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Executive Summary: 
 
This milestone investigates the use of recently developed hybrid methods to enable the 
management of uncertainties throughout reactor models. Employing the state-of-the-art 
methods in their current form, e.g. variational methods or sampling methods, is expected 
to be impractical for realistic reactor models. This follows because nuclear models are 
often nonlinear, multi-physics, and associated with many input parameters and responses 
of interest. The developed hybrid approach aims to combine existing methods for 
uncertainty management in an effective way to overcome their limitations. Past year has 
focused on pr esenting the basic idea behind the hybrid approach, that’s to employ 
variational methods to calculate first order derivatives of single physics model’s 
responses with respect to its input parameters. By appropriately sampling these 
derivatives one can reduce the effective dimensionality of the parameter space for the 
overall model. Linear algebra operations identify active subspaces at the interface 
between each two physics models. The premise is that the subspaces identified capture 
the most dominant effects with the inactive components considered negligibly small. This 
approach may be considered a generalization of the Karhunen-Loeve expansion used for 
dimensionality reduction in the context of uncertainty quantification. The KL approach 
takes advantage of correlations between parameters prior uncertainties, whereas our new 
approach takes advantage of both prior uncertainty correlations and sensitivities of 
quantities of interest.  
 
In this fiscal year, a new milestone was initiated to further develop this approach to 
address realistic reactor models. In particular, we focused on extension of the approach to 
nonlinear models. This follows as most of the physics feedback effects are expected to 
lead to nonlinear behavior. Second, we investigate the use of a group of methods 
developed in the mathematics community aiming at dimensionality reduction, referred to 
as HDMR techniques, or high dimensional model reduction techniques. Third, we 
focused on de veloping a rigorous mathematical representation for the approximation 
errors resulting from the hybrid approach. The main accomplishments enabled by this 
work are as follows and are described in the subsequent three chapters: 
 
1- Hybrid Subspace methods have been extended to account for nonlinear behavior, by 

identifying a subspace that captures the nonlinear features of the model (Bang and 
Abdel-Khalik).  

2- The use of HDMR techniques is investigated for neutronics problems for possible 
hybridization with subspace methods (Zhengzheng and Smith). 

3- Rigorous mathematical error bounds on the responses of interest have been developed 
for the general nonlinear non-Gaussian case (Stoyanov and Webster).  

This work concludes that although nuclear models are nonlinear and high dimensional, a 
characteristic that cripples existing uncertainty algorithms from being applied effectively 
for routine engineering analyses, the use of hybrid subspace methods has proven to 
provide a valuable tool that can reduce the effective dimensionality to a level where 
existing uncertainty methods become a viable option for use in exhaustive/routine 
engineering analyses. Different numerical experiments have been carried out to verify 
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each of the above three developments, both based on simplified models and complicated 
models used in realistic nuclear engineering calculations. Given these promising results, 
we believe hybrid subspace methods are ready for deployment into CASL advanced 
codes to enable uncertainty quantification and data assimilation, which we propose to be 
the focus on next two fiscal years.  
 
Section 1: Extension of Hybrid Reduced Order Modeling for Nonlinear Models  
 
Introduction: 

Reduced order modeling (ROM) has been recognized as an indispensable approach 
when the engineering analysis requires many executions of high fidelity simulation 
codes. It identifies patterns in the behavior of the system and approximates the model in 
lower dimensional form. The primary objective boils down to seek a minimal size of 
basis that captures all possible variations. Several approaches have been proposed for 
ROM of a single code. As an extension, we address a ROM for multi-physics problems in 
which several codes are coupled through data transfer. The multi-physics problem would 
be more challenging; 1) because several codes should be executed, the available 
execution of each code for ROM would be more limited with respect to overall 
computational cost; 2) due to multiple physics, the total number of variables to be 
considered would increase, which requires several ROM on di fferent levels. In this 
summary, we introduce the intersection subspace approach to render efficient reduced 
order modeling for multi-physics problems and numerically demonstrate that further 
reduction can be achieved on the data streams transferred between the different physics 
codes without compromising the overall accuracy of the coupled simulation.  
 
Theory & Algorithm: 

Suppose a model which takes input parameters and produces output responses. The 
main idea of the ROM approach is reducing the dimensionality by projecting the model 
onto the so-called active subspaces. To efficiently construct the orthonormal basis of the 
active subspace, we use the randomized range finder, which is originally devised for 
accelerating a matrix low-rank approximation. Its most important advantage is to make 
the best of parallel computing platform; thus, the process of the reduced order modeling 
itself which requires repetitive code executions can be conducted efficiently. Based on 
the idea of the randomized range finder, different ROM approaches have been proposed 
depending on w here the reduction is rendered. By identifying the intersection of the 
active subspaces, further reduction would be achieved.  

