
Roger Initial Demonstration of Peregrine in VERA-CS

Consortium for Advanced Simulation of LWRs i CASL-U-2013-0165-000

Fe

Initial Demonstration of
Peregrine in VERA-CS

R. Pawlowski
Sandia National Laboratory

J. Turner
Oak Ridge National Laboratory

S. Palmtag
Core Physics

Robert Montgomery

Pacific Northwest National Laboratory

July 31, 2013

CASL-U-2013-0165-000

Milestone L2:VRI.P7.02

CASL-U-2013-0165-000 ii Consortium for Advanced Simulation of LWRs

Oak Ridge National Laboratory

in partnership with

Electric Power Research Institute
Idaho National Laboratory
Los Alamos National Laboratory
Massachusetts Institute of Technology
North Carolina State University
Sandia National Laboratories
Tennessee Valley Authority
University of Michigan
Westinghouse Electric Company

and individual contributions from

Anatech Corporation Pacific Northwest National Laboratory
ASCOMP GmbH Pennsylvania State University
CD-adapco, Inc Rensselaer Polytechnic Institute
Core Physics, Inc. Southern States Energy Board
City University of New York Texas A&M University
Florida State University University of Florida
Notre Dame University University of Tennessee
Imperial College London University of Wisconsin

Roger Initial Demonstration of Peregrine in VERA-CS

Consortium for Advanced Simulation of LWRs iii CASL-U-2013-0165-000

REVISION LOG

Revision Date Affected Sections Revision Description

Draft 07/27/2013 All Initial version (draft)

5 07/30/2013 Many
Typos, formatting, incorporated feedback from Rob
Montgomery and Kevin Clarno, updated Fig. 3-1,
additional references

7 07/31/2013 All

Added Rob Montgomery as author, added DRAFT
watermark, changed PEREGRINE back to Peregrine
everywhere, added further discussion of results and
future work

9 08/01/2013 Summary
additional “future work” items, plus formatting and
content of headers and footers

Roger Initial Demonstration of Peregrine in VERA-CS

Consortium for Advanced Simulation of LWRs iii CASL-U-2013-0165-000

EXECUTIVE SUMMARY

This milestone demonstrates integration of the MOOSE-based Peregrine fuel performance code into the
CASL Virtual Environment for Reactor Analysis (VERA). Specifically targeted at VERA’s core simulator
functionality (VERA-CS), the existing VERA subchannel-neutronics capability based on COBRA-TF (CTF) and
Insilico was extended to use the axisymmetric 2D R-Z fuel rod modeling functionality of PEREGINE to replace
the simple fuel rod model in CTF. This three-way coupling involved defining and implementing data
interfaces, software infrastructure development to support the requirements of each code, and numerical
methods to implement the coupled physics. The result is a new VERA capability known as Tiamat.

Development of Tiamat required extensions to the VERA build system to support a “meta build” that uses
the MOOSE/libMesh/Peregrine native build system, development of a new driver layer designed to support
long-term CASL code integration requirements, and implementation of data transfers for the coupled
applications using the DataTransferKit (DTK).

Peregrine is now compiled and tested under the VERA continuous integration server. Tiamat, a new
advanced simulation tool consisting of three coupled codes - CTF for multiphase subchannel flow, Insilico for
neutronics and Peregrine for fuels performance - has been developed. Tiamat was used to simulate a 17x17
assembly model for Watts Bar Unit 1 Cycle 1, which exceeds the goals of this milestone.

Milestone L2:VRI.P7.02

CASL-U-2013-0165-000 iv Consortium for Advanced Simulation of LWRs

CONTENTS

EXECUTIVE SUMMARY .. iii

ACRONYMS .. v

LIST OF FIGURES .. vi

LIST OF TABLES ... vii

1. Introduction..2

2. Coupled Physics Design ..3

2.1 Participating Physics Components .. 3

2.1.1 COBRA-TF (CTF) .. 3

2.1.2 Insilico (Denovo/XSProc) .. 4

2.1.3 Peregrine .. 4

2.2 Solution Algorithm and Code Coupling ... 6

2.2.1 Data Transfers .. 6

2.2.2 Solution Procedure ... 7

3. Software Integration ..9

3.1 Build System Integration ... 9

3.2 Development Process .. 11

3.3 Multiphysics Distributor .. 11

4. Test Problem Description .. 13

5. Results ... 16

6. Summary ... 20

7. References ... 21

Roger Initial Demonstration of Peregrine in VERA-CS

Consortium for Advanced Simulation of LWRs v CASL-U-2013-0165-000

ACRONYMS

AMA Advanced Modeling Applications
CASL Consortium for Advanced Simulation of Light Water Reactors
CTF COBRA-TF
DOE U.S. Department of Energy
DOE-NE U.S. Department of Energy Office of Nuclear Energy
DTK Data Transfer Kit
FA Focus Area
HFP Hot Full Power
HPC high-performance computing
HZP Hot Zero Power
INL Idaho National Laboratory
LANL Los Alamos National Laboratory
LWR light water reactor
MPO Materials Performance and Optimization
ORNL Oak Ridge National Laboratory
PCI pellet-cladding interaction
PCM percent mille (10-5)
PoR plan of record
PPM parts per million (usually Boron)
PWR pressurized water reactor
RTM Radiation Transport Methods
SNL Sandia National Laboratories
T-H thermal-hydraulics
TPL third-party library
V&V verification and validation
VERA Virtual Environment for Reactor Applications
VRI Virtual Reactor Integration

Milestone L2:VRI.P7.02

CASL-U-2013-0165-000 vi Consortium for Advanced Simulation of LWRs

LIST OF FIGURES

Figure Page

Figure 2-1. 2-D Axisymmetric Finite Element Mesh (FEM) Representation of a Fuel Rod. The red region is fuel
and the blue region is cladding. The radial dimension is scaled by a factor of 200. ...5

