Hydra will go on an external-facing server, and
pulling from that server will support VRI’s continuous integration practices. They also push out
abbreviated serial and parallel regression tests. Note that the tests are abbreviated relative to Hydra, but
include the complete suite of serial/parallel/long regression tests for Hydra-TH. There was intent to use
CTest and CDash, but ended up creating their own testing/reporting capability. All of this is in the
repository, test results are posted to a dashboard, creating a record of the tests that are run. The results get
posted to a website internal to LANL.

Progress is tracked via GanttProject. At the start of each performance period, start and end dates
are defined, and the Gantt chart is updated periodically. Publications are tracked here as well, to try to
balance the work. New feature requests get added to the list. Priorities are also provided mostly by the
SLT and other FA leads. This is used to develop milestones before putting them in Trac.

subversion is used for configuration control, though this will probably change. They have had
serious problems using git, which seems better for small chunks of source code but not big binaries. To
be clear here, git is not good for large binaries, however, we have seen problems even with the small
binary Exodus-II files used for regression testing. The overall cumulative data size seems to be an issue
for git. Refactoring of the repository is expected when it is moved to the open network.

Everything in the code is annotated with Doxygen. The result amounts to a developers manual,
which is used on a day-to-day basis. Control flow is not necessarily documented well, however, the top-
level flow is in a single file and quite simple.

CASL-U-2013-0079-000

Survey of Software Quality Assurance and Code Verification Practices in CASL

INL/EXT-13-28675 B-5 Consortium for Advanced Simulation of LWRs

There is a theory manual specific to Hydra-TH, available in the VERA Component Info table under
VRI on CASLPedia. This is updated continuously; the software release number (LA-CC) is updated less
frequently to reduce overhead. Theory manual describes discretization, solution algorithms. Multi-phase
theory is being developed. This may need to be distilled or a separate manual for multiphase developed.
Parts of it might be considered to be a design specification, laying out code architecture. But currently not
fit for human consumption.

Properties of the projection algorithm are laid out in the theory manual. The method is not CFL-
constrained. The projection method has some problems with Stokes flow, but this is not representative of
engineering applications. (To be specific, the P2 projection algorithm has problems with very large time-
steps for Stokes flow leading to a limit cycle. This was well-documented in work by Gresho, Christon,
Chan in 1995.) The k-epsilon turbulence model or temperature-dependent properties may also cause
problems for this method. Some pseudo-timestep continuation is implemented as a first pass to compute
steady states. Some considerations are underway for time-step control based on accuracy. A fully implicit
version is being developed that will be added to the theory manual. The projection method is used as a
preconditioner for the fully implicit method. The designed accuracy is second-order in time, and second-
order in space. For reaching steady-states, first-order in time, i.e., backward-Euler is used for both the
projection and fully-implicit methods.

THM is resource-constrained for developing more complete documentation. If more documentation is
a priority, milestones will need to be reworked to cover it.

Verification problems are very expensive to run. Something on the order of 20-25 will be documented
for FY13. Verification process is hard to automate and labor-intensive.

Regression tests are derived from the verification problems, e.g. coarser resolution versions.
Verification tests set up a gold standard for comparisons. If the low-level functions haven't changed,
everything that depends on it upstream won't break. Unit tests run quickly, compiling and linking take a
lot of time, so Hydra tend to use more integrated tests. Some of the verification tests are really validation,
and it’s hard to separate in some cases.

THM won't be able to do verification for all of the capabilities in Hydra-TH (let alone all of Hydra)
and they will be lucky to be rather complete for one of the models. Some turbulence models won't get
fully tested and documented, although feature coverage is good in the regression tests. Probably won't use
the method of manufactured solutions, the focus is more on solution verification than code verification for
the FY13 V&V documentation. Limited convergence analysis is being done. Some grid sequence studies
provide estimates of rates of convergence for some problems. Some limited code-code comparisons are
also used.

The main constraint is lack of manpower, and as a result they are trying to catch whatever low-
hanging fruit they can get. THM expects that multiphase flow will lead to explosive growth in verification
and testing requirements.

CASL-U-2013-0079-000

Consortium for Advanced Simulation of LWRs B-6 INL/EXT-13-28675

Appendix B3: Denovo and MPACT

MPACT is not following any defined SQA standard, but have defined their own informal standard.
This is documented in a wiki on an internal Trac site at the University of Michigan. They can set up
access for external users (e.g., Scott Palmtag has access).