 
Randomized Range Finder: 
 

The randomized algorithms utilize the random input perturbations to identify the 
sample range. To illustrate the range finding algorithm with random samples, suppose the 
problem of finding basis for the range of a matrix A  with an exact rank k , which can be 
mathematically formulated by finding a matrix with k  orthonormal columns such that  
 

2

T ε− ≤A QQ A  (1.1) 
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where ε  is a p ositive error tolerance and the range of Q  is a k -dimensional subspace 
that captures most of the action of A . Repeat a process of drawing random vector x  of 
which entries are randomly generated and forming the product y x= A  : 
 ( ) ( ) ,      1,...,i iy x i k= =A   (1.2) 
Owing to randomness, one can assume that the randomly generated vectors ( )ix  for 

1,...,i k=  are linearly independent and resulting vectors ( )iy  for 1,...,i k=  are also 
linearly independent. By linear algebra, the vectors ( )iy  for 1,...,i k=  spans the range of 
the matrix A ; thus, the orthonormal basis of range of the matrix A  can be constructed 
by orthonormalizing the vectors ( )iy  for 1,...,i k= . With standard Gaussian random 
vectors and s  extra samples for basis verification, the constructed basis Q  satisfies the 
following statement with probability at least 1 10 s−−  [Halko, 2011]: 

 ( ) ( ) ( )
2 1,..., 2

210 max iT T

i s
z

π =
− ≤ −I QQ A I QQ A  (1.3) 

 
Reduced Order Modeling in Two Levels: 
 

Suppose a single physics model which takes input parameters x  and produces output 
responses y . Different approaches can be performed depending on where the reduction is 
rendered and those can be categorized into two groups: output-level reduction and input-
level reduction 

In the output-level reduction, the active subspace basis construction via the 
randomized range finder is straightforward because the information of the active 
subspace is directly accessible, i.e. the vector to be reduced itself spans the range of the 
active subspace. It can be considered as identifying patterns in samples. Note that once 
the basis of the range of A  is constructed as a m atrix OQ , the vector of the output 
responses y  can be transformed to T

O O Oy y β= =Q Q Q


  . Because the basis can be 
constructed simply by orthonormalizing the samples (snap-shot method [Holmes, 1996]), 
it is obvious that this procedure would be applicable to both of linear and nonlinear 
models. The most of ROM applications have been implemented on this level.  

In the input-level reduction, the range of input parameters is not directly accessible 
unless the model is explicitly known. Instead, we have been shown that the first order 
derivatives of pseudo1 responses with respect to inputs at random points span the active 
subspace of input parameters [Bang, 2012]. The first order derivatives can be most 
efficiently with adjoint sensitivity analysis which is the well-recognized method in 
reactor physics community. Then, the basis for input parameters can be identified by 
orthonormalizing the first order derivatives at random points. Once the active subspace 
basis of the input parameters is constructed as a matrix IQ , the vector of input 
parameters x  can be transformed to T

I I Ix x α= =Q Q Q   . 
Note that the active subspaces for two levels have different meaning. The active 

subspace of output responses, i.e. OQ  can be considered as patterns in their variations 
                                                        
1 A pseudo response is a random linear combination of the model’s responses. See Ref [1] for more details on its construction. 
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due to input parameter perturbation. In other words, the outputs can be represented with 
those patterns. ROM on output-level is taking the only dominant patterns. On the other 
hand, the active subspace of input parameters, i.e. IQ  can be interpreted as their 
sensitivity on output response changes. The premise is that all parameter variations that 
are orthogonal to the active subspace produce negligible response change. ROM on 
input-level is taking the only high sensitive components.  

 
Intersection Subspace for Coupled ROM:  

We can extend the approaches to handling codes consisting of serially coupled two 
physics codes where the outputs of one code are passed as inputs to the next code in the 
chain. Note that data stream between two codes can be simplified as transferring 
patterns which is determined by the former code. Then, the only sensitive components of 
transferred data to the latter code can contribute to the final output responses. In other 
words, among the delivered patterns, the only sensitive components need to be 
considered. There can be two different ROMs; one for taking dominant patterns and one 
for taking high sensitive components. Focusing on the fact the some variations in 
dominant patterns may not be influential to the responses changes (in-sensitive), we 
define the intersection subspace capturing large variations AND high sensitivities. It is 
natural to think that the size of the intersection subspace would be smaller than any of 
separate subspaces. Intuitively, if more active subspaces are involved (more coupled 
codes), the size of intersection subspace confining all the active subspace would be 
smaller. This induces the promising perspective that the further reduction would be 
achievable as more codes are involved.   

Constructing the intersection subspace basis can be divided into two stages: 
Proto-Algorithm: Intersection Subspace Basis Construction 
Given two coupled codes, this procedure computes the intersection subspace for 
intermediate variables transferred from the former code to the latter code.  
Stage A) Pattern Identification in Intermediate Variables 
- sample the intermediate variables by executing the former code with random inputs 
- compute the active subspace basis by orthornormalizing projected samples 
Stage B) Intersection Subspace Extraction  
- sample the first order derivatives of pseudo responses with respect to intermediate 

variables at random points 
- project the samples onto the subspace of patterns 
- compute the intersection subspace basis by orthornormalizing projected samples 
 
Numerical Demonstration: 

We take neutronics calculations as an example, whereby resonance and self-shielding 
calculations represent one physics code, necessary to calculate the effective multi-group 
cross-sections, before passing them to the next physics code representing transport 
calculations. The transport code employs the effective cross-sections to solve for any 
responses of interest, e.g. k-eigenvalue, flux, few-group cross-sections. The depletion 
code takes the flux to calculate the depleted and transmuted nuclides densities. This 
sequence of resonance – transport – depletion calculations are repeated at each depletion 
step. The effective multi-group cross-sections are considered as intermediate variables 
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and the active subspace for all possible variations during the entire depletion cycle 
under different operating conditions is constructed.  

SCALE6.1 is used for simulations and assembly models of two reactor types are 
considered (Figure 1): Peach Bottom Unit 2 Boiling Water Reactor (PB-2 BWR) [Ivanov, 
1999] and Watts Bar Unit 2 Pressurized Water Reactor (WB-2 PWR) [Wagner, 2002]. 
The applicability of reduced order modeling in highly nonlinear cases due to the poison 
material burnout (Gd-155 & Gd 157) and in case of different fuel enrichments and 
control rod insertions are examined with PB-2 BWR and WB-2 PWR models, 
respectively.  