Figure 2-2. Graphical depiction of Tiamat data transfers. ...6

Figure 3-1. VERA package architecture. Yellow outlines indicate components used for this milestone. The
MOOSE, libMesh and Peregrine components were integrated into VERA and data transfers between
Peregrine, CTF and Insilico were implemented. ..9

Figure 3-2. Depiction of the MPI communication layers in Tiamat. This example shows 13 communicators in
five layers: (1) global communicator (MPI_COMM_WORLD), (2) Application communicators, (3) DTK
communicators between CTF, Insilico and Peregrine formed by union of application comms, (4) Peregrine
MultiApp communicators for each MultiApp fuel rod formed by subset of Peregrine communicator, (5) DTK
transfer comms between Peregrine MultiApp instance and external coupled code (CTF or Insilico) formed by
union of MultiApp comm and the external code comm. ... 12

Figure 4-1. Fuel Rod Diagram .. 13

Figure 4-2. Assembly Layout Showing Guide Tubes (GT) and Instrument Tube (IT) placement. 14

Figure 5-1. Surface plots of fission rate (from Insilico) and temperature in Peregrine for a selected fuel rod in
the assembly. The plot on the right is scaled to show clad temperatures. .. 16

Figure 5-2. Insilico averaged fuel temperature and fission rate. .. 17

Figure 5-3. Comparison of Tiamat vs. CTF+Insilico coupled capability. .. 17

Figure 5-4. Comparison of pin averaged temperatures in assembly for coarse and fine Peregrine mesh. 19

Roger Initial Demonstration of Peregrine in VERA-CS

Consortium for Advanced Simulation of LWRs vii CASL-U-2013-0165-000

LIST OF TABLES

Table Page

Table 4-1. Fuel Rod and Guide Tube Descriptions .. 14

Table 4-2. Assembly Specification... 15

Table 4-3. Nominal Thermal-Hydraulic Conditions ... 15

Table 5-1. Changes to the Peregrine input file to achieve convergence on the fine mesh. 18

Table 5-2. Timing statistics for the coupled 17x17 assembly simulation. .. 18

CASL-U-2013-0165-000 2 Consortium for Advanced Simulation of LWRs

1. Introduction

This report documents the completion of Milestones L2:VRI.P7.02 “Initial Demonstration of Peregrine
Integration in VERA-CS” and L3:VRI.PSS.P7.04 “Initial CTF + Insilico + Peregrine Capability”. The L2 was formerly
listed as L2:MPO.P7.01, but as the milestone progressed, it was reassigned to VRI since the majority of work
consisted of software development performed by VRI staff. The milestone L3:VRI.PSS.P7.04 was the VRI
milestone to support the MPO L2, but since taking over ownership of the L2, the L3 milestone has been
subsumed as part of that. Therefore this report covers both milestones.

The purpose of this milestone is to provide an initial capability demonstration to run a coupled calculation with
CTF + Insilico + Peregrine. Completion criteria of the Level 2 Milestone required the capability to run a coupled
CTF+Insilico+Peregrine calculation for a 17x17 PWR single-assembly problem. Problem #6 of the challenge
problem progression [1] was used for this calculation.

Since the goal was a demonstration, there are many open questions that are identified for follow on PoRs to
transform this demonstration into a “production quality” tool.

In Section 2 of this report, a description of the overall code design is described. This section covers a description
of the applications, the solution algorithms for each code and a description of how code is transferred between
applications. Section 3 provides information on the software integration effort required in the development of
the coupled code system. Section 4 contains a description of the test problem used in this Milestone. Section 5
presents the results and discussion of the test problem. Section 6 provides a summary.

This Milestone was a large project and involved the hard work of many people, including (in alphabetical order):

• Roscoe Bartlett, ORNL
• Kenneth (Noel) Belcourt, SNL
• Kevin Clarno, ORNL
• Greg Davidson, ORNL
• Tom Evans, ORNL
• Derek Gaston, INL
• Jason Hales, INL
• Russell Hooper, SNL
• Wenfeng Liu, ANATECH
• Robert Montgomery, PNNL
• Scott Palmtag, Core Physics Inc
• Roger Pawlowski, SNL (Milestone Lead)
• Robert Salko, Penn State University
• Rod Schmidt, SNL
• Dion Sunderland, ANATECH
• John Turner, ORNL

Consortium for Advanced Simulation of LWRs 3 CASL-U-2013-0165-000

2. Coupled Physics Design

This section describes the overall design of the coupled code in VERA and the individual applications used in the
coupling. The coupled code is called “Tiamat”, named for a multi-headed dragon tracing back to Babylonian
mythos. The mulitheaded nature was to reflect that this coupled driver will allow for simple extension to
additional physics and couplings. Section 2.1 describes the individual physics components. Section 2.2 describes
the solution procedure and data transfers for the coupled system.

2.1 Participating Physics Components

For this part of the Milestone, three physics application codes are coupled together. All neutronic aspects of the
problem (cross-section calculation, neutron transport, power generation) are solved using the Insilico code suite
[2,7]. The thermal hydraulics duties are split between solving for energy conservation in the fuel rods by
Peregrine [11,12] and energy conservation of the coolant fluid is performed by COBRA-TF [3]. Furthermore,
coupling with Peregrine extends the capability to include fuel rod structural mechanics with irradiation effects of
materials. The coupling of these codes to create a single-executable multiphysics coupled-code application is
done using the VERA infrastructure tool called the Data Transfer Kit (DTK) [5].

2.1.1 COBRA-TF (CTF)

COBRA-TF (CTF) is a thermal-hydraulic simulation code designed for Light Water Reactor (LWR) analysis [3]. CTF
has a long lineage that goes back to the original COBRA developed in 1980 by Pacific Northwest Laboratory
under sponsorship of the Nuclear Regulatory Commission (NRC). The original COBRA began as a thermal-
hydraulic rod-bundle analysis code, but subsequent versions of the code have been continually updated and
expanded over the past several decades to cover almost all of the steady-state and transient analysis of a both
PWR’s and BWR’s. CTF is being developed and maintained by the Reactor Dynamics and Fuel Management
Group (RDFMG) at the Pennsylvania State University (PSU).