Likewise for Denovo, there is a document that covers their practices. Technically, they are
conforming to ISO-9000, though documentation of each step in verification is missing. A general outline
is available, but the work is being done. There is an Reactor and Nuclear Systems Division SQA policy
that is being followed. Rigorous compliance to backward compatibility is satisfied with release testing.

CASL needs and other users determine MPACT features. After features requests are made, they
perform a review to determine the requirements, and build a design from that. This is documented via
tickets in the MPACT wiki. The design process is documented there as well. As requirements change, the
developers review old ones and discuss what the changes mean, then start over with a new high-level
design, followed by a formal review, which is also documented on the internal wiki. MPACT is young,
and the developers haven't yet had to deal with changing requirements.

Denovo has a fogbugz site at ORNL. ORNL uses their own kanban site, which includes
deliverables and requirements from CASL as well as other customers. The developers participate in
integrated programming sessions two to three times per week in the VOCC) facility. An informal
planning process is documented in a calendar-based schedule. The wiki page is more code documentation,
but is not accessible outside ORNL. In addition an electronic notebook app, is used to document all work.
Formal documentation is based on a "tech-note" process, which is archived in their git repository. Major
features to be implemented are documented: derivation of equations, linear algebraic structure,
algorithmic components (e.g. energy decomposition). There is also a methods manual and these design
documents end up being integrated into that. The tech-note process has also proven useful for tracking
changes in requirements. Code design is informal (simple UML) and unit tests are used to control
changing requirements. Their kanban board is updated to reflect any changes.

MPACT has Fortran coding standards to get uniform implementation. Code reviews ensure adherence
to the standards. These are documented at their wiki.

Denovo coding standards are documented in a development environment manual. There are four
pages of standards, but the most important ones address clarity, consistency, and completeness. The desire
is to keep it to a minimum to avoid high-level enforcement processes. Editor macros are available to set
their formatting standard. Commit-time scripts do some code cleanup. Source code reviews are done.

Both MPACT and Denovo use git for configuration control.

MPACT requires 6-7 third-party libraries that they wrap to get a uniform API. When an optional
feature is turned on, they automatically get tested. They can also compile without MPI. They write their
own solvers, mostly relying on PETSc for large-scale problems. Their tests cover the interface between
MPACT and PETSc, not the PETSc tests. The PETSc option is new, so they haven't needed to manage it.
The developers likely will stay with the latest version. When their tests fail they identify the issue. These
processes are still being worked out.

Denovo has two levels of requirements: tool-chain and TPLs. The tool-chain consists of a compiler
(various compilers are supported), MPI, python, and swig. TPLs are qualified as optional (hdf5,
silo,brlcad, spring (random number generator), KGTLIB, lava, scale, SuperLU) or required (Trilinos,
LAPACK, BLAS). They have moved to a full CI process, which includes the TPLs. When tests pass,
report includes information on which versions were used. TPLs are updated as they go along. There are
unit tests for each TPL that checks their functionality without invoking any part of Denovo. This is an
easy way to learn how to use the TPL and allows them to diagnose problems caused by updating a TPL.

CASL-U-2013-0079-000

Survey of Software Quality Assurance and Code Verification Practices in CASL

INL/EXT-13-28675 B-7 Consortium for Advanced Simulation of LWRs

MPACT and Denovo both use TriBits, which uses cmake. This is for consistency with VERA. Both
groups also note some customers working on Windows platforms. MPACT has a CI server that checks for
changes every 10 minutes; when changes are found the code is rebuilt and both serial and parallel unit
tests are run. MPACT runs nightly tests on a variety of compilers and configurations; the tests are both
unit and regression. Unit tests are run for all configurations, the regression tests are more expensive and
are run for one configuration. Using gcov, MPACT measures test coverage at about 90% lines of code.
Denovo also does CI testing on Tom's cluster. A cron job runs 343 unit tests and 110 python tests. All
these are very fast, run every 4 hours. The SCALE version uses SCALE CI servers on Windows, Linux,
and Macs, which runs every time there is a commit. Finally the Denovo team runs tests on VERA
platforms. These last two (SCALE and CASL) run tests specific to the distribution, but the Denovo team
runs tests on all features. Any time a test fails a notification email is issued, test logs are also maintained.
Bullseye is used to measure test coverage at more than 84% function point coverage. Acceptance tests are
numerical tests of various limiting cases that either have closed form solutions or known solution
structure (such as symmetry or parity) to check known behavior of the problem. The acceptance tests are
10 minutes to an hour, run on Sundays all day on the latest build. Denovo is looking at Google test as a
testing framework for unit tests. Denovo uses design-by-contract.