Main purpose of this numerical test is to compare the size of active subspace basis 
via intersection subspace approach to single subspace approach for the same precision of 
reduced order transformation. To examine the size of active subspace, the singular value 
spectrums of the random samples are compared and the constructed basis vectors are 
verified by using κ -metric method, i.e. calculate the response changes due to in-active 
input components. As can be seen in Figure 2, the singular value spectrum of the 
intersection subspace is decaying faster than the one of the single subspace. Note that the 
singular values can be considered as the importance of the basis. Therefore, the singular 
value spectrums show that the intersection subspace can confine the effective multi-group 
cross-sections into smaller dimension at a given precision (fixed-precision problem). Or 
with a given subspace size, the intersection subspace approach provides more optimal 
basis (fixed-size problem), which can be more consolidated by Figure 3. Note that if the 
subspace is constructed correctly, the response change due to in-active input components 
should be very small. With intersection approach, the subspace size of 800 a nd 2000 
would be sufficient for PB-2 BWR and WB-2 PWR, respectively, while not enough for 
single subspace approach. Though not included in this summary, the basis is verified for 
scalar fluxes and assembly-homogenized few-group cross-sections via κ -metric test. 
Considering the precision of ENDF cross-section library and transport solver 
convergence criteria ( 510−  for PB-2 BWR and 410−  for WB-2 PWR), the required size of 
active subspace could be determined and summarized in Table 1.  
 

 
BWR Assembly Model (PB-2 BWR) 

 
PWR Assembly Model (WB-2 PWR) 

 
Figure 1. SCALE Assembly (WB-2 PWR) Model 
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Figure 3. κ -metric test for k-eigenvalue  

(Active Subspace Size=800 for PB-2 BWR and 2000 for WB-2 PWR) 
 
 

Table 1. Summary of Test Result 
   PB-2 BWR  WB-2 PWR  

Original Dimension  44,786  184,240  
Reduced Dimension  

(single subspace, pattern)  
1,000 

(2.23% of original dim.)  
5,000 

(2.71% of original dim.)  
Reduced Dimension 
(intersection sub., 

pattern+sensitivity)  

800 
(1.79% of original dim.)  

2,000 
(1.09% of original dim.)  

 
 
 
 

CASL-U-2013-0144-000



 

Conclusion: 

We show that while each physics code is independently reducible, by appropriately 
combining the active subspaces from each code using the idea of subspace intersection, 
further reduction can be achieved. Note that as more codes are coupled, the simulation 
would become more complicated and computationally intensive, which leads to many 
engineering analysis impractical. On the other hand, we expect the further reduction as 
more codes considered, which is very promising to alleviate the computational burden 
and enhance efficient application of high-fidelity simulation codes. 
 
Section 2: High Dimensional Modeling Reduction Techniques 
 
Introduction: 
 

In (Hu & Smith, 2013), the authors tested the applicability of High-Dimensional 
Model Representation (HDMR) techniques, originally proposed by (Sobol, 1993), 
combined with modified Morris screening (Campolongo & Saltelli, 1997) to the 
homogenized energy model (HEM) for Macro-Fiber Composites (MFC) which has 16 
physical parameters. The authors concluded that the proposed algorithm could 
successfully represent the model with up to 10 parameters which do not have significant 
high-order (more than 2nd) interactions. Motivated by their findings, we apply the same 
algorithm to a steady-state, 1-D neutron transport equation which characterizes the 
dynamics of a group of monoenergetic neutrons travelling in homogeneous planar 
geometry with isotropic scattering.  
  

As detailed in the general review of (Rabitz & Alis, 1999) and the references cited 
therein, HDMR techniques have been used to systematically identify the relationships 
between sets of inputs (e.g., parameters) and outputs (responses). Under the assumption 
that the effect of inputs on the outputs are independent and cooperative, HDMR expresses 
the model output as a finite additive sum of correlated functions with increasing numbers 
of input variables up t o the total number of inputs. There are two commonly used 
expansions: ANOVA-HDMR and Cut-HDMR depending on how  the hierarchical 
functions are evaluated. ANOVA-HDMR, which is often used to analyze global 
sensitivity, is basically the same as the analysis of variance decomposition (ANOVA). It 
involves high-dimensional integrations which are computationally expensive to evaluate. 
Cut-HDMR, on the other hand, depends only on the function values at sample points and 
thus is more computationally attractive than ANOVA-HDMR. The theoretical 
foundations of both expansions are detailed in (Rabitz & Alis, 1999).  
 

HDMR was originally proposed as a framework to construct a fully equivalent 
operational model of complex chemical systems; see (Rabitz & Alis, 1999; Shorter, 
Precila, & Rabitz, 1999; Wang, Levy II, Li, & Rabitz, 1999; Li, Rosenthal, & Rabitz, 
2001). Since its development, it has been used to construct computational models directly 
from laboratory data, perform quantitative risk assessment, identify key model 
parameters, analyze global uncertainty, etc. For example, Li et al. (Li, Wang, Rabitz, 
Wang, & Jaffe, 2002) proposed a framework for global uncertainty assessments using 
random sampling HDMR (RS-HDMR). They have successfully applied RS-HDMR to 
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analyze the results of a m athematical model for identifying relevant variables in 
simulating bioremediation of trace metals/radionuclides in groundwater.  
 