CTF includes a wide range of thermal-hydraulic models important to LWR safety analysis including flow regime
dependent two-phase wall heat transfer, inter-phase heat transfer and drag, droplet breakup, and quench-front
tracking. CTF also includes several internal models to help facilitate the simulation of actual fuel assemblies.
These models include spacer grid models, a pin conduction model, and built-in material properties.

CTF uses a two-fluid, three-field representation of the two-phase flow. The equations and fields solved are:

• Continuous vapor (mass, momentum and energy)
• Continuous liquid (mass, momentum and energy)
• Entrained liquid drops (mass and momentum)
• Non-condensable gas mixture (mass)

Some of the reasons for selecting CTF as the primary T/H solver in the VERA core simulator is the reasonable
run-times compared to CFD (although CFD will be available as an option), the fact that it is being actively
developed and supported by PSU, and for the ability to support future applications such as transient safety
analysis and BWR and SMR applications.

CASL-U-2013-0165-000 4 Consortium for Advanced Simulation of LWRs

CTF is a control volume code that enforces conservation between volumes. The application code is a steady
state solution. Internally it uses a pseudo transient solver to achieve convergence. The interface to the code
allows the Tiamat driver to request a solve for a specific steady-state. Therefore each call by the driver to solve
for a steady state internally runs a pseudo transient solve.

2.1.2 Insilico (Denovo/XSProc)

Insilico is one of the neutronics solvers in the VERA Core Simulator and is part of the Exnihilo transport suite
being developed by ORNL. Insilico is the reactor toolkit package of Exnihilo and includes the reactor toolkit
modules used for meshing of PWR geometry, and the cross section generation package based on XSProc. Insilico
uses the Denovo deterministic transport code [2,7] to solve for the flux and eigenvalue solutions for the 3D
problem using either the discrete ordinates (SN) solver or the Simplified Legendre (SPN) solver. Exnihilo also
includes the SHIFT Monte Carlo transport package, but SHIFT is not used in this study.

Multigroup cross sections are generated in Insilico using the XSProc, a capability available in the SCALE system
[10]. XSProc performs resonance self-shielding with full range Bondarenko factors using either the narrow
resonance approximation or the intermediate resonance approximation. The fine energy group structure of the
resonance self-shielding calculation can optionally be collapsed to a coarse group structure through a one-
dimensional (1D) discrete ordinates transport calculation internal to XSProc. For all of the calculations in this
study, the fine energy group structure was collapsed to a 8-group coarse group structure to be used in the
Denovo transport solver.

The cross section library used in this study was the SCALE 6.2 252 group ENDF/B-VII.0 neutron cross section data
library. This library contains data for 417 nuclides and 19 thermal-scattering moderators.

For coupled calculations, both the SN and SPN solvers have been used and tested. However, all of the results in
this report were generated with the SPN solver.

The Insilico code solves for the leading eigenvalue at a single steady state. The interface allows the driver code
to request a solve for a specific steady-state.

2.1.3 Peregrine

The Peregrine fuel performance code is being developed by CASL to provide a single rod 3-dimensional fuel
performance modeling capability to assess safety margins, and the impact of plant operation and fuel rod design
on the thermo-mechanical behavior, including Pellet-Cladding Interaction (PCI) failures in PWRs [11,12]. PCI is
controlled by the complex interplay of the mechanical, thermal and chemical behavior of a fuel rod during
operation, and therefore modeling PCI requires an integral fuel performance code to simulate the fundamental
processes of this behavior.

The focus of the Peregrine is to establish a modern computational framework based on the finite element
method to represent the geometric domains of a single nuclear fuel rod composed of UO2 ceramic pellets
contained within a Zircaloy tube. The Peregrine framework consists of a numerical representation of the heat
conduction and the equilibrium mechanics equations, which are coupled via the temperature and displacement
variables. A material property and constitutive model library has been incorporated into the framework that
allows for thermal, mechanical, and chemical property models and irradiation effects models, such as fission

Consortium for Advanced Simulation of LWRs 5 CASL-U-2013-0165-000

product-induced swelling or irradiation creep to be utilized and modified easily. Finally, the framework allows
for versatile time marching algorithms to capture the different temporal regimes associated with fuel
performance, such as burnup accumulation over several years followed by a rapid power ramp over several
minutes.

Peregrine is built upon INL’s MOOSE/ELK/FOX structure/architecture, which is also common to the BISON code
[8]. This code architecture uses the finite element method for geometric representation and MOOSE uses a
Jacobian-free, Newton-Krylov (JFNK) scheme to solve systems of partial differential equations [9]. While the
MOOSE framework can solve either steady state or transient problems, the Peregrine application is a transient
code since the material models contain time dependent quantities.

For this milestone, the fuel rod geometric representation in Peregrine was a 2D R-Z axially-symmetric smeared
pellet model. The mesh is shown in Figure 2-1.

Figure 2-1. 2-D Axisymmetric Finite Element Mesh (FEM) Representation of a Fuel Rod. The red region is fuel
and the blue region is cladding. The radial dimension is scaled by a factor of 200.

