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Executive Summary

This milestone focused on the deployment of recent advances in uncertainty and inference
algorithms into the VERA environment to allow access and utilization by CASL domain ex-
perts. Over the past 3 years, VUQ focus area researchers have addressed a number of
challenges that currently face existing uncertainty and inference techniques when applied to
complex engineering problems such as nuclear reactors. Some of these challenges include the
“curse of dimensionality” in the uncertain parameter space, the nonlinear and multi-physics
nature of the associated physics models, and the high computational cost of constructing
surrogate models. These challenges have been addressed using a hybrid approach that com-
bines both stochastic and deterministic methods for uncertainty and inference analyses in
an effective manner that seeks to overcome their limitations and combine their advantages.

The DAKOTA suite is selected for deployment of these developments and for demonstrat-
ing their applications to the CTF code package (formerly COBRA-TF), which is currently
operating as part of the VERA environment. The QUESO capability was selected to com-
plete the inference analysis. The CTF model is called by DAKOTA /QUESO to provide data
calibration capability on the input parameters for CTF. Verification tests are employed to
ensure that the noted developments are correctly implemented.

This report describes the theoretical and numerical work contributing to this milestone;
in particular we overview the use of a Bayesian model calibration methodology followed by a
description of the CTF model framework. We then provide a general framework for verifying
model calibration results for CASL codes. We subsequently illustrate the construction of
a surrogate model and implementation of the calibration framework for the CTF model.
Finally, user and programmer’s instructions are given. The appendix contains a sample
DAKQOTA input file, and Git repository locations for the supporting material.
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1 Purpose and Objectives

In support of CASL’s mission to provide credible measures of uncertainties and devise ways
for their reduction, this milestone has focused on deploying recent advances in data assim-
ilation methods and calibration techniques (collectively referred to as inference analysis)
produced by VUQ focus area researchers over the past few years. This deployment will
demonstrate the use of VUQ tools to the wider CASL community in order to realize the
benefits of VUQ in addressing CASL’s challenge problems. As part of this demonstration,
the CTF thermal-hydraulics code will be used to illustrate the use of inference analysis,
which will be completed using the QUESO library, currently interfaced with the DAKOTA
software package [1], and all available under the VERA environment.

The high level purpose of this document is to provide a documented example of what is
considered “best practices” by the VUQ team for the use of the newly developed tools in
DAKOTA. A significant investment was made to provide explicit details and examples of the
correct use of these tools in DAKOTA. Although the application of CASL simulation codes
were limited to a small number of parameters with CTF, great care was taken to demonstrate
the correct processes for using these advanced VUQ tools and also to verify that these
processes produce the correct results. Part of what we are emphasizing in this document
(and the follow on document “CASL Based DAKOTA User Guide and Best Practices”) is
that it is easy to get bad results with high end VUQ tools and care needs to be taken to use
them properly.

A broad objective of the CASL VUQ mission is to use models, simulation codes, and ex-
periments to predict system responses and Figures of Merit for reactor designs with quantified
and reduced uncertainties. Two fundamental steps are required to achieve this objective.

e Model Calibration: This involves the assimilation of data to quantify and update uncer-
tainties associated with parameters, initial or boundary conditions, or forcing functions
— which are collectively referred to as input uncertainties. We employ Bayesian model
calibration techniques, which are based on the assumption that inputs are represented
by random variables having associated probability density functions (PDFs). The goal
in Bayesian inference is to construct and update these densities using measured data
for the process of interest. This process is detailed in Section 2.

e Model Prediction: In this step, one computes the response, or quantity of interest, along
with statistics, error bounds, prediction intervals, or a probability density function for
the quantity of interest. This requires efficient propagation of input uncertainties
determined either experimentally or via model calibration.