Labovsky and Gunzburger (Gunzburger & Labovsky, 2012) proposed a new 
methodology to explore the importance of inputs based on Cut-HDMR by examining 
both individual and pairwise effects. Commonly, when Cut-HDMR expansions are used 
to approximate the high-dimensional functions, inputs with small individual effect (i.e., 
outputs do not vary much when inputs have changed) are omitted from the Cut-HDMR 
expansion starting from the first-order; i.e., such inputs are not considered in high-order 
terms which account for the interactions among parameters. People often argue that only 
two inputs with significant separate effect can have important interactions. Labovsky and 
Gunzburger showed this is not the case for a complex system of PDEs that governs 
incompressible magnetohydrodynamic flows. The main contribution of that work is to 
propose a framework to identify/include important interactions between two inputs in the 
Cut-HDMR when neither of the two inputs is important. Motivated by their work, we will 
consider the applicability of their framework with some modifications to the 1-D neutron 
transport equation.  
 

The rest of the report is organized as follows. We first briefly review the 1-D neutron 
transport equation. The algorithm proposed in (Gunzburger & Labovsky, 2012) is then 
presented with some modifications. In the Results section, we analyze the applicability of 
the algorithm on t he 1-D transport equation. Concluding Remarks and Future Work is 
presented in the last section. 

1-D Neutron Transport Equation: 
 

We consider a 1-D problem for steady-state, monoenergetic, isotropically scattering 
neutron transport in homogeneous planar (commonly referred as “slab”) geometry. The 
governing equation is 

   
ψµ µ ψ µ φ∂

+ Σ = Σ +
∂

1( , ) ( , ) [ ( ) ( )]
2t sx x x Q x

x                         (2.1)
 

where  and the polar cosine .  H ere  is the azimuthally 
integrated angular flux,  is the macroscopic total cross section ( ), is the 
macroscopic scattering cross section ( ),  is the scalar flux; i.e., 

, and  is an internal isotropic source.  

 
We assume no i ncoming flux on t he left or right boundaries; i.e., vacuum boundary 
conditions. The boundary conditions prescribe the incident angular fluxes on the left and 
right edges of the slab are 
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Eq. 2.1 is solved numerically using a MATLAB code developed by Willert and Kelley2. 
More specifically, the governing equation is represented at a finite set of polar cosine 
values  with associated weights  for  

, 

and the scalar flux is approximated by . The diamond-difference 

discretization is used in space, so the angular flux is evaluated at cell-faces. The 
discretized system is then solved using Source Iteration, or Picard Iteration, during which 
the scalar flux (part of the source term) is treated explicitly; i.e., evaluated using the 
angular fluxes at the previous iteration. The scheme at the -th iteration is 

 

 
 
Motivated by the structure of a typical light water reactor core which typically contains 
nuclear fuel rods (e.g., uranium, plutonium), control rods (e.g., hafnium, cadmium) and 
water-filled channels, we consider a material composition shown in Figure 1. 
 

                                                                                                                                             
 

 

Figure 1. Schematic of the composition of the materials used in the numerical tests. 

Cut-HDMR with Screening: 
 

In this section, we briefly summarize the Cut-HDMR expansion. As mentioned 
previously, Cut-HDMR is more efficiently for practical computations since no high-
dimensional integrals need to be computed in the expansion. We then introduce the 
Morris screening which is used to select anchor points for the Cut-HDMR and identify 
the most influential parameters/interactions. Finally, we present the algorithm that 
combines the Morris screening with the Cut-HDMR and therefore is able to construct a 
reduced-order model with both univariate and bivariate effects of parameters. 
                                                        
2 http://www4.ncsu.edu/~ctk/ 
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Consider a multivariate function  defined on t he -dimensional 
domain  and a pre-chosen anchor point . The Cut-HDMR 
takes the form (Rabitz & Alis, 1999)  

= ≤ < ≤

≤ < < ≤

= + + +

+ +

∑ ∑

∑
 





 

1 2 1 2
1 2

1 1
1

0
1 1

12 1
1

( ) ( ) ( , )

     ( , , ) ( , , )
s s

s

k

i i i i i i
i i i k

i i i i k k
i i k

f Y f f Y f Y Y

f Y Y f Y Y

                       (2.2)
 

where 

=

=

= = −

= − − −

 

 

 





*

*

*
0 0

0{ , }

( ), ( ) ( ) | ,

( , ) ( ) | ( ) ( ) ,
i

i j

i i Y Y Y

ij i j i i j jY Y Y Y

f f Y f Y f Y f

f Y Y f Y f Y f Y f




 

The notation  means that the components of  other than those indices that 
belong to the set  are set equal to those of the anchor point. For example,  

− +

= =

=

 

  

*

* * * *
1 1 1

{ , }

  ( , , , , , , , , ).
i j

i i j j k

Y Y Y Y

Y Y Y Y Y Y


 

Unlike ANOVA-HDMR, the expansion depends only on function values at the 
anchor point so that high-dimensional integrations are avoided. This makes Cut-HDMR 
more attractive for practical computations. However, due to the dependence on t he 
anchor points, the expansion may lead to an unacceptable approximation error. Many 
efforts have been made to select one or a set of suitable anchor points; see (Ma & 
Zabaras, 2010) for example. Labovsky and Gunzburger (Gunzburger & Labovsky, 2012) 
have considered using Morris screening test (Morris, 1991) to identify a set of anchor 
points, and this will be discussed in the next subsection. 
 