Peregrine is accessed using the MOOSE MultiApp capability. A separate instance of Peregrine is built for each
fuel rod and the applications are solved uncoupled from each other via the MultiApp interface (but coupled to
the otheapplication components – CTF and Insilico). Currently the interface supports a “take step” command
where the MultiApp is given a time step and attempts to solve each individual fuel rod application separately.
Peregrine is a thermo-mechanical code that commutes the thermal expansion, elastic deformation, and cracking
of the cladding and pellet in response to the energy generation (heat) and mechanical forces. The interaction of
the temperature solution and the mechanical solution is non-linear due to the complex dependency of the
material properties on temperature, stress, and strain. As a result, Peregrine must model the heatup of a fuel
rod from zero power to full power to appropriately account for these non-linearities. For the coupled solve,
Peregrine was ramped to hot full power (HFP) and then was solved coupled to the other codes using a small

CASL-U-2013-0165-000 6 Consortium for Advanced Simulation of LWRs

time step that allowed the code to equilibrate under iteration with the other codes. As the MultiApp is under
development we expect the interface to be extended to allow for a more consistent fully implicit approach.

2.2 Solution Algorithm and Code Coupling

2.2.1 Data Transfers

To couple the codes, data must be passed between each code. Figure 2-2 shows the data transfers between
each code.

Figure 2-2. Graphical depiction of Tiamat data transfers.

There are five data transfer objects implemented in Tiamat for this capability. All data transfers had to account
for parallel communication patterns, unit conversions, pin axis orientation and active fuel offset height. The Data
Transfer Kit (DTK) was used for determining the parallel communication mappings and for moving all data
between codes. As part of this procedure, DTK performs an intersection search for target coordinate points in
source geometry representations. A very valuable benefit was that if a target point was not found in the source
geometry, it was recorded and reported. This was critical in tracking down misaligned meshes and coordinate
transformation issues between codes. At runtime, if a user makes a mistake in specifying the geometry/mesh
information, DTK will help to catch this. All three codes used different unit systems that needed to be converted
during data transfers. CTF used English units, Insilico used a mix of CGS and MKS units and Peregrine used MKS
units. Pin axis alignment deals with with direction that the fuel rod axis was oriented. The CTF and Insilico codes
align the pin axis in the z direction in three dimensional Cartesian coordiantes, but Peregrine used a 2D axially
symmetric R-Z model internally and therefore aligned the pin axis on the second coordinate index. In the
MOOSE MultiApp DTK interface, an internal translation from 2D cylindrical to 3D Cartesian coordinates is
provided, but it keeps the pin aligned in the second coordinate direction (y direction in catesian). Therefore
when implementing data transfers involving Peregrine, the y and z coordinates of the target coordinate point
vector had to be swapped before passing to the DTK detection algorithm. Each code additionally had a different
height at which the active fuel region starts. Each code solves for certain physics above and below the active fuel

transfer

Consortium for Advanced Simulation of LWRs 7 CASL-U-2013-0165-000

region. Therefore each transfer had to be aware of and adjust coordinates for DTK so that the active fuel regions
were aligned between codes during the source/target intersection search.

The two data transfers between CTK and Peregrine are essentially surface transfers at the cladding interface.
CTF solves for energy conservation in the fluid and Peregrine solves for energy conservation in the fuel pins. CTF
provides heat transfer conditions (coolant temperature and heat transfer coefficients) at the fuel pin cladding
outer surface and Peregrine provides a temperature at the same surface (in the future, this should include heat
flux for transient simulations). Both transfers use the DTK source volume maps where the source code declares
a geometric volume where it can evaluate points and the target code declares the coordinates of where it
requires field values. In the Peregrine to CTF transfer, a single field, temperature, was transferred. MOOSE post
processing was used to evaluate average clad surface temperatures over axially divided regions. Users can
specify the number of regions in the input file. In the CTF to Peregrine transfer, four fields were transferred – the
coolant liquid average temperature, the coolant vapor average temperature, the coolant liquid heat transfer
coefficient and the coolant vapor heat transfer coefficient. The values were average values computed over the
four quarter channel control volumes that surround a particular pin. As part of this milestone, a new Neumann-
type boundary condition was written for Peregrine that used the four transferred quantities to compute and
apply a heat flux on the clad surface boundary of the finite element mesh.

The two data transfers between Insilico and Peregrine are volume to volume transfers. Both transfers use the
source volume map from DTK. The data transfer from Peregrine to Insilico moves temperature values into
Insilico. MOOSE post processing was used to evaluate average volumetric fuel pin temperatures over axially
divided regions. Users can specify the number of regions in the Peregrine input file. The Insilico to Peregrine
data transfer maps the fission rate to quadrature points in the Peregrine finite element mesh.

When transferring data to Peregrine, the MultiApp interface was used to connect to DTK. Any data pushed into
the MOOSE framework was stored in MOOSE Auxiliary Variables. Therefore, all Peregrine kernels needed to be
able to access auxiliary variables. This worked for everything but the fast neutron flux. Therefore this quantity
used a user supplied linear profile. In a future PoR, the MOOSE kernels will need to be modified to account for
this and Insilico will need to be modified to provide it.

The final data transfer was a single transfer from CTF to Insilico. Since a coupled driver for coupled CTF/Insilico
exists [13], this structure was reused for the three code coupling in this milestone. The transfer maps the
coolant temperature and density from CTF to Insilico. During the initialization phase, it additionally maps an
initial guess for the fuel pin temperatures to Insilico.

Note that the use of DTK means that all data transfers are done directly in memory between MPI processes.
There is no file I/O or writing to disks for data transfers.

2.2.2 Solution Procedure

A challenging aspect of this problem is that the different physics associated with these codes are strongly
coupled and nonlinear. By strongly-coupled we mean that the quantities calculated in each physics component
and passed to the other have a significant impact on the physical quantities computed in other physics
components. To solve the coupled system, a simple block-Jacobi fixed-point (FP) iteration used. In this method,

CASL-U-2013-0165-000 8 Consortium for Advanced Simulation of LWRs

each code is solved concurrently in its own MPI process space using data from the other coupled codes at the
previous iterate. The procedure follows:

While not converged
 Transfer data between codes
 Apply relaxation
 Solve each code concurrently
 Check for convergence
End while loop

An advantage of this scheme is that if the codes are load balanced, each can run in its own process space at the
same time, maximizing the process utilization. Separating each component into its own MPI process space also
helps to mitigate potential memory issues. Currently, CTF is a serial code and if a full core is run on one process,
the memory footprint will be large. If a block Gauss-Seidel were used in this case and all applications exist on
every process, there is a concern that memory requirements could exceed available memory on some platforms
as we scale to full core. The design of Tiamat allows switching between both Jacobi and Gauss-Seidel algorithms.
In addition, a parallel implementation of CTF is in development.