MPACT and Denovo both use Doxygen to generate documentation from annotated source. MPACT
uses this to generate developers and users manual. HTML versions are linked to wiki, all on the same
server. Because of their use of source annotation, documentation is automatically changed when input
changes. The MPACT build process is documented on wiki. There is also a README that documents
build options. MPACT provides scripts for building and have added some cmake options such as enable
all regression tests. There is no detailed tutorial; examples provide inputs for validation/regression tests.
There is an outline but no MPACT theory manual yet. Various options for composing a theory manual are
being considered, including Doxygen-based and leveraging dissertation contents.

Denovo uses Doxygen to generate three levels of documentation: developers, methods and
algorithms (these are the tech notes and methods manual), and user documentation. For user
documentation, Denovo also has a development environment and standards manual, which is based on
texinfo. Sphinx gives a markup language, gives really nice websites. The build documentation is in a state
of flux, currently documented in a README while converting from autoconf tools to cmake. Quickstart
manual is up-to-date in the infobook, this is also still in transition. There are a lot of Python examples,
their acceptance tests are useful for this. There is a generator script that can help users get started. Denovo
has aspirations to put a list of problems on their wiki page that describe a collection of problems, how
they are set up, and the solutions they’ve obtained. However there's no

external-facing server for posting this. The combination of a 45 page methods manual and the tech-
notes provides pretty complete documentation.

For release management, MPACT uses git tags to annotate different version number releases of the
code. There is currently a limited set of users (Scott and Andrew). The MPACT team installs the code for
their users. Once you have the tags you can check out a release. They try to do a release about once every
three months. They are considering options for distributing binaries.

Denovo used to do regular feature-based releases, but now with CI any commit of the code is
“releasable,” unless a test fails. Release notes are periodically issued with a tagged version. This is mostly
to document that Denovo works with specified sw stacks. SCALE releases occur maybe 6 months to a
year.

MPACT has an outline but does not have a theory manual. Their intent is to do the theory manual in
Doxygen, leveraging Latex source written for a dissertation. Theory is in-line with developers work.

Denovo has an extensive theory manual that is continuously updated, leveraging the tech-note process
described above.

CASL-U-2013-0079-000

Consortium for Advanced Simulation of LWRs B-8 INL/EXT-13-28675

There is not a good understanding of the convergence behavior of the method of characteristics
(MOC). There is a “Corrected path length” fix up that is not mathematically consistent. There is an
asymptotic limit where it is. MOC doesn't preserve diffusion limit. Extensive verification with respect to
some AMA benchmarks is planned. It might be possible to perform order of convergence studies with
respect to ray spacing and angles. MPACT developers are looking at some analytic solutions for purely
absorbing media, which should get exact answer. This is one of the unit tests for the MOC kernel.

Denovo has a lot of code verification tests. Convergence studies are run for problems with semi-
analytic solutions. Recent work looking at eigenvalue convergence with respect to angular quadrature will
be published soon. Some of the acceptance tests use the method of manufactured solutions (MMS).

MPACT can do all the kinds of acceptance test problems that Denovo does. MMS for MOC is
consistent with some suggestions made by Bill Martin. MPACT reproduces a constant solution and has
also solved an eigenvalue problem. An intern might be able to look at what we can say about convergence
in space for MOC.

Denovo has an Sn-MC module which runs Monte Carlo on the exact same discretization and can use
that to generate verification problems. Correctness of the MC solution can be determined by a code-code
comparison.

MPACT has performed some comparisons to MC, and other comparisons are being made. One idea is
to generate some fixed source solutions on a Cartesian grid, and compare MPACT results to that.

CASL-U-2013-0079-000

Survey of Software Quality Assurance and Code Verification Practices in CASL

INL/EXT-13-28675 B-9 Consortium for Advanced Simulation of LWRs

Appendix B4: Peregrine

A development plan is being followed. Peregrine is based on MOOSE. The underlying solver is part
of MOOSE, so SQA of this is taken care of by MOOSE. This includes extensive nightly regression tests.
SQA for Peregrine uses MOOSE SQA infrastructure and practices. Peregrine mostly employs
correlational models derived from other codes or literature. These are implemented and tested to check for
bugs and to check whether the implementation works in MOOSE. There are currently about 10 distinct
Peregrine-specific tests. Once they feel these are implemented correctly, they are integrated into Peregrine
and verification studies are performed on a number of cases. MOOSE follows NQA-1, and an assessment
was recently done. (Rich Martineau forwarded a copy of the assessment to us.

While Peregrine tests its own components, there are some questions about how coupling of
components in MOOSE are tested.

There is a documented SQA plan for MOOSE.