We note that the expansion Eq. 2.2 is exact if all terms are included, though there 
would be no computational gain. It is often argued that the high-order interactions among 
inputs are weak and therefore can be omitted from the expansion. In fact, truncating after 
the second-order interaction terms yields a good approximation (Rabitz, Alis, Shorter, & 
Shim, 1999; Cao, Chen, & Gunzburger, 2009; Sobol, 2003); i.e., 

                                  (2.3)
 

Let us consider a function with 16 parameters. To analyze the sensitivity of the function 
in terms of the 16 parameters, the most straightforward way is to select grid points in 16-
D (e.g., four points in each direction), evaluate the function at the grid points and 
calculate the numerical derivatives (finite differences). This is, however, computationally 
impossible, since it involves more than 100 million function evaluations. Furthermore, 
only 4 points were considered in each direction. If instead the truncated Cut-HDMR is 

used, only + +
×

× × =2 16 151 4 6 4
2

1 1985 function evaluations are needed. In other words, 

if one can afford 300 thousand function evaluations, about 50 grid points can be 
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considered in each dimension and the 16-D parameter space should be presented 
reasonably well by those grid points.  
 
Morris Screening: 
 

The tradeoff for the Cut-HDMR being significantly more efficient is that the 
convergence properties depend on the choice of the reference point. One of the options is 
to randomly pick points within the domain where the parameters/variables are defined. 
Following Labovsky and Gunzburger (Gunzburger & Labovsky, 2012), we consider 
using the modified Morris screening method proposed by Campolongo et al. 
(Campolongo & Saltelli, 1997) to define a set of anchor points.  
 

Morris screening was originally proposed by Morris (Morris, 1991) to efficiently 
explore the sensitivity of inputs. Campolongo et al. (Campolongo & Saltelli, 1997) later 
suggested an improvement aimed at better exploring the input space. Basically, a 
reference point is randomly selected initially. Through the construction of a sampling 
matrix, the input space around this reference point is explored/used to evaluate the 
sensitivity. The unique attribute of the screening procedure is that the sampling matrix 
provides an “optional” trajectory for calculating the sensitivity (finite difference) of all 
inputs, so it is the most efficient way to explore the input space. Figure 2 demonstrates a 
possible trajectory based on the sampling matrix for two inputs. 

                                              
 
Figure 2. Sketch of the trajectory in 2D proposed by (Campolongo & Saltelli, 1997). 

Dot: reference point; Blue circles: points on the trajectory used to calculate the 
sensitivity. 

Cut-HDMR with Morris Screening Algorithm: 
 
Motivated by (Gunzburger & Labovsky, 2012) we propose Algorithm 1 to approximate 
the -dimensional multivariate function  using Cut-HDMR with 
Morris screening. 
Algorithm 1 
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1. Following the Morris screening method (Campolongo & Saltelli, 1997), construct  
first-order sampling matrices  using randomly chosen starting vectors 

. These starting vectors are used as anchored points in Cut-
HDMR; see step 7. 

2. For , compute the first-order elementary effect (univariate effect) of , 
, using ; see Appendix. 

3. Construct  second-order sampling matrices  using the same starting vectors 
used for the first-order sampling matrices. 

4.  For , compute the second-order elementary effect (bivariate effect) of 
, , using ; see Appendix. 

5. Calculate the mean of elementary effects,  for , 

=

= =  =


∑ 

 1

1
univariate
bivariate otherwise.

r

ij ijd d
r i j  

 

6. Screening. Let  and  respectively be the set of indexes of the important 
univariate and bivariate effects, then 

 
= > ≤ ≤ 
 
  = > ≤ ≤ ≠ 
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2
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( , ) ,1 , , ,
max( )

|

|

ii

ii
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ij

di i k
d

d
i j i j k i j

d

 

 

 

 

where  is a predefined threshold value. 
7. Truncate Cut-HDMR with screening: 

= ∈ ∈

 
≈ = + + 

 
∑ ∑ ∑  



 

1 2 1 2
1 1 2 2

0
1 ( , )

1( ) ( ) ( ) ( , )
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where 

δ δ
= = −

= − − −

  

   

   

  



 

  

 * * * *
0 1 2 0

* * *
1 2 0

( ), ( ) ( , , , , , ) ,
( , ) ( , , , , , , , ) ( ) ( ) ,

i i i k

ij i j i j k i i i j j j

f f Y f Y f Y Y Y Y f
f Y Y f Y Y Y Y Y f Y f Y f  

 

with 
δ =  ∈


11 if  

0 otherwise.

i i 
 

Here only the variables that are significant will be summed in the second term of 
Eq. 2.4, and only the interactions that are significant will be summed in the third 
term. 

 
Note that besides the computational cost discussed previously, the screening procedure 
involves  function evaluations. 
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Numerical Results: 
 

We now apply Algorithm 1 to test its applicability on the 1-D neutron transport 
equation. As shown in Figure 1, we consider three different materials (H2O, U-235 and 
Hf-177) in 7 sub-regions.  Each material has distinctive scattering cross sections and total 
cross section. To study the sensitivity of these cross sections to the transport equation, 
values are randomly selected for each region from the predefined domain of the 
materials. The domain for each material is calculated by perturbing the reported values 
found in (Sood, Forster, & Parsons, 2003) that are shown in Table 1. The cross sections 
of Hf-177, however, are calculated using microscopic cross sections (Devaney, Bordwell, 
& Devaney, 1962) and the number density of Hf-177. The permissible domains of three 
materials are shown in Table 2. Here the lower/upper bounds for the scattering cross 
sections are obtained by perturbing the book values by 10%. Since the ratio between the 
scattering cross section and the total cross section affects the convergence rate of the 
numerical scheme, to ensure the accuracy of the numerical solution, instead of randomly 
selecting the total cross sections, the ratios are selected. The lower/upper bounds for the 
ratios are obtained by perturbing the book values by 2%. The lower/upper bounds of the 
total cross sections are evaluated from the scattering cross sections and the ratios and are 
not implemented explicitly in the code. Therefore, the 1-D transport equation has 14 
physical parameters (7 scattering cross sections and 7 ratios).  