The overall execution is to perform an initialization phase to bring all codes to hot full power (HFP) conditions
and then perform the block Jacobi FP iteration between the codes until convergence. The initialization phase
starts with a solve of CTF. On this first solve, we use a CTF internal model for the fuel rod energy conservation
and neutronics so that is can be solved stand-alone for the starting conditions. Once this model is solved, CTF
transfers the coolant temperatures and density and the fuel temperatures to Insilico. Then an Insilico steady
state solve is performed using the CTF data. Once Insilico is converged, the data required for Peregrine is
transferred from both CTF and Insilico to Peregrine. These HFP conditions are approximate and sometimes cause
startup problems for Peregrine. Delaying this transfer did not ease the difficulty. Given the time constraints,
startup pathways were not explored in detail and requires further investigation in future PoRs. Most likely a
scaled ramping of the Insilico power when transferred to Peregrine will fix this issue. For this demonstration,
Peregrine is ramped over 2 days from zero to HFP conditions. Once this is achieved, the initialization phase ends.

The solve phase iterates using block Jacobi FP until convergence. A limitation here is that the control over the
MOOSE MultiApp does not allow for multiple iterates or Peregrine “solves” to be performed at each time step.
Thus we cannot perform a fully implicit solve of the system at each time step. Given that the transients are very
long, we make an assumption of pseudo-steady state and use a very small time step in the MOOSE solve call and
iterate over multiple small time steps at HFP to achieve a “steady state” solution at HFP. In future PoRs, an
extension of the MOOSE MultiApp interface to allow for this will be required. Once the solve for a fully implicit
time step exits, a study can assess any error in the pseudo steady state assumption.

Consortium for Advanced Simulation of LWRs 9 CASL-U-2013-0165-000

3. Software Integration

Tiamat, which is loosely-based on the existing VERA CTF+Insilico capability, serves as the driver for the coupled
CTF+Insilico+Peregrine capability. It extends the CTF+Insilico coupling to allow separation of Insilico processes
from the (currently serial) CTF process.

Figure 3-1 shows the VERA package architecture. The components involved in this milestone are highlighted in
yellow. In order to integrate Peregrine into VERA, Peregrine, MOOSE and libMesh all had to be incorporated into
the build system. Then data transfers had to be implemented between each component in the coupling.

Figure 3-1. VERA package architecture. Yellow outlines indicate components used for this milestone. The
MOOSE, libMesh and Peregrine components were integrated into VERA and data transfers between

Peregrine, CTF and Insilico were implemented.

3.1 Build System Integration

The precedence in CASL up to this point was to have all integrated codes support the TriBITS build system. If
MOOSE/libMesh were made full TriBITS packages, then this would have been a simple integration. However
libMesh and MOOSE are both big projects and have many existing users with various funding sources. CASL is
just one of many users and can’t force them to change (even if it would make our life easier). Therefore we
needed to use their native build system. To support the native build systems, we had to develop new capability
in TriBITS.

CASL-U-2013-0165-000 10 Consortium for Advanced Simulation of LWRs

Significant effort went into supporting the native MOOSE/LibMesh build systems. Getting MOOSE/Peregrine to
build under TriBITS was not an easy task. MOOSE/Peregrine is built on top of the libMesh library and leverages
its build system. libMesh uses Autotools and Moose adds raw makefiles on top of this. libMesh has optional
dependencies on Trilinos and if we couple to Moose, it also has a required dependency on Data Transfer Kit.
Therefore, we couldn't just build Moose and LibMesh as static TPLs. The configure requirements for libMesh
forced us to build and configure Data Transfer Kit and Trilinos (which are configured and built as part of VERA)
before configuring libMesh. This is creates a circular dependence between build systems! To break this cycle,
we had to add the capability to TriBITS to call out to external configure/build systems during the VERA
configure/build. This required significant work to add a new capability into TriBITS. The result is that TriBITS is
now truly a “meta build system” and this new capability will be leveraged for future work. The DAKOTA team is
planning to use this capability and we expect that for Hydra couplings it may be needed for handling the
Trilinos/ML/PETSc dependencies.

Here is a list of work performed in developing the build system:

• Developed a new VERA package called CASL_MOOSE that wraps the Moose/libMesh configure/build
system and performs the configure/build inline as part of a VERA build. This required writing new
commands to get dependency logic and external calls to perform correctly. This is a new capability for
TriBITS and can provide a blueprint for any future couplings for packages that don't support a native
TriBITS build.

• Changed the export makefile system to write the export makefiles inline during the configure process.
The Moose/libMesh configure uses the TriBITS/Trilinos export makefiles for its Trilinos and DTK
dependencies. This required changes to core TriBITS functionality and had to be tested thoroughly so as
to not disrupt all of CASL and Trilinos users and developers.

• Moose is usually the terminal application or top level so there is no "install" target. Therefore, to treat
Moose as a library, we needed to figure out the include header paths, the library paths, the libraries to
link against and the correct order to list these libraries on the link line. TriBITS provides this information
in the form of cmake configure files and raw "export" makefiles. Since Moose does not, we had to do
manual introspection of the Peregrine build and link commands and automate using python scripts
where possible. At this point if the libraries required are changed, this will have to be fixed manually. A
follow-up PoR items would be for the Moose library to provide the equivalent of a TriBITS export
makefile for MOOSE. Then the whole update process could be automated. To date we have updated
CASL’s version of MOOSE twice (pushing over 1000 new commits each update) and had no issues in
updating library dependencies.

