
Lift Forces in Bubbly Flows

Thomas Daly∗ , Sreekanth Pannala† , Arthur Ruggles∗

∗Department of Nuclear Engineering, University of Tennessee, 315 Pasqua Engineering Building, Knoxville, TN, 37996-2300
†Oak Ridge National Laboratory, P.O. Box 2008, Bldg. 5700, MS 6164 Oak Ridge, TN 37831-6164

tdaly1@utk.edu, pannalas@ornl.gov, aruggles@utk.edu

INTRODUCTION

Multiphase flows are found in a variety of engineering
systems, two of the most notable categories being energy pro-
duction and chemical/fossil fuel processing. Many energy pro-
duction systems including jet engines, internal combustion
engines, rockets [1], as well as the focus of this paper: light
water reactors (LWRs) involve two-phase flows. In this type of
fission reactor, light water is used as both coolant and neutron
moderator, yielding a system whose safety and performance is
bound to the spatiotemporal dynamics of the water and steam.

Broadly, there are two types of LWRs in use around the
world: pressurized water reactors (PWRs) which in nominal
operation are single phase systems, and boiling water reac-
tors (BWRs) where boiling occurs inside the fuel channels
of the reactor. Although little boiling occurs in PWRs under
normal conditions, it is important to consider boiling and the
subsequent two-phase flow for safety analyses and situations
where the reactors experience DNB (Departure from Nucleate
Boiling).

Engineered two-phase flow systems have complex geome-
try and often high Reynolds numbers which increase the compu-
tational cost of an analysis, and generally make direct numerical
simulations of a flow field impossible even on the fastest com-
puters today. Consequently, a number of models which seek to
reduce this computational cost have been created over the years.
One of these called the two-fluid model has become the stan-
dard in three dimensional CMFD (Computational Multiphase
Fluid Dynamics) codes.

The two-fluid model splits each conserved quantity into
two interspersed fields, one for each phase. Splitting one field
into two requires additional interfacial closure relationships,
as the boundaries are no longer explicitly resolved. In the
two-fluid model, the momentum flux between the phases is
governed by a number of these closure relationships. Generally,
the net force on the dispersed phase is decomposed into inertial,
added mass, buoyancy, drag, lift, and wall forces. In addition,
there is a time-dependent Basset force, as well as turbulent
dispersion effects. A diagram of a small bubble in shear flow is
found in Fig. 1. The general form of force on a bubble can be
written as [2]
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where FI is the inertial force, FA is the added mass term, FL
is the lift force, FD is the drag force, and FB is the buoyancy
force or in its full form
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Fig. 1. Sketch of bubble in shear flow near wall with dimen-
sional parameters

Here, ub is the bubble velocity, v is the fluid velocity, CM is the
added mass coefficient, CL is the lift coefficient, CD is the drag
coefficient, γ is the ratio of densities (ρb/ρ), g denotes gravity,
and ω stands for vorticity. In general, the coefficients are not
constant although their functional dependence has not been
explicitly stated. A few effects have been left out, including
those due to time history, density gradients, and temperature
gradients. Equation 2 is not based on a unified derivation of
all these forces; rather, it is a composite of the various forces
that have been found to act on bubbles. In the current study, we
will use this superposition principle as an overall recast of the
closure relations is not a trivial task.

One of the lesser understood momentum closures is that
due to the transverse forces. These transverse forces are very
critical for LWR applications as the radial motion of bubbles
in the narrow channels between the fuel rods can have a large
impact on the heat transfer and neutron moderation. A lift force
found to act on dispersed particles in tube-flow was first quan-
titatively described by Segré and Silberberg [3]. In their 1962
paper, they find that a solid sphere in Poiseuille flow experi-
ences radial forces, and that there is a stable equilibrium radial
position at approximately 0.6r/R under certain flow conditions.
The radial equilibrium position for particles in this experiment
shows that there are competing forces in the transverse direc-
tion which are of similar magnitude. Their quantitative findings
have been superseded by newer, more finely grained experimen-
tal data; however, they gave impetus to the following decades
of theoretical and experimental work.

Transverse forces are perpendicular to the relative velocity



of the bubble with respect to the fluid and are commonly de-
composed into lift and wall force contributions in the CMFD
community. The most common foundational lift model today
is from Auton [4]; his model was derived under a number of
assumptions, including: spherical shape, high particle Re, low
S r, and no external boundary. Using the base form of his model
alone the aformentioned radial equilibrium positions can’t be
predicted, so a modified wall force term is introduced to coun-
teract the lift. Auton’s lift model is linear in S r and significantly
overpredicts the shear lift force near a wall. In practice this
creates stability issues for a CMFD code as both models are
created to be similar in magnitude as a bubble approaches a
boundary. A semi-empirical correction to Auton’s model is
developed below; it extends the applicability of his model by
including dependency on Re and distance from an external
boundary.