Model calibration and uncertainty propagation typically requires numerous forward or
adjoint model evaluations which is computationally infeasible for CASL neutron transport,
thermal-hydraulic, and chemistry codes. This necessitates the construction of surrogate
models which incorporate the fundamental physics embodied in the high-fidelity simulation
codes but are sufficiently efficient to permit numerous — e.g., up to millions — of evaluations
for varying input and independent variable values.

Within the last two years, there has been significant emphasis on the incorporation
of highly efficient algorithms in DAKOTA to facilitate the propagation of uncertainties.
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These include spectral Galerkin and collocation methods which are commonly referred to as
polynomial chaos expansion (PCE) techniques as well as Gaussian process (GP) surrogates.

This milestone focuses on the implementation and integration of advanced model cali-
bration techniques into DAKOTA for use in the VERA environment. A key component of
this is the integration and verification of general techniques to construct surrogate models
for CASL codes. The following objectives are targeted.

The state-of-the-art in inference analysis techniques employs the engineering model in the
forward (and less commonly the adjoint) mode to construct a surrogate model. A surrogate
model is an approximation to the original model that can be executed more efficiently. The
surrogate model is evaluated in place of the full model many times with different parameter
perturbations. In an uncertainty analysis, the objective is to propagate parameter uncer-
tainties to estimate response uncertainties. The results of the surrogate model execution are
employed to construct a probability density function for the responses of interest. In the
case of inference analysis, one has prior uncertainties on the parameters, which are then up-
dated based on available measurements for some responses. The results of surrogate model
execution can be processed using Bayes’ formula to generate a posterior probability distri-
bution for the parameters. When parameter settings can be found so that the experimental
data and computational model are consistent, and such settings are consistent with the prior
distribution, the posterior distribution will be more informative on the model parameters
than the prior distribution.

To complete uncertainty and inference analyses for realistic reactor models, it is necessary
to construct a surrogate in an efficient manner. In practice, this tends to be difficult since
the execution of the original model is typically computationally intensive. Moreover, the
parameter uncertainty space is often of a high dimensionality, rendering the construction of
the surrogate even more complex. Finally, for multi-physics nonlinear models, a brute force
approach to constructing a surrogate model by treating the whole model as a black box
is often computationally intractable and methods must be devised to transfer information
effectively between the different physics models.

The research conducted over the past few years has focused on developing methods to
address these challenges. In particular, sophisticated computational techniques, including
reduced order modeling, hybrid sensitivity analysis techniques, and subspace techniques were
shown to limit the search of the uncertainty space to a small subspace in order to render
a computationally practical exploration of the uncertainty space. The subspace is iden-
tified using rigorous randomized techniques which allow one to identify patterns in large
complex data sets. These techniques are used to characterize the dominant sources of un-
certainties using quantifiable error metrics to ensure none of the important uncertainties are
ignored. Rigorous mathematical analysis has been provided in support of these develop-
ments. Performing this reduction is essential given the typically large size of the uncertainty
space, which must account for all the physical phenomena affecting system behavior, such
as thermal-hydraulics feedback, isotopic depletion and their associated uncertainties. These
methods were developed first for a single physics model, and have been later extended to
multi-physics models. More details may be found in [2].
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2 Bayesian Model Calibration

In Bayesian analysis, model parameters or inputs are represented as random variables having
associated probability density functions (PDF). The goal in Bayesian inference is to construct
these PDF using measurements or observations of the process of interest.

We let

y=[f(xi,q) (1)
denote the output of a high-fidelity CASL code such as DENOVO or HYDRA where ¢ € RP

denotes the inputs or parameters and y; denotes values of independent variables such as
discrete space or time values. The associated statistical model is

K:f(XlaQ)+€z7Z:177n (2)

where Y; and ¢; are random variables representing measurements and measurement errors
and @ is the random vector associated with inputs. Realized or measured values of the
process are given by

yi = f(xi,q) + & (3)

Here errors are assumed to be independent and identically distributed (iid) and normally
distributed with mean 0 and variance o?; that is g; ~ N(0, o?).