• Patched MOOSE to disable c++11 support. This is hard coded in the libMesh configure files to
automatically be enabled if the compilers are gnu and the version is 4.4 or above. VERA does not allow
c++11 yet and this caused inconsistent builds when using c++11 aware headers. Adding a configure flag
to libMesh to disable this feature has been requested.

• Edit the generated export makefiles in the CASL_MOOSE package so that they would compile with
Moose. Some of this was due to the FindQT module injecting bad parameters into the link line for the
export makefiles. We know how to work around this via configure options or string replaces on the
export makefiles during the TriBITS make process. But it would be great to remove Qt dependence in

Consortium for Advanced Simulation of LWRs 11 CASL-U-2013-0165-000

VERA. This is brought in by SCALE. Elimination of QT requirement would also be very helpful in porting
VERA to new platforms.

• There were some other minor issues such as having to set environment variables for libMesh to
configure correctly and adding links between directories so that the libMesh autotools configure could
detect the correct headers but that was easily handled by TriBITS.

• We encountered significant issues in global variable collisions between packages. This is a common
problem due to with packages that do not protect their classes and functions within unique
“namespaces” . A significant amount of time had to be devoted to identification of the collisions and
coordination with the corresponding application teams to address the issues.

Currently, Tiamat is compiling and is part of the VERA Continuous Integration (CI) testing. Long term, a number
of issues will need to be addressed. These are documented in VRI Kanban ticket #2966 and will require effort on
part of both the VRI and MOOSE teams.

3.2 Development Process

As part of this milestone, a new moose application was constructed to allow for unit testing of the data transfers
to/from MOOSE. The application allows for injecting new MOOSE kernels into any pre-existing MOOSE
application. These kernels formed the basis of fast running unit tests so that developers could quickly get turn
around during development. This additionally allowed us to simplify the physics and rule out complicating issues
when dealing with the real system. For example, in the first tests of transferring data to MOOSE, we used a
mock Peregrine input file for MOOSE that solved a simplified heat transfer in a uniform pin/clad with no thermo-
mechanical interaction. Without the ability to isolate specific code capabilities and work on manageable chunks,
it would have been impossible to couple the codes and have any confidence in results.

The integration process proceeded in small steps that successively added capability. To be able to develop and
test code quickly, a series of small problems were added for system and unit level testing. The system level
started with the small single pin 8 group problem in the VERA Input driver for CTF and Insilico physics, modified
to be extremely fast for development turn around. The MOOSE input file was the simple heat transfer kernel
with no complicating physics. Once all transfers were implemented and tested on the single pin, testing
progressed to the 3x3 case. This again was taken from the VERA Input driver for CTF and Insilico and used the
simple mock driver for Peregrine. Once the data transfers were verified in this manner, the next set of single and
3x3 tests were rerun using the true Peregrine input file. The transition from mock to real Peregrine input
allowed for the identification of issues that were physics/discretization specific vs. software implementation. We
stress again that had the mock test not been done, debugging of true issues would have been difficult.

Once the 3x3 was running reliably the actual 17x17 Benchmark Problem 6 run was performed.

3.3 Multiphysics Distributor

As mentioned earlier, the Tiamat work has developed tools to assist in splitting applications into unique MPI
process spaces. A utility object in Tiamat called a multiphysics distributor was written to handle building the
various communicators. Five levels of MPI communicators were needed to create the coupled driver for block
Jacobi. Figure 3-2 shows the MPI distribution.

CASL-U-2013-0165-000 12 Consortium for Advanced Simulation of LWRs

The code builds the standard MPI_COMM_WORLD global communicator. The next level splits
MPI_COMM_WORLD into three separate process spaces, one for each application. In the final demonstration
run of the 17x17 assembly, CTF is given one process, Insilico is given 36 processes and Peregrine is given 17
processes. The third level of comunicators are the data transfer communicators that are formed from the union
of the applications involved in the data transfer. This creates 3 additional communicators. As discussed
previously, MOOSE creates multiple instances of fuel rods using the MultiApp capability. Each MultiApp is
assigned a subset of the processes contained in the MOOSE communicator. The fourth level (not shown in figure
3-2 are the MultiApp comms. These are internal to the moose MultiApp and not handled of created by Tiamat.
The fifth level of communicators are the data transfer between the MultiApp and either CTF or Peregrine. This
is formed from the union of the particular MultiApp communicator and either the CTF or Insilico communicator.

Figure 3-2. Depiction of the MPI communication layers in Tiamat. This example shows 13 communicators in
five layers: (1) global communicator (MPI_COMM_WORLD), (2) Application communicators, (3) DTK
communicators between CTF, Insilico and Peregrine formed by union of application comms, (4) Peregrine
MultiApp communicators for each MultiApp fuel rod formed by subset of Peregrine communicator, (5) DTK
transfer comms between Peregrine MultiApp instance and external coupled code (CTF or Insilico) formed by
union of MultiApp comm and the external code comm.

Application distribution and communicator construction is handled via the MultiphysicsDistributor object in
Tiamat. Note that this object is not tied to any communicator and can be used to create multiple recursions to
build nested hierarchical systems.

Consortium for Advanced Simulation of LWRs 13 CASL-U-2013-0165-000

4. Test Problem Description

The example problem used in this Milestone is a PWR single assembly based on the dimensions and state
conditions of Watts Bar Unit 1 Cycle 1. The dimensions for this problem are identical by AMA Progressive
Benchmarks “Problem 3” [1] and “Problem 6”. Problem 6 is at Hot Full Power (HFP) and includes T/H feedback.
See the milestone report for L3.AMA.VDT.P6.03, “Coupled Single Assembly Solution with VERA (Problem 6)” for
more details [13].