Efforts are focused on verification and making comparisons to data from separate effects and
integrated effects experiments. The recent completion report for milestone L2:MPO.P5.03 serves as an
initial benchmark, focusing on integral behavior, coupling structural and thermal, and determining
whether Peregrine is behaving properly. This is the first of several benchmark studies. The report contains
code-code comparisons with FALCON validation database, with mostly good agreement except for the
fission gas release model. FALCON is a two-dimensional axisymmetric code and is the industry-standard
fuel performance code. Because of this, access to FALCON and its validation database is a distinct
advantage. Peregrine is still in early stages of development and these benchmark comparisons provide
assurance that they are on the right track.

There was some discussion of distinguishing between verification and validation. From their
perspective code verification is properly in the MOOSE domain. There is some flavor of validation in
these evaluations. A primary benefit of CASL is the ability to access proprietary/NDA data.

MOOSE determines software design of Peregrine. Software development and coding standards
follow the process defined by MOOSE. subversion and git are used for configuration control. The
development process is to update from the main MOOSE repository at INL into a local repository,
develop and integrate a model component, develop tests for the new capabilities working with the local
repository, then committing the new code to the INL repository. MOOSE has requirements for when we
check into their repos, test cases are also provided for any new additions. Informal biweekly code reviews
are done. This involves walking through the code, discussion of how to use it, and determining what the
inputs are. Most of the code written for Peregrine is just a couple of lines of code, plus
extracting/inserting data. Altogether Peregrine is about 300 lines of code at most. Everything but the
physics is hidden. Some constitutive model frameworks for mechanical, thermal behavior are being
developed; these will be used to obtain material responses.

MOOSE is under continual development and enhancement, and they frequently update from the main
MOOSE repository. Building and installation on a platform uses the MOOSE system and requires a
considerable software stack. Tests for each component in MOOSE are run after build/install to ensure
correct installation. Any problems they find are fixed about as soon as they are reported.

There is not much in the way of regression tests. When logic changes, the unit tests are re-run.
Benchmark cases are currently being run, they take a long time to run. If the benchmarks are performing
as expected, they move on to the next task, otherwise stop and correct, then return to benchmark cases.
The benchmark suite is run quarterly, with about 2 months spent on writing new code. Regression tests
are run when updating from main line. These are single element problem to make sure appropriate values
are passed in during the computation; results are plotted. These tests are performed whenever an update is
done, to make sure system changes did not break anything.

CASL-U-2013-0079-000

Consortium for Advanced Simulation of LWRs B-10 INL/EXT-13-28675

Unit tests may be hard to compose. For example, current results for fission gas release are not
satisfactory, but there is no unit test for fission gas release because there are so many inputs into fission
gas release that it is hard to isolate. NEAMS fuels has been leveraged for both Bison and Peregrine.

Deciding what models to use is based on experience. FALCON uses models that have stood the test
of time. For example EPRI has consistently used these models. If experience suggests a FALCON model
is outdated, alternatives are identified from the literature. Matpro is an old DOE capability that provides
many of the material properties they use. The science is selecting the right combination of models to get
the desired results. EPRI partnership is important because the NDA provides access to that. The owners
are Anatech. Access to the code is not sufficient, we also need the people with the historical knowledge.
There has been a huge positive impact resulting from interactions with EPRI and they seek clarification
from EPRI on a regular basis. As long as FALCON source code is not exposed, Anatech is okay with
Peregrine. The revised IP management plan will hopefully clarify the situation, particularly with respect
to code distribution. Access to proprietary models has been extremely valuable.

Other third party tools such as Cubit for mesh generation, exodus for I/O, Paraview for visualization,
are frequently used. Beneath MOOSE, there are TPL dependencies on PETSc, hypre, and libmesh.

There is no theory manual yet. A user manual is being developed.

There was some discussion of open source designation. CASL needs to consider what the value of
this is. Access to proprietary data makes the difference, but you lose access to the proprietary data if you
if the code is designated open source.

No sensitivity studies on nodalization are being done; MOOSE provides tests for solving PDEs. Code
verification studies have not been devised, Peregrine is currently relying on other work in MOOSE.
Peregrine relies on this functionality.

CASL-U-2013-0079-000

Survey of Software Quality Assurance and Code Verification Practices in CASL

INL/EXT-13-28675 B-11 Consortium for Advanced Simulation of LWRs

Appendix B5: MAMBA

MAMBA was discussed briefly but the developers were not available for the initial meeting and
another teleconference has to be scheduled. There are two flavors, MAMBA for resolving pin-scale
phenomena and MAMBA-BDM for operating at a mesoscale length scale. For both, the above SQA and
development practices applies. Brian Kendricks is building his off ChemPack. Most answers will be the
same, but details will differ. While FALCON and Peregrine are very similar, BOA and MAMBA are very
different. FALCON is not being actively developed, BOA is. BOA accounts for steam generators, etc.,
but MAMBA only considers pins, and works with different information than is in BOA. The interaction
with the industrial codes is different.