The densities associated with the inputs ¢, for an observed data vector y = [y1, -+ , Yn],
are specified by Bayes’ formula

_ rllml)
") = T s lam(ads @

Here the random vector @ of input parameters is assumed to have a (possibly non-informative)
probability density function, m(q), typically referred to as the prior or a priori density?,
which encodes present state of knowledge about the parameters. The observations y are
either experimental measurements of the process or values generated by the higher-fidelity
model. The use of the latter to construct synthetic data is detailed in Section 2.4. Based on
the assumption of independent and identically distributed errors from a normal distribution,
the likelihood of observing y given a parameter value ¢, for a model with a single response,
is

1 - o
m(ylq) = We §5a/20° (5)

where the sum of squares error is

n

SSy =Y [y — f(xi ). (6)

=1

Hence the likelihood provides information that updates the prior information in my(gq) to
provide a posterior density 7(¢|y) that more accurately quantifies the uncertainty associated
with q.

IFor brevity, we often use the convention of referring to probability density functions simply as densities
since there is no confusion with physical densities.
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2.1 Direct Implementation of Bayes’ Relation

In principle, the posterior densities associated with inputs can be directly computed by
solving (4). In practice, this can be achieved only for small to moderate input dimensions
p due to the difficulty associated with approximating the normalizing integral. Recently,
sparse grid quadrature techniques have extended the range of p for which the integral can be
reasonably approximated. However, for p greater than approximately 30, it is still necessary
to employ alternative techniques such as those detailed in Section 2.2. In the verification

examples, we illustrate the use of this direct solution to verify sampling-based techniques for
=1 and 2.

2.2 Metropolis Methods

To avoid the difficulty associated with approximating the denominator for large input di-
mensions p, one typically employs extensions of Metropolis algorithms initially developed in
the 1950’s. The objective is to sample from a related distribution in a manner that converges
to the unknown posterior density.

One shortcoming of typical Markov chain Monte Carlo (MCMC) sampling schemes is that
they often rely on rejection based approaches to generate new samples from the posterior
density. When searching a complex probability space the chain often fails to adequately
explore the posterior, with a large proportion of the proposed samples being rejected. Each
proposed sample corresponds to an evaluation of the model? to determine the corresponding
likelihood, thus rejecting a large number of the sample points is wasteful as rejected values
are simply discarded. Further, if the rejection ratio becomes too high, the chain can become
stuck, unable to proceed because it cannot find any valid samples to draw.

These difficulties have been addressed by recently developed Delayed-Rejection Adaptive
Metropolis (DRAM) and DiffeRential Fvolution Adaptive Metropolis (DREAM) algorithms.

Delayed Rejection Adaptive Metropolis (DRAM) Algorithms

The DRAM method addresses the issue of sample rejection by combining two essentially
distinct but related methods:

1. Delayed Rejection (DR)

When a sample is rejected by the Metropolis sampler, instead of being immediately
discarded, a second stage proposal sample is generated with an acceptance probability
that is specially calculated to guarantee convergence to the posterior density. This
second stage proposal is allowed to be dependent on the previous rejected sample,
yielding partial local adaptation of the proposal distribution at each step of the sam-
pling chain and potentially allowing the second stage to more reliably generate a valid
sample point. This refinement process can be continued for an arbitrary number of
iterations, though one or two steps is typical. These refinements are local in nature
and are discarded after each step. This method is detailed in [4].

2In practice, a sample would correspond to an evaluation of the surrogate model and not necessarily the
full model.
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2. Adaptive Metropolis (AM)

This method relies on global adaptation of the proposal covariance based on previously
accepted samples in the chain. At specified intervals the proposal covariance is updated
to reflect information gleaned from the previous samples drawn by the chain. This
process of adaptation will often improve the mixing of the chain so that it covers the
target distribution more efficiently for any given number of iterations. This adaptation
procedure implies that the resulting chain is neither reversible nor does it obey the
Markov property; however in [5] the authors demonstrate that under mild assumptions
the proper stationary distribution is preserved. Unlike DR, the adaptations are carried
forward through subsequent steps of the chain.