The assembly is a standard 17x17 Westinghouse fuel design with uniform fuel enrichment. There are no axial
blankets or enrichment zones. The assembly has 264 fuel rods, 24 guide tubes, and a single instrument tube in
the center. There are no control rods or removable burnable absorber assemblies in this problem.

The primary geometry specifications of the fuel rod and guide tube materials are given in Figure 4-1 and Table 4-
1. The geometry specification for the assembly is given in Figure 4-2 and Table 4-2. For a complete description of
the geometry, including spacer grid and nozzle specifications, refer to Reference [1]. The thermal-hydraulic
specifications for this problem are shown in Table 4-3.

Figure 4-1. Fuel Rod Diagram

All dimensions in Figure are in inches
Figure from Reference [14], Figure 4.2-3

CASL-U-2013-0165-000 14 Consortium for Advanced Simulation of LWRs

Table 4-1. Fuel Rod and Guide Tube Descriptions

Parameter Value Units

Fuel Pellet Radius 0.4096 cm
Fuel Rod Clad Inner Radius 0.418 cm
Fuel Rod Clad Outer Radius 0.475 cm
Guide Tube Inner Radius 0.561 cm
Guide Tube Outer Radius 0.602 cm
Instrument Tube Inner Radius 0.559 cm
Instrument Tube Outer Radius 0.605 cm
Outside Rod Height 385.10 cm
Fuel Stack Height (active fuel) 365.76 cm
Plenum Height 16.00 cm
End Plug Heights (x2) 1.67 cm
Pellet Material UO2
Clad / Caps / Guide Tube Material Zircaloy-4

Figure 4-2. Assembly Layout Showing Guide Tubes (GT) and Instrument Tube (IT) placement.

Consortium for Advanced Simulation of LWRs 15 CASL-U-2013-0165-000

Table 4-2. Assembly Specification

Parameter Value Units

Rod Pitch 1.26 cm
Assembly Pitch 21.5 cm
Inter-Assembly Half Gaps 0.04 cm
Geometry 17x17
Number of Fuel Rods 264
Number of Guide Tubes (GT) 24
Number of Instrument Tubes (IT) 1

Table 4-3. Nominal Thermal-Hydraulic Conditions

Parameter Value Units

Inlet Temperature 559 degrees F
System Pressure 2250 psia
Rated Flow (100% flow) 0.6824 Mlb/hr
Rated Power (100% power) 17.67 MWt

CASL-U-2013-0165-000 16 Consortium for Advanced Simulation of LWRs

5. Results

A simulation of the full assembly 17x17 Benchmark problem 6 was successfully completed. The run was
performed using 54 cores of the boris machine at ORNL. The multiphysics distributor assigned one core to CTF,
thirty six cores Insilico and the remaining 17 cores to Peregrine.

After ramping to HFP, the Jacobi fixed-point solve took 32 iterations to converge. The entire simulation took 11
hours to complete. This is a fairly high number of iterations and is most likely attributed to the convergence
criteria currently being used. A follow on in future PoRs would be a sensitivity analysis of individual code
convergence criteria metrics. Both accuracy and efficiency should be explored.

Figures 5-1 and 5-2 show the solution profiles output by the individual application codes.

Figure 5-1. Surface plots of fission rate (from Insilico) and temperature in Peregrine for a selected fuel rod in
the assembly. The plot on the right is scaled to show clad temperatures.

Consortium for Advanced Simulation of LWRs 17 CASL-U-2013-0165-000

Figure 5-2. Insilico averaged fuel temperature and fission rate.

Figure 5-3. Comparison of Tiamat vs. CTF+Insilico coupled capability.

CASL-U-2013-0165-000 18 Consortium for Advanced Simulation of LWRs

A comparison of the average pin temperature values for the Tiamat simulation compared to CTF+Insilico
coupled code is shown in Figure 5-3. Two aspects of this comparison warrant further investigation. One is the
fact that fuel temperatures in Tiamat are consistently higher than those generated by the CTF rod model. This
could be due to the substantial differences in the rod models themselves, boundary condition treatments, or
some combination of effects. A simple test will be to compare simulations without spacer grids, and this will be
performed.

In addition, the apparent location of the spacer grids, corresponding to dips in the fuel temperatures, appears to
be shifted between the two models. This could be due to indexing differences between the two models, or
possibly due to differences in averaging over axial zones, but certainly warrants further investigation.

One point of interest is in the performance solution of the problem. On a coarse Peregrine mesh, the simulation
converged quite well. However, when we doubled the number of mesh cells in the axial direction from 24
elements to 48 elements, the simulation encountered difficulty in converging the nonlinear system and many
individual pins reported step failures in the MultiApp. To achieve convergence, the Krylov solver paraemeters
had to be tightened. Table 5-1 below shows the changes to the Peregrine input file that were made.

Table 5-1. Changes to the Peregrine input file to achieve convergence on the fine mesh.

Note that this was not an exhaustive study to fine tune the application for performance, rather it allowed for the
successful convergence of the demonstration problem. As mentioned earlier, in the next PoR a complete
accuracy and sensitivity study on the coupled code convergence should be conducted. Timing statistics were
collected for the coarse and fine mesh simulations and are summarized in table 5-2.

Table 5-2. Timing statistics for the coupled 17x17 assembly simulation.

Consortium for Advanced Simulation of LWRs 19 CASL-U-2013-0165-000

An important point is that the initialization time was significant compared to the fixed point iteration solve time.
Improvements to the Peregrine ramp are being conducted and we expect this time to improve. In moving from
the coarse to the fine mesh, the number of fixed point iterations doubled.

Figure 5-4 compares the average temperature of all pins in the assembly for the coarse and fine Peregrine mesh,
and indicates that, as expected, the fine mesh captures the effect of the spacer grids with less smearing than
the coarse mesh. Further refinement studies are recommended.