One benefit of the structure is that they at least interact with the BOA development team, which
brings benefits to them as well. CASL needs to define a type of success that accounts for impact of CASL
technology on industrial code.

Following is the narrative from the rescheduled MAMBA interview:

The project follows DOE Order 414.1D on quality assurance and interface requirements imposed by
MOOSE. The SQA plan for models follows a plan for an internal Los Alamos National Laboratory
ChemPac. But a plan for CASL/MAMBA is not documented. The life-cycle process comprises design,
code, test, validate, and enhance (like spiral).

Requirements are determined by modeling needs for CRUD deposition. These are fundamental
models, but a requirements interface to other codes also must be met. The CASL MPO CRUD group
identifies the physics requirements. Interactions with other FAs determine the interface requirements. The
requirements are captured informally in a set of action items and meeting minutes. The same process is
followed for new features and changes in requirements.

Software design is based on a combination of ChemPac experience and MOOSE requirements.
ChemPac is under active development, MAMBA design in based in part on this. Requirements are
transformed into code through a combination of modifying existing code and writing new pieces.
Reviews are done internally with team through discussion for ChemPac, MAMBA is still too immature to
follow this process. Design is documented in a README associated with source code, and provides an
idea of the code structure.

There are no formal coding standards, this is self-policed within a small development team. Code
reviews are done prior to release. MAMBA uses ChemPac and TPL solver libraries (MUMPS) (these are
subject to licensing issues) and other, public domain software. ChemPac is LANL proprietary. Outside
ChemPac, the primary considerations are licensing and efficiency.

The MAMBA development team is small, so they have not implemented full revision control.
Instead, configuration control is done manually, using a directory structure named with different versions.
The same approach is used for tests: each version has a subdirectory of tests associated with it.
Comparison of test results is done manually. ChemPac is under active development, and has a similar but
separate configuration control process.

MAMBA is built using make, but Machine-specific environment variables are defined in the
Makefile, so there are slightly different versions for different platforms. These platform dependencies are
determined manually. The frequency of builds depends on level of activity. This is done weekly to daily
on a variety of Linux-based platforms (workstations, laptops, HPC systems).

CASL-U-2013-0079-000

Consortium for Advanced Simulation of LWRs B-12 INL/EXT-13-28675

The MAMBA team is just starting to perform validation using different levels of tests. Some have
known solutions and solutions obtained from previous versions of the code. They choose simple test cases
that run fast and try to exercise the whole code. Test coverage is not measured. Regression tests are run
whenever major changes are made (after periods of active coding). The frequency depends on the amount
of changes introduced. Test results are written to output files summarizing results. If a failure is detected
through test reporting process for a particular version, it is either fixed or documented and reported to the
team.

Usage of MAMBA is documented in a README, as well as instructions for building and running,
and the source code is 'self documented'. There are plans to generate documentation from annotated
source code using Doxygen. This is updated with every release. This documentation is verified within
the team. An examples subdir comes with the source code along with input files and sample results.

Releases are managed with version numbers associated with directory-based version control
practices. There are currently two versions 1.0 (12.2011, 2D model) and 2.0 (02.2012, 3D model).
Version 2.1 is under development. MAMBA is released about yearly. The approach to handling defects in
released versions depends on the severity of the defect. In some cases could just send a patch in response
to a request, or do a pre-release of another version.

There is no theory manual, currently it is under development and will evolve depending on the pace
of changes made to the code or the models. A couple manuscripts are in preparation.