Material    
H2O 0.2938 0.9000 0.3264 

U-235 0.2481 0.9500 0.2611 
Hf-177 0.4500* 0.0829 5.4296* 

Table 1. Macroscopic scattering cross sections and total cross sections in (Sood, 
Forster, & Parsons, 2003). The values for Hf-177 are calculated using the 

microscopic cross sections (Devaney, Bordwell, & Devaney, 1962) and the number 
density of the material. 

Material    
H2O [0.2644,0.3232] [0.8820,0.9180] [0.2880,0.3664] 

U-235 [0.2233,0.2729] [0.9310,0.9690] [0.2304,0.2931] 
Hf-177 [0.4050,0.4950] [0.0812,0.0846] [4.7872,6.0961] 

Table 2. Lower/upper bounds of the cross sections and ratios of the materials used 
in the simulations. 

 
We now test algorithm 1 for accuracy. To evaluate the error of the algorithm, 1000 points 
were randomly selected in the parameter space to evaluate both the exact and 
approximated solutions. The angular and scalar fluxes calculated by the model using a 
randomly selected set of parameters from Table 2 are plotted in Figure 3. Note that the 
response considered in Cut-HDMR is the integral of the scalar flux over the domain.  
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(a) 

                           
(b) 

Figure 3. Angular flux (a) and scalar flux (b) calculated by the 1-D transport 
equation with a randomly selected set of parameters using Table 2. 

Five anchor points are selected, 4-level sampling matrices are used, and the threshold 
value is taken to be 0.05; see Appendix for the definition of a 4-level sampling matrix. 
The univariate screening finds that only two parameters are not significant at 0.05-level, 
and these two parameters are the scattering cross sections of U-235 (in the second region 
from the left) and H2O (in the third region from the left). Among the 91 pa irwise 
interactions, the bivariate screening finds 13 interactions are not significant. For example, 
the scattering cross section of U-235 of the second region from the left does not interact 
with another scattering cross sections, except for the scattering cross section of the H2O 
in the first region from the left. We then find that the maximum relative error between the 
approximation and the exact solution is 4.99% and 67.3% of the evaluation points have 

CASL-U-2013-0144-000



 

relative error less than 2%. Thus Algorithm 1 accurately approximates scalar flux of the 
1-D neutron transport equation for the material composition shown in Figure 1. 
 
Concluding Remarks and Future Work: 
 

Motivated by Labovsky and Gunzburger (Gunzburger & Labovsky, 2012), we use the 
modified Morris screening method proposed by Campolongo et al. (Campolongo & 
Saltelli, 1997) to identify the most influential parameters and interactions between 
parameters of a steady-state 1-D neutron transport equation in planar geometry. Based on 
the screening results, we construct a reduced-order model which depends on significantly 
fewer parameters and therefore has less degrees of freedom. The resultant reduced-order 
model accurately characterizes the nonlinear relations between 14 physical parameters 
and the scalar flux. The reduced-order representation makes it computationally feasible to 
analyze the sensitivity of the model parameters without using Monte Carlo simulations 
which are often time consuming.  
 

In the future, we will apply the algorithm to the angular flux which is a more 
appropriate response of the model. Since the cross sections can change significantly as 
the energy level changes, it is also important to consider multiple energy groups.  
The transport equation considered in this report does not involve fission which is an 
important source of reaction. This will be addressed in the future work. The 1-D planar 
geometry considered here is only valid when the cross sections, internal source are 
independent of the other two directions ( ). 3-D transport equation will be 
analyzed for more realistic situations. Finally, we will investigate the implementation of 
this algorithm in DENOVO.  
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Section 3: A gradient-based high-dimensional model reduction

Introduction:
The behavior of a nuclear reactor is determined by the flow of neutrons through the reactor core,

which is modeled by the Boltzmann transport equation. The solution depends on a large number of

cross-section parameters that describe the way various types of materials (i.e. nuclear fuel, control

rods, coolant etc.) interact with the neutrons. The cross-section are measured experimentally and

hence there is uncertainty associated with their values. Of particular interest is the case when the

uncertainty in the parameters is relatively large, which can account for changes in the properties

of nuclear material over the entire life span of the reactor as well as the buildup of crud on the

fuel and control rod cladding. Furthermore, discretizations of the Boltzmann equation often result

in a large number of cross-section parameters, often in the thousands and even tens of thousands,

and therefore, we are forced to approximation stochastic versions of the Boltzmann system that

depend on a large number of uncertain parameters. This is certainly the case in most CASL1

challenge problems and this report explains, both theoretically and computationally, the advantages

of a gradient-based model reduction approach applied to a specific radiation transport example

described in below.

The classical approach to uncertainty quantification (UQ) for the neutron flow problem is to

use sensitivity analysis (SA) [Cacuci, 2003]. An approximation to the first and second moment of a

quantity of interest (QoI) are computed using the derivative of the QoI. The SA approach has given

us many techniques for finding the derivatives (i.e. forward and adjoined methods), however,

the method is suitable only for problems with small uncertainty ranges. Sampling methods like

Monte Carlo (MC) [Fishman, 1996] and Stochastic Collocation (SC) [Babuška et al., 2007, Nobile

et al., 2008b,a] take several realizations of the QoI for different values of the uncertain parameters

and can approximate problems with arbitrary uncertainty ranges (e.g. uniform, Guassian, etc.).