Figure 5-4. Comparison of pin averaged temperatures in assembly for coarse and fine Peregrine mesh.

CASL-U-2013-0165-000 20 Consortium for Advanced Simulation of LWRs

6. Summary

The milestone successfully integrated Peregrine into VERA-CS and performed an initial demonstration simulation
of a 17x17 assembly from Watts Bar cycle 1. Improvements to the TriBITS build system were implemented to
support integration, and a new driver (Tiamat) was developed for this capability, and will play a significant role
in the evolution of the VERA coupling strategy.

Recommendations for future work include the following. These are not in any particular order of prioritization,
and include both physics and numerics tasks as well as software/user-oriented features.

• Investigation of the differences in results between the CTF rod model and Peregrine.
• Further study of the effects of refinement of axial zoning.
• Discussion of path forward for coupling strategy.
• Investigation of numerical behavior and optimal settings for relaxation parameters, convergence

criteria, etc.
• Investigate enhancement of MOOSE MultiApp functionality to allow fully implicit solves at each time

step (ability to iterate within a time step and back up if another physics component rejects the current
time step).

• Investigation of load balancing, i.e. the optimal allocation of cores between components.
• Modifications to MOOSE, Insilico, and model evaluators required to communicate fast neutron flux from

Insilico to Peregrine.
• Investigate conservation of data transfers (some of the above modifications are needed prior to this

investigation).
• Investigate and improve the current ramping / startup strategy.
• Implementation of a user-controllable ability to select sets of fuel rods to use the CTF rod model or

Peregrine.
• Integration of the 3D unstructured-mesh version of Peregrine, also for selected rods or regions.

Consortium for Advanced Simulation of LWRs 21 CASL-U-2013-0165-000

7. References

[1] A. T. Godfrey, “VERA Core Physics Benchmark Progression Problem Specifications”, CASL-U-2012-0131-
002, Rev. 2, March 29, 2013.

[2] G.G. Davidson, T.M. Evans, R.N. Slaybaugh, and C.G. Baker, "Massively Parallel Solutions to the k-
Eigenvalue Problem," Trans. Am. Nucl. Soc., 103 (2010)

[3] M.N. Avramova. CTF: A Thermal Hydraulic Sub-Channel Code for LWR Transient Analyses, User’s
Manual, February 2009

[4] R. Schmidt, N. Belcourt, R. Hooper, R. Pawlowski, An Introduction to LIME 1.0 and it’s Use in Coupling
Codes for Multiphysics Simulation, SAND2011-8524, November, 2011.

[5] S.R. Slattery, P.P.H. Wilson and R.P. Pawlowski, “The Data Transfer Kit: A Geometric Rendezvous-Based
Tool for MultiPhysics Data Transfer,” M&C 2013 International Conference on Mathematics & Computational
Methods Applied to Nuclear Science & Engineering, Sun Valley Idaho, May 5-9, 2013

[6] R. Pawlowski, R. Bartlett, N. Belcourt, R. Hooper, R. Schmidt, A Theory Manual for Multiphysics Code
Coupling in LIME Version 1.0, SAND2011-2195, March 2011

[7] T. Evans, A. Stafford, R. Slaybaugh, and K. Clarno, “DENOVO: A New Three-Dimensional Parallel Discrete
Ordinates Code in SCALE,” Nuclear Technology, 171, 171–200 (2010).

[8] R. Williamson, J. Hales, S. Novascone, M. Tonks, D. Gaston, C. Permann, D. Andrs, and R. Martineau,
“Multidimensional multiphysics simulation of nuclear fuel behavior,” Journal of Nuclear Materials 423(2012)
149-163.

[9] D. Gaston, C. Newman, G. Hansen, and D. Lebrun-Grandie ́. MOOSE: A parallel computational framework
for coupled systems of nonlinear equations. Nucl. Eng. Design, 239, p. 1768–1778, 2009.

[10] SCALE: A Comprehensive Modeling and Simulation Suite for Nuclear Safety Analysis and Design,
ORNL/TM-2005/39, Version 6.1, Oak Ridge National Laboratory, Oak Ridge, Tennessee, June 2011. Available
from Radiation Safety Information Computational Center at Oak Ridge National Laboratory as CCC-785.

[11] R. Montgomery, D. Sunderland, and R. Dunham, “Structural Mechanics Framework for VRI PCI Challenge
Problem,” L2.MPO.Y1.03, ANA-R-11-0844 Rev. 1, July 2011.

[12] R. Montgomery, et.al., “Peregrine: Validation and Benchmark Evaluation of Integrated Fuel Performance
Modeling Using Test Reactor Data and Falcon,” L1.CASL.P7.02, July 2013.

[13] S. Palmtag, “Coupled Single Assembly Solution with VERA (Problem 6),” L3.AMA.VDT.P6.03, CASL-U-
2013-0150-000, July 25, 2013.
[14] Watts Bar Unit 2 Final Safety Analysis Report (FSAR), Amendment 93, Section 4, ML091400651, April 30,
2009. http://adamswebsearch2.nrc.gov/idmws/ViewDocByAccession.asp?AccessionNumber=ML091400651

http://adamswebsearch2.nrc.gov/idmws/ViewDocByAccession.asp?AccessionNumber=ML091400651

	EXECUTIVE SUMMARY
	ACRONYMS
	LIST OF FIGURES
	LIST OF TABLES
	1. Introduction
	2. Coupled Physics Design
	2.1 Participating Physics Components
	2.1.1 COBRA-TF (CTF)
	2.1.2 Insilico (Denovo/XSProc)
	2.1.3 Peregrine

	2.2 Solution Algorithm and Code Coupling
	2.2.1 Data Transfers
	2.2.2 Solution Procedure

	3. Software Integration
	3.1 Build System Integration
	3.2 Development Process
	3.3 Multiphysics Distributor

	4. Test Problem Description
	5. Results
	6. Summary
	7. References