Numerical properties of the numerical methods are understood, but MAMBA solves a complicated
problem combining convection, diffusion and reaction. While individual pieces can be examined, it is
non-trivial to quantify convergence in mesh and time stepping. MAMBA uses Crank-Nicolson for time
stepping finite volume in space, with second-order accuracy for diffusion, so they expect second-order
accuracy in space/time. A nonlinear solver is used with residual tolerance of about 1.e-9. MAMBA does
not solve the full flow field, which is being looked at a more fundamental level, at the mesoscale (BDM).
Instead, MAMBA used velocities normal to the fuel rod that come from local mass evaporation and
boiling rates. One difficulty in modeling CRUD is that these normal velocities may shorten the residence
time scale, which has to be accounted for in the numerical scheme. As the CRUD layer thickens, the
problem gets harder to solve. Iteration counts and residuals are monitored as diagnostics. Identifying
verification problems is tricky. Currently a simple test case (e.g. no boiling, no flow/convection in the
CRUD, simplified geometry and boundary conditions) with a known answer is used. They try to pick
problems with analytic solutions, but when these are not available they perform code-code comparisons.
Some reference solutions are compared against MOOSE calculations coming from BDM (which follows
MOOSE SQA practices). Solutions from ChemPac with small residuals are considered to have small
error, but that error is not quantified for crud applications. When analytic solutions for simplified test
cases are available, they are used to quantify errors. (MMS is not being used.) However these problems
are not formally documented (there is a plot of convergence in an earlier milestone report, but this is just
an example.), and no reports on these verification activities have been written.

To do convergence and stability studies with respect to grid size and time step size they use a Courant
condition for stability to pick mesh size and time step, then do regular refinement with that. Cylindrical
coordinates are natural in this geometry. A maximum percentage difference is used to measure
differences in the computed and reference solutions, and a rate of convergence is found by plotting this
maximum percentage difference against mesh size, and measuring the slope. So far, the code appears to
behave as expected, but problems could occur when they start to push the envelope with high boiling or
thicker CRUD deposits. However this hasn't been explored yet. Currently this is not ‘reported’ through
documentation, but MAMBA developers have done enough to convince themselves things are right.
Coverage of these tests isn’t measured, and these verification exercises are done manually after major
changes. A CASL milestone report documents initial model validation. The verification tests are
controlled via the directory-based version control practice.

CASL-U-2013-0079-000

Survey of Software Quality Assurance and Code Verification Practices in CASL

INL/EXT-13-28675 B-13 Consortium for Advanced Simulation of LWRs

Appendix B6: MAMBA-BDM

General

Runs tests every time he builds the codes, moose tests. But makes sure new code development
doesn’t mess up the physics. Simple solutions are easy to cook up, but haven’t done much, sole
developer.

Some pieces of physics that are there are subjected to regression tests.

MAMBA and BDM have been written separately. BDM is a microscale model that sits on top of
Moose and provides microstructural support for MAMBA. BDM can see the hot spots in between the
boiling chimneys in the CRUD. Also supports the CILC model. MAMBA will call BDM when it sees a
hot spot.

Heat transfer+fluid flow+chemistry.

Once in a while will do a mesh convergence study, have a handle on the required mesh size and
parameters needed to get a converged solution.

Requirements: peak clad temperatures, fluid flow, chemistry driven by the problem. The requirement
is to pass information up the length scales to MAMBA and/or Peregrine. Some atomistic work being done
as well.

Working alone, milestones to Chris and Brian. No code review.

Close adherence to Moose standards. Reviews are occasionally done by Moose development team.

Using Moose repository. Write some things on top of that, in C or shell scripting. All this is in the
Moose repo.

Build and configuration are automated through MOOSE. Software is built every time a change is
done. Committed changes are tested every night. Also this is in the VERA repos so it is building and
tested nightly. Tests are written for every piece of physics that has been ‘finalized’. Tests are structured to
ensure that the proper physics is being reproduced. Debug mode in BDM will output every intermediate
stage of the calculation.

Test coverage is low since much is still in development, changing over from single phase to
multiphase. Plan to pick up some tests from Falcon.

How are defects dealt with? Enable the debug mode. Resort to gdb.

Detailed user manual is available, updated every 6 months. Usually connected to his L4 milestones.
Includes a tutorial, but not fleshed out examples, but example results are provided. Can distribute input
files if needed.

Release management: VERA wants every code to primarily live and work in the VRI repo. The
Moose guys would rather not. Still trying to work this out. Exact snapshot can be retrieved with some
work.

Under continuous development, providing capabilities as they become available. Versioning doesn’t
make sense yet.

By end of May want to start on a serious validation exercise. Ping Brian and have him ping you.

Theory: this is in the user manual. Intend to publish in the Journal of Nuclear Materials soon and
produce a conference paper.

CASL-U-2013-0079-000

Consortium for Advanced Simulation of LWRs B-14 INL/EXT-13-28675

Code Verification

Accuracy and stability of the methods in Moose are documented in the literature.

Some example problems for solution verification have been identified. No particular methodology,
try to construct something that is representative of the CRUD problem being studied. It’s a CYA
methodology: have backup evidence to support the correctness of the results. These don’t have known
solutions.

Moose guys have talked about MMS, once code up and running will want to use this for verification.
Not ready to say this is a realistic code without it being two-phase. Verification efforts with single phase
flow pointed to this.