However, MC approaches have very slow convergence rates and while SC method can utilize

information about the derivatives, the number of samples required is still prohibitively large for

extremely high-dimensional problems [Roderick et al., 2010a, Lockwood and Anitescu, 2010],

rendering them computational infeasible.

Reduced Order Modeling (ROM) is a general approach that seeks to replace a physical model

with an equivalent one of lower dimensions [Antoulas, 2005, Roderick et al., 2010b, Burkardt

et al., 2007], however, most ROM techniques have been developed in the context of deterministic

problems (i.e. control and optimization and solvers) and thus, are not directly applicable in the UQ

context. The Karhunen-Loéve (KL) expansion [Loève, 1977, Loève, 1978] is the most common

ROM technique used in the context of stochastic problems. KL creates a low dimensional approx-

imation to the uncertainty, however, KL requires strong correlation between the parameters as well

as explicit knowledge of the correlation function. Furthermore, the error bounds are not rigorous

for non-linear and non-Gaussian problems.

In recent years, we have seen a new ROM approach for UQ within the context of neutron

transport; one that combines Monte Carlo sampling with sensitivities (i.e. derivatives) of the QoI

to compute a subspace that approximates the span of the gradient of the QoI [Constantine and

Wang, 2012, Abdel-Khalik, 2011, Abdel-Khalik and Hite, 2011]. Consequently, the problem is

1Consortium for Advanced Simulation of Light water reactors
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projected onto the resulting low dimensional subspace allowing for the application of SC or MC

techniques. While the results are promising, this new approach suffers from the lack of rigorous

error bounds that relate the error in the approximation of the gradient to the error in the statistics

of the QoI. Convergence is assumed rather than proven, especially in the case when the parameters

have complex probability distributions (i.e. non-Uniform and non-Gaussian).

In this work, we develop a generalized framework for gradient based ROM approach for high

dimensional UQ. Our results apply to linear and non-linear QoIs, large range for the uncertainty

in the random input parameters as well as general probability distributions. The CASL challenge

problem we solved involves neutron transport with uncertainty in the cross sections. We look for

the effective dimension of the problem, that is a subspace of the uncertainty domain, so that we can

project the problem onto that subspace and preserve the statistics of the QoI. We prove rigorous

error bounds that apply to problems with general probability distributions.

Problem definition:
We consider the 1-D Boltzmann neutron transport equation

∂ψ

∂t
(t, x, θ) + cos(θ)

∂ψ

∂x
(t, x, θ) + σt(x)ψ(t, x, θ) = σs(x)φ(t, x) + νσf (x)φ(t, x) + f(t, x),

where

• ψ(t, x, θ) is the density of neutrons at time t, location x moving in direction θ;

• φ(t, x) =
∫ 2Π

0
ψ(t,x,θ)

2Π
dθ is the total number of neutrons at time t and location x;

• f(t, x) is the external source and ν is the average number of neutron emitted after a fission

reaction;

• σt(x), σs(x) and σf (x) are the total, scatter and fission cross sections.

To exhibit the theoretical results we consider a mockup reactor problem consisting of two fuel

rods placed on the two sides of a control rod and coolant medium in between, see Figure 1. We

introduce uncertainty in the cross sections in the form of additive white noise field that is sampled

from a truncated Gaussian distribution. That is

σt(x; ηt) = σ̄t(x) + ηt, σs(x; ηs) = σ̄s(x) + ηs and σf (x; ηf ) = σ̄f (x) + ηf ,

where ηt = ηs + ηf + ηc. We define the QoI as the reactor criticality given by the solution to the

eigenvalue problem

cos(θ)
∂ψ

∂x
(x, θ) + σt(x; ηt)ψ(x, θ)− σs(x; ηs)φ(x) =

ν

k
σf (x; ηf )φ(x). (1)

Let k = Q(η), where η = (ηs, ηf , ηc) ∈ R
N , where N is high-dimensional, be a random vector

with probability distribution ρ(·). Then, our goal is to compute the expected value of the QoI Q(·),
i.e.

E[Q(·)] =
∫

Q(η)ρ(η)dη. (2)
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Figure 1: Mockup reactor problem

We seek to decompose R
N into “active” and “passive” subspaces Ua and Up so that we can

project (2) as

E[Q(·)] =
∫

Q(η)ρ(η)dη ≈
∫
Ua

Q(ηa)ρ̂(ηa)dηa, (3)

where ρ̂(ηa) =
∫
Up

ρ(ηa + ηp)dηp is a transformed probability measure. Using the adjoint method,

we compute an approximation to the gradient of Q(η) and we use that information to form Ua

and Up. Next we describe some theoretical results and outline the algorithm used to define these

subspaces.

Theoretical Results:
We prove the following sufficient condition for the error associated with the projection (3).

Theorem 1 (Gradient Bound) Let subspaces Ua and Up be orthogonal complements of each
other. Suppose there exists a probability density function g(η) defined on R

N that satisfies

|〈∇Q(ηa + sηp), ηp〉| ρ(ηa + ηp) ≤ εg(ηa + ηp), ∀ηa ∈ Ua, ∀ηp ∈ Up, ∀s ∈ [0, 1]. (4)

Then we have the bounds

‖Q(η)−Q(FUaη)‖L1
ρ(·)(R

N ) =

∫
|Q(η)−Q(FUaη)|ρ(η)dη ≤ ε,

∣∣∣∣
∫

Q(η)ρ(η)dη −
∫
Ua

Q(ηa)ρ̂(ηa)dηa

∣∣∣∣ ≤ ε,

where FUa is the projection operator RN → Ua and ρ̂(ηa) =
∫
Up

ρ(ηa + ηp)dηp.