Both of these methods can potentially produce large improvements in performance for the
MCMC sampling procedure. For more details on both of these methods, see [4]. Parallel
implementation of DRAM algorithms is detailed in [9)].

DiffeRential Evolution Adaptive Metropolis (DREAM) Algorithms

Whereas DRAM algorithms have proven highly robust and successful for a number of
large-scale applications, including climate models, there are regimes for which these algo-
rithms are inefficient. This includes problems in which posterior densities are multi-modal,
highly complex, or have heavy tails. For such regimes, DiffeRential Evolution Adaptive
Metropolis algorithms can prove advantageous. These algorithms employ multiple chains
with a differential evolution algorithm used to specify switching. Hence DREAM algo-
rithms are inherently parallel which facilities their implementation for computationally in-
tense problems. Details regarding these algorithms are provided in [11-13]. The implemen-
tation of a DREAM algorithm into DAKOTA constituted one component of the L3 milestone
VUQ.VVDA.P7.03 Model Reduction and Data Assimilation: Transport Codes. The initial
integration has been completed and the development of a verification test suite constitutes
part of a future milestone; see Section 7.

2.3 Burn-in or Chain Convergence

When discussing an MCMC-based method, it is important to address the issue of whether or
not samples generated by the chain are being drawn from the true stationary distribution.
This issue is colloquially referred to as burn-in, and is generally addressed by discarding
some proportion of samples generated from the beginning of the chain. This helps to avoid
the case where the chain has not yet properly stabilized to the stationary distribution. For
our purposes, we choose burn-in periods of 10 to 50%.

Judging whether or not the chains have converged to the stationary distribution is difficult
to assess in a theoretically rigorous manner. We attempt to avoid this issue by using a very
large burn-in period, which adds little to the overall computational time due to the use
of a cheap surrogate model. Some attempts at assessing MCMC chains using quantitative
measures are described in [3].
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2.4 Generation of Synthetic Calibration Data

When one is calibrating a model f(y, ¢) using experimental data, the variables y; and ¢; in (3)
respectively denote measurements and measurement errors. This represents the final goal for
CASL codes. As an intermediate step, however, one often calibrates the code using synthetic
or model generated data. This is advantageous when developing or implementing algorithms
or for regimes for which experimental data is unavailable. For example, we employ synthetic
data for the COBRA example detailed in Section 5.

To construct synthetic data, one fixes a nominal parameter value ¢ and constructs a
solution f(x;,q) at one or more spatial or temporal values y;. One then generates n values
for the simulated measurement errors ¢; by sampling from a normal distribution with mean
0 and standard deviation ¢ = 0.1 x f(xs,¢)/3 (for example). This yields n simulated data
values y; given by (3) where the distribution of ¢; is known.

2.5 Deterministic Methods and DAKOTA Implementation

MCMC is a stochastic method since it relies on the use of random sampling. Other deter-
ministic methods have been devised for inference analysis and examples include nonlinear
least-squares and linear adjoint methods. These methods are usually less computationally
demanding than MCMC. They broadly treat the task of data calibration as an optimization
problem, seeking to find a set of parameters that minimizes the residual between the pre-
dicted and observed values. Deterministic methods also typically provide rigorous guarantees
of numerical convergence, whereas with MCMC methods the issue of assessing convergence
can often prove difficult. On the other hand, these methods are typically less flexible than
MCMC methods and give less detailed information about the posterior distributions. Gener-
ally, deterministic methods only provide an estimate for the mean and perhaps a covariance
matrix, whereas MCMC approaches provide a detailed picture of the posterior density over
the range of the problem. For a general discussion of non-Bayesian inference methods, we
refer the reader to [10].