CASL-U-2013-0079-000

Survey of Software Quality Assurance and Code Verification Practices in CASL

INL/EXT-13-28675 B-15 Consortium for Advanced Simulation of LWRs

Appendix B7: DTK

Matt has done an SQA study of VERA so we skipped the SQA part of the discussion. Currently, there
are few VERA component couplings done through LIME; code verification of the couplings will need to
be done. Otherwise SQA covers LIME functionality for enabling interoperability. The discussion focused
on code verification for DTK.

There is a theory manual for DTK, which encapsulates the rendezvous algorithm (developed in
conjunction with Sierra), doing it in a robust, scalable fashion. There has been extensive code verification
during its development. In the rendezvous algorithm, the destination component asks source components
to provide values at certain specified locations. A rendezvous mesh is built to provide the optimal
communication pattern for transferring the data. DTK provides tools to enable each VERA component to
perform the data transfer.

The domain model describes all the mathematics and is software agnostic. There is no user manual
but a strict set of unit tests, some with analytic solutions are used for verification. This theory manual is
updated whenever changes/additions are made to the code. Currently one of three mappings is
documented, with the remaining to be documented as part of L3 VRI.PSS.P5.07 milestone that should be
closed at the end of the week.

Verification consists of prescribing a field to transfer to another grid and match values to an analytic
result to ensure exactness to machine precision. The interpolation formulas are simple enough to derive
analytic results. Tests are only documented in the code for the unit tests and the analytic solutions are
coded in the test.

Tests are for overlapping domain transfer, which is a volume-to-volume mapping. There's a source
and a target, source asks for data. Tests are run on both the continuous integration server and nightly test
server and are reported to the CASL CDash server. All the interpolations are thoroughly tested; though it
is not measured there is probably a high level of coverage.

All this is under version control in the source repository.

CASL-U-2013-0079-000

Consortium for Advanced Simulation of LWRs B-16 INL/EXT-13-28675

Appendix B8: DAKOTA

DAKOTA does not follow a specific SQA standard; rather, its processes are assessed against an ASC
software quality plan. DOE Order 414.1D also applies. The SQA plan is documented internal to SNL. An
agile life cycle process is loosely followed.

Three levels of requirements are collected: program, user, and developer. Programmatic requirements
are determined by funding programs such as ASC, DOE/SC, NEAMS, CASL, and CRADA work; these
are sometimes formally communicated, sometimes not. DAKOTA is open source software so external or
internal users can request requirements. DAKOTA developers may identify requirements through code
reviews, helping customers, or routine development and maintenance activities. These are all collected
and reviewed in a more formal planning process. An issue tracking system is used to follow most
requirements.

Software architecture is not documented in any of the SQA documents, though it is described at a
high level in the Developer’s manual, with pointers to implementing classes and design documents have
been used at various points in the project’s 15 year life.. The project PI is the gatekeeper. Requirements
undergo a review and distillation process, and tasks to implement the requirements are then identified.
Code reviews are done at different levels of formality, depending on the importance or priority of the
feature request. The review looks at what needs to be done, and develops a design, which is reviewed in
the context of a "design notebook," which documents the design. This gets iterated.

Recommended practices for coding are in a developer’s manual that is published on the web. Code
reviews are done on an as-needed basis. Developers may request code review after a commit. Code
reviews are also done as part of the design/implementation process referenced above. Third party
components are first integrated into the development environment and evaluated against the test suite,
which mostly use problems with known solutions.

Source code, along with tests, documents, examples, and software project infrastructure are controlled
using subversion. For third-party libraries that are in active development, the "subversion
externals" feature is used to pull the source into the DAKOTA source tree. Those not in active
development are just taken from snapshots.

Builds are now fully automated and under continuous integration supported by a Jenkins continuous
integration server. Any new commit triggers a build job within an hour on a RHEL 6 platform. Nightly
tests on a broader set of platforms, selected by platforms targeted for release: Mac, Windows,

RHEL 6, internal SNL clusters. Also integration with other software like SNL’s Trilinos and CASL’s
VERA is tested on a nightly basis.