Note that this result is an extension of classical KL expansion to non-linear problems with a general

probability distribution. Next, we explain the sampling based approach for forming Uk
a and Uk

p that

will approximate condition (4).

Algorithm 1 (Approximate Passive Subspace) Let U0
p = R

N , U0
a = {0} and d0 = 0. Then

iterate for k = 1, 2, . . .

1. Sample ηk as a random vector with probability density ρ(·).
2. Compute ∇Q(ηk).
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3. If condition (4) is satisfied for ∇Q(ηk) with Uk−1
p , Uk−1

a , then use Uk
p = Uk−1

p and Uk
a =

Uk−1
a and increment dk = dk−1 + 1.

4. If condition (4) is not satisfied, let H be the matrix with columns {ηi}ki=1, then define Uk
a to

be the space spanned by the dominant left singular vectors of H associated with the singular
values with magnitude more than ε. Let dk = 0.

5. If dk is sufficiently large, stop the iteration and use projection (3) with Ua = Uk
a and Up = Uk

p

to reduce the dimension of the problem.

Note that step 4 is contingent upon the choice of ρ(·). For a more complex probability distribution,

the condition may have to be modified. Algorithm 1 is a probabilistic approach with non-zero

probability of failure. Let ek be the error associated with projection (3) at step k, then we get the

following two bounds:

Theorem 2 (Probability of Failure) There exists a sequence {mk} with 0 ≤ mk ≤ 1, so that

P (ek > ε) ≤ (1−mk)
dk .

Furthermore, there exists n so that if k < n then mk = 0 and if k ≥ n then mk > 0.

Theorem 3 (Error Distribution) Suppose ek > ε, then the mean and variance of ek are bounded
by:

E[ek − ε] ≤ C

dk + 1
, V [ek − ε] ≤ C2

(dk + 1)2
.

Numerical Results:
We consider the problem of estimating the expected value for the reactor criticality. We discretize

the operators (1) using a uniform grid with M = 1000 nodes, the convection operator is approxi-

mated by finite difference unwinding scheme and φ(x) is approximated by a 4 point quadrature on

the unit disk. The resulting problem has 4× 1000 = 4000 degrees of freedom with the dimension

N = 3× 1000 = 3000 for the uncertain domain.

Using spacial discretization of 1000 points, the size of the problem is small enough to allow us

to compare the results from Algorithm 1 to Monte Carlo sampling applied to the full order model.

In Figure 2 we see the three modes associated with each type of nuclear reaction. We see that the

problem is most sensitive with respect to the uncertainty in the capture and fission cross sections

at the locations of the fuel and control rods.

Using 1.2 × 104 samples, we compute the expected value of k to be 1.0003, i.e. the reactor is

critical to within numerical error. Since the our numerical scheme is first order in space, we only

consider three digits of accuracy. Let ε = 10−3 and apply Algorithm 1. The results are shown

in table below. This example illustrate the advantage of applying this technique to the CASL

challenge problem described above. Here we are able to approximate the N = 3000 dimensional

problem by using an active subspace of dimension 3 and approximate (2) accurately with only 50

MC samples.
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Figure 2: The three modes of U50
a associated with the scatter (left), capture (center) and fission

(right) cross-sections.

Model type E[Q(·)] Dimension # samples

Full order 1.0003 3000 1.2e+ 4
ROM 1.0001 3 50
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Appendix: 
We discuss here the construction of both first- and second-order sample matrices as well 
as how to calculate the first- and second-order effects using the sampling matrices. 
 
We first illustrate the construction of a level  sampling matrix for -th dimensional 
factor vector . Here  is a positive integer, and ’s are integers on the interval 

. A linear mapping will map  to the actual variables  in the function ; 
e.g., , where  and  are respectively the lower bound 
and upper bound of  . Note that our goal is to construct a matrix  has dimensions 

 and there are two rows that differ only in their -th entries for . 
1. Construct a matrix : strictly lower triangular of one’s with size .  

 

2. Select the increment  for the components of . is a positive integer and 
. Morris (Morris, 1991) suggests taking . 

3. Randomly pick a starting vector from set . 
4. Define a matrix , -dimensional diagonal matrix of integers, whose elements are 

selected from the set {-1,1} with equal probability. 
5. Calculate : , where  is a  

matrix of one’s,  is a  random permutation matrix, i.e., a matrix obtained by 
randomly permuting columns of a  identity matrix. 

 
To evaluate in step 2 of  Algorithm 1, let the -th row of  be 

 which is different from the -th row of  only at -th 
entry; i.e., . Then the first-order elementary effect for the -
th component is defined as 

 

Inspired by the second-order sampling matrix, we construct a level  second-order 
sampling matrix  with dimensions . Note that  has two rows that differ only in 
their -th and -th entries for . 
1. Construct a matrix : a  matrix that is composed of an  identity 

matrix, and whose first row is 0 and elements  in the first column is 1. 
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2. Define a matrix , -dimensional diagonal matrix of integers, whose elements are 
selected from the set {-1,1} with equal probability. 

3. Calculate : , where  and  are 
defined previously. 

 
To evaluate  in step 4 Algorithm 1, let us assume that the -th row of , 

, is different from the -th row of  only at the -th 
and the -th entries; i.e., .  T hen the second-order 
elementary effect between the -th and the -th components is defined as 
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