For implementation of these techniques, we employ DAKOTA (Design Analysis Kit for
Optimization and Terascale Applications), which is selected because it is currently inte-
grated into the VERA code package. DAKOTA provides a general framework for analysis
of computer simulations. To complete the inference analysis capability, the QUESO library
will be employed. QUESO provides an implementation of DRAM as a library that can be
embedded in other software or used on its own. Recent work has provided an early imple-
mentation of an interface between DAKOTA and QUESO, which will serve as the vehicle
for the tests in this milestone.

3 CTF Model Characteristics

COBRA-TF (Coolant Boiling in Rod Arrays - Two Fluids) is a reactor thermohydraulics
code designed for Light Water Reactor vessel analysis [6,7]. It is based on the two-fluid,
three-field modeling methodology and contains both subchannel and 3D Cartesian forms of
nine conservation equations for reactor modeling. It has been selected as part of the VERA
code package and has been selected as the physics model for this study.
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As a basis for our tests we choose the 17x17 PWR example for CTF obtained from the
casl-dev Git repository. This test problem is the basis of the CTF contribution to the
VERA-CS progression problem 6. The initial run time for the steady state problem was too
large. We then chose a shorter running problem for this study. Thus the case was modified to
a full transient case, with the response taken after a time interval of 0.3 seconds. Note that
this problem will be studied further next year as part of our milestone on a complete VUQ
study of VERA-CS applied to progression problem 6. Table 1 summarizes the parameters
for the model.

The CTF parameters selected for our study were the inlet mass flow rate (MFR) and inlet
enthalpy. These parameters are both available in the CTF preprocessor input control.inp,
with perturbations generated by DAKOTA. The model response is taken to be the outlet
power of the coolant at the end of the transient time interval; it is well-behaved and accessible
in the file heat_balance.out.

An energy balance of the following quantities may be described as

Poutlet = Pinlet + Pcore + Ptransient

where P, and Pi,ee = mhy, are the outlet and inlet coolant power. Here m denotes
the inlet mass flow rate and h;, is the inlet enthalpy. Furthermore, Pi,.qnsient quantifies the
stored energy during transient; e.g., energy transferred to or from the surrounding structure
causing a temperature rise or drop.

In the calibration experiment, the computed outlet coolant power is assumed discrepant
from the measured value. The discrepancy will be used by the QUESO calibration modules
to update the knowledge about the inlet conditions which are assumed to be uncertain.

Units for the input and output parameters are given in Table 2. Note that all parameter
and response variations will be described in relative terms, with a relative value of 1.0 de-
scribing the nominal (reference) absolute value, and all other values as relative perturbations
thereof.

Parameter Value Units
Number of rods 264 N/A
Size of array 17 N/A
Number of guide tubes / water rods 25 N/A
Active length 3548.5 mm
Bundle pitch 215.0 mm
Fuel pellet diamater 8.1915 mm
Pin pitch 12.5984 mm
Initial MFR 85.979 keg/s
Initial rod temperature 292.7 C
Reference pressure 155.13 bar
Reference enthalpy 1281.97 | kJ/kg
Total power 18.47507 | MW(th)

Table 1: Parameter values for CTF model.
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Parameter Reference | Units
Inlet MFR 85.979 kg/s

Inlet Enthalpy 1281.91 kJ/kg
Outlet coolant power | 126886.3672 | kW

Table 2: Parameter units and reference values.

3.1 Surrogate Model

The calibration process can require thousands to millions of model evaluations to reasonably
characterize the posterior PDF. Due to the computational expense of running CTF, it is more
practical to use a surrogate model. Currently, the Bayesian calibration method in DAKOTA
employs automated construction of Gaussian Process (GP) and Polynomial Chaos Expansion
(PCE) surrogates, with the possibility to use other surrogate types in a non-automated
fashion. In addition to the GP surrogate, for several cases we will also rely on a linear
regression surrogate, which is also provided by DAKOTA.

Table 3 shows the number of samples used to construct the surrogate for each case. We
choose to use fewer samples to construct the linear regression surrogate simply because we
only use linear surrogates in cases where the model is highly linear.