A full suite of 1500 regression tests, measure of success is the build platform of choice (RHEL 6, for
CI), however the tests are regularly run on other platforms, where numerical differences are expected. A
list of known pass/fails is maintained. Tests are determined back at the design phase, problems with
known solutions for the most part. Requirements have to include a test plan. Tests are designed to address
the requirements and are implemented after the code is written. Some tests are run under continuous
integration, others that require more time are run nightly. Tests are reported via email notification. A
report is generated every morning, with links to dashboards that display the results. A file that contains all
the test results is generated for each platform where the tests are run. They show pass, fail, or a set of
diffs. Fail is something catastrophic (didn't run to completion). Pass is based on a relative numerical
tolerance (1.e-10). One platform is used as a gold standard for comparisons. Unit test suite is not regularly
exercised, but the regression tests are. Trac is used for issue tracking. When a defect is found a ticket is
created. Defects are prioritized, high priority defects in released codes are fixed and patches are
distributed.

CASL-U-2013-0079-000

Survey of Software Quality Assurance and Code Verification Practices in CASL

INL/EXT-13-28675 B-17 Consortium for Advanced Simulation of LWRs

A user manual is available on the DAKOTA website. A stable (nightly development version) and two
versioned releases of Dakota and corresponding docs are, maintained, so documentation tracks
development. Minimally, manuals are updated at release time to reflect new capabilities. DAKOTA relies
on its user community to exercise new capabilities that are documented in the user manual. Tutorials and
examples are provided with each DAKOTA distribution. There is also a set of slide-based presentations.
Installation instructions are provided in a text file with the distribution, with more extensive examples on
publically available development Wiki pages.

DAKOTA tries to keep to an annual release schedule (though is striving toward a 6 month release
cycle with patches in between). Each release has major/minor tags. Releases during the year are mostly
minor, and patches are issued to address minor releases.

A theory manual is available on the DAKOTA website, with stable, release, and VOTD (soon to be
stable and two released) versions available. It is updated when releases are done to reflect new
capabilities. Extensive references documenting DAKOTA are listed on the public website.

DAKOTA collects a lot of different methods under one interface. Some methods (e.g. genetic
algorithms for global optimization) are not well-analyzed. Others (optimization algorithms) have expected
rates of convergence that are tested. Still others (numerically-generated polynomial bases for histograms,
gradient-enhanced Hermite polynomials) are known to produce bad results under certain use cases
(e.g. very high order polynomials will produce oscillatory results). Well-known problems in the literature
with known analytic solutions are used for verification. There are published benchmarks in the UQ
community. Other problems are mostly drawn from civil engineering literature, which provide good
benchmarks for reliability. Most verification problems are not PDEs. Some problems use highly over-
resolved Monte Carlo to compare against, to ensure that the reference solution regressed against is
consistent and can be used as a gold standard. DAKOTA acknowledges a hierarchy of test problems:
known analytic solutions, a middle ground that is verified against exhaustive Monte Carlo calculations,
and a weakest level that is "best we've found.” In this latter case testing is done to ensure performance
doesn’t degrade with the intent to push towards greater rigor with continuous improvement over time.
MC methods generally are inadequate for rigorous convergence studies because they converge so slowly,
in particular can’t determine an error for an MC solution. For some of the test problems, errors in the
reference solution are not known. Reference problems and solutions are documented in publications,
where a lot of work has been done for order of convergence studies to known reference solutions for
specific DAKOTA capabilities (such as stochastic expansions). These peer-reviewed publications
document a baseline that is used as a gold standard in making comparisons.

Specification by CASL of use cases for DAKOTA to address would be helpful to reduce the amount
of documentation provided.

Many of DAKOTA’s methods are not grid-based. For collocation methods, selection of grid points is
mostly determined by theory determining location of quadrature points. Convergence studies are in the
literature for uniform and adaptive refinement. Geometry is not an issue in stochastic space.

Numerical and reference solutions are tested to a tight relative tolerance (1.e-10) by the test harness,
which reports differences for further investigation. Strict 1-norm and 2-norm tests on probability
distribution functions are used; the literature often looks at convergence in moments but these are
problematic, as the tails of the distribution might not converge under these metrics. Expected convergence
behaviors are documented in the literature (e.g., exponential convergence rates for smooth problems using
global basis functions; algebraic rates for piecewise basis functions); if there is a discrepancy then the
code is worked until the expected behavior is obtained. This approach allows comparing against a peer-
reviewed baseline, and these verification tests are part of the regression suite. Problems satisfying these
tests get reported through the regression test mechanism (email notification and dashboard).

CASL-U-2013-0079-000

Consortium for Advanced Simulation of LWRs B-18 INL/EXT-13-28675

Test coverage right now is probably less than 80% (last measured at 70% in 2008), but this isn’t
automatically measured. They are looking at unit testing to get higher coverage of lines of code.

Code verification is not yet fully automated, but will be once the move to continuous integration is
completed.

All code verification artifacts are under version control.

CASL-U-2013-0079-000