DEVELOPMENT OF NEW LIFT FORCE MODEL

Experimental and computational data from eight journal
articles and technical reports has been compiled and converted
into a uniform set of dimensionless parameters which can be
found in Table I. This group of dimensionless numbers was
chosen, as it occurs in theoretical work on the shear lift force,
and most of the literature on adiabatic bubble lift force can
be phrased in terms of them.1 The deformation of a bubble
and its orientation with respect to the primary flow will also
strongly affect the lift force [5]; however, the work in this paper
is restricted to roughly spherical bubbles.

TABLE I. Dimensionless parameters

Name and definition Description

Re = dvr
ν

Particle reynolds number

S r = dG
vr

Shear

E = d
2L Inverse dist. from wall

CL = FL
ρ π6 d3vrG

= FL
ρ π6 ν

2Re2S r Auton lift coeff.

CDrag
L = FL

ρ π8 d2v2
r

= FL
ρ π8 ν

2Re2 Drag law type lift coeff.

The lift force model for CL was built up in pieces. First,
data far away from the wall (E < 0.05) was taken in order
to construct model that was valid at high and low Re. A two-
dimensional plot of the data at moderate Re can be seen in
Fig. 2. There is quite a bit of scatter in this plot as it contains
points from a range of shear rates, and at varying distance from
the wall. It also contains a line plot of the Cnowall

L model, which
is created to closely represent the lift force away from the wall
(at E = 0). For comparison Legendre & Magnaudet’s lift force
model is also plotted. The difference in predictions between
the two models is largest near a Re of fifty, while both models
approach CL → 1/2 for large Reynolds number.

After visualizing the data it was found that for low particle

1Including the effects of deformability requires at least one more parameter
(e.g., Bond number)
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Fig. 2. Lift coefficient over Re for data points E < 0.05, pro-
posed model at E = 0, and Legendre & Magnaudet’s model

Re the model proposed by Legendre & Magnaudet [8] fit the
data well. It is also based in theory and has correct asymptotic
behavior for Re→ 0.

J(S r,Re) =
2.255

(1 + 0.2Re/S r)3/2 (3)
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√
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At moderate to large Re a new model given by Eqn. 5
was created. As Re → ∞, CL → 1/2, so the model recovers
the theoretical value of the lift coefficient. This model also
encompasses another feature of the data: a local maximum near
a Re of 50. The high and low Re models are combined in Eqn.
6 to produce a uniformly valid model away from the wall.
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Finally, a model including the effect of distance from the
wall was created by modifying Cnowall

L with an additional term
that decreases as a bubble approaches the wall. The functional
form of this term was chosen so that as E → 0, CL → Cnowall

L .
This form was then fit against all of the data, and an exponent
of −2.3 was found to minimize the squared error, so that the
complete fit is given by Eqn. 7. Overall the model is found
to fit the data well, with a mean squared error of 0.0075 for
Re > 5.

CL = Cnowall
L log2

( E
1 − E

+ 2
)−2.3

(7)

The model is difficult to visualize in 2D, so Figure 3 shows
a surface plot of the Daly, Ruggles, Pannala (DRP) model for
Re > 2 and over all distances from wall (0 ≤ E < 1) along with
a scatter plot of the data from the literature.
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Fig. 3. 3D plot of DRP model and data points

RESULTS

In Figure 4 the lift force of the proposed model is applied
in a turbulent channel, and compared with two other models:
Auton’s closure with constant CL as well as the model from
Legendre and Magnaudet. In the standard closures, the lift
force goes to a very large value as one goes to the wall and thus
necessitates the wall force closure. The new closure ensures
that the lift force decreases as a bubble approaches the wall,
and thus it may work without the need for a wall force term
or other work-around, such as an ad hoc cut-off of mesh close
to the wall. The current closure has to be implemented in a
CMFD code to test the validity and that is part of the future
work.
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Fig. 4. Lift force comparison between different closures in a
turbulent pipe flow



NOMENCLATURE

• Upstream shear value: G

• Upstream uniform liquid velocity: U`

• Liquid velocity far upstream of bubble: v = U` + Gy

• Velocity of bubble: ub

• Relative velocity: v − ub

• Distance from wall to center of bubble: L

• Diameter of bubble: d

• Lift force: FL
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