A major advantage of relying on a surrogate model is the parallelism inherent in the
construction process. For the GP surrogate construction, the model is sampled uniformly
over the input space and the response computed at each sample point. These samples are
collected into a vector of training points and then the GP surrogate is constructed based
off of the training data. The sample evaluations all occur independently, implying that the
sampling can take place in parallel, with parallelism up to the number of samples requested.
This is advantageous since the implementation of DRAM in DAKOTA has only limited
parallelism, while the version of CTF selected for this milestone is primarily serial in nature?.

Once constructed, the GP surrogate can be evaluated many times for negligible cost.
Using a GP surrogate constructed in parallel with the DRAM calibration process produces an
enormous speedup; while running the calibration process directly on CTF could potentially
take months on a single workstation, instead the same computation only takes on the order
of a few days. Also, once the sampling to construct the GP surrogate has been performed,
the resulting surrogate can be reused across multiple experiments in DAKOTA. This allows
us to change the parameters for the various cases without having to go through the expensive
process of resampling CTF, which requires several orders of magnitude more computational
time than the subsequent calculations. Only when changing the scale of the input parameters
(e.g. 10% perturbation versus 1%) is it necessary to resample the model to ensure a good
sampling density over the region of interest.

3.2 Practical Implementation

Here we briefly discuss the practical details of coupling DAKOTA with CTF. DAKOTA
requires an interface with the target code that handles passing inputs to the code, invocation

3 A parallelized variant of CTF has been recently developed by CASL, but it was not used in this milestone.
We achieve parallelism by taking advantage of the independence in model evaluations inherent to the problem.
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Case ‘ Linear ‘ GP

One Parameter 25 50
Two Parameter 100 200

Table 3: Number of samples used to build surrogate in each case.

and processing of outputs. For this case, we use a mixture of Python code, shell scripts,
and the DAKOTA preprocessor to manage execution of CTF during the sampling process.
A directory contains template inputs for the CTF preprocessor that have a special control
sequence entered in place of the values that DAKOTA is perturbing. DAKOTA copies this
template directory to a numbered working directory, which allows multiple invocations of
CTF to run concurrently without overwriting the output files. DAKOTA then generates a
parameter vector and invokes a shell script, passing to this script the name of a file that
contains the DAKOTA preprocessor input corresponding to the parameter values. The
script calls the DAKOTA preprocessor to generate the actual CTF preprocessor inputs and
then calls the CTF preprocessor to generate the actual CTF input deck. Then, the CTF
executable is called and runs to completion. After CTF returns control to the shell script,
the script then calls a simple Python script that extracts the outputs via regular expression,
which is then returned back to DAKOTA. The Python script also handles the possibility of
a failed CTF run, in which case it returns IEEE NaN.

This process seems somewhat complex; however, in practice it is reliable and reasonably
flexible. It is capable of handling the introduction of perturbations across multiple input
files (though we do not use this ability in the cases shown in this report) and can easily be
adapted to perturb the CTF input deck directly instead of using the preprocessor inputs.
Use of the DAKOTA preprocessor also allows algebraic transformation of variables in the
input file, permitting even greater flexibility in building the input decks. As an example, we
use simple algebraic transformations to automatically convert between relative perturbations
from DAKOTA and their absolute values in the CTF input files. This allows DAKOTA to
deal with simpler relative perturbations, but to easily reconstruct the actual values that are
needed by CTF.

Three distinct steps are used for the test cases described. The first is to generate the
training set for the surrogate model. For this, DAKOTA is used to generate samples uni-
formly in the input parameter space and the output samples are saved for use during GP
surrogate construction. DAKOTA uses the interface described above to evaluate CTF di-
rectly and determine the true model value at each point and outputs the input-output data
to a text file in a tabular format.

The second step is to generate the synthetic calibration data for DRAM. An error dis-
tribution is specified in the DAKOTA input deck (typically an uncorrelated, multivariate
normal distribution), which then generates samples of the error process. These sampled
errors are then added to the nominal model calculation(s) to obtain the simulated data
value(s). Since the surrogate model appears to be highly accurate for the three cases con-
sidered, instead of calling CTF, we choose to use the GP surrogate constructed from the
training data built during the previous step in calculating the simulated data values. It
would be simple to instead invoke CTF directly, but tests showed that the surrogate was

11
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accurate enough that there was no detectable difference using the surrogate versus direct
evaluation of CTF. This process results in the synthetic calibration data used to illustrate
Bayesian model calibration in the following sections.

The final step is to actually run the calibration process. In this step, the DAKOTA input
is set to construct a GP surrogate model from the training points generated in the first step
and no new evaluations of CTF are used. It is also possible to have DAKOTA construct
the GP surrogate on-the-fly before the MCMC chain is initialized, but since we already had
the training data available this would waste a large amount of time. After construction of
the surrogate, DAKOTA then runs DRAM until the requested number of samples are drawn
from the posterior distribution, with extra samples beyond the requested number generated
at the beginning to ensure that the chain has stabilized to the stationary distribution (usually
termed burn-in; see Section 2.3).

After termination, the accepted samples from the posterior densities are available in the
directory OutputData, under the file file_cal_ip_raw.m. This is a MATLAB script that,
when run, populates variables in the MATLAB workspace corresponding to the posterior
samples. We typically choose to further post-process this file with a simple script that
converts it to an HDF5 formatted data file for use with software other than MATLAB. Note
that if the DAKOTA output level is set to VERBOSE in the input file the calibration process
will also produce a file called QuesoOutput.txt in the top-level directory. This file contains
a listing of all sample points, including rejected points, as well as the computed likelihood
for each sample. This file is organized into columns: first inputs, then responses, and finally
the likelihood, and can be useful for troubleshooting the calibration process.

As part of this milestone, all of the files relevant to the cases described in this report
will be committed to the CASL Git repository. This includes documentation on each case,
sample results, and helper utilities. Also, a representative input file for the DAKOTA-
QUESO interface is included in the appendix of this report.

4 Verification Methodology and Tests

4.1 Verification Methodology

We summarize here a general framework for verifying model calibration results for CASL
codes implemented in VERA via DAKOTA. This framework is generally applicable to codes
with nonlinear parameter dependencies and experimental or synthetic data. The verification
methodology for the DAKOTA-QUESO DRAM package has the following components.

(i) Test algorithms using a linearly-parameterized model where analytic uncertainty rela-
tions can be computed. Whereas this is not generally possible for CASL codes with
nonlinear parameter dependencies, it provides a first step for verifying the capabili-
ties of the model calibration framework and it may be used in certain nearly linear
operating regimes.

(ii) Compare to direct implementation of Bayes’ formula (4) for small to moderate input
or parameter dimensions p; e.g., p < 20 to 30. For the likelihood relation (5) and a

12
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noninformative prior my(q), this involves the numerical approximation of

e—SSq/Qa2 1
m(qly) = T € 557277 = [ € (5585022 ¢ (7)

where the second formulation avoids numerical % evaluation.
(iii) Compare to other packages that implement DRAM; e.g., MATLAB.

(iv) Compare the densities with those provided by the alternative Metropolis algorithm
DREAM discussed in Section 2.2. The initial implementation of DREAM into DAKOTA
constituted one component of the L3 milestone VUQ.VVDA.P7.03 Model Reduction
and Data Assimilation: Transport Codes.

(v) Compare to sampling distributions provided by frequentist analysis. Whereas this ap-
proach can guide verification, is must be used with care since the underlying assump-
tions for frequentist and Bayesian inference differ significantly; see Chapter 4 of [8].
For example, asymptotic analysis yields Gaussian sampling distributions which will
obviously be inaccurate if the true distribution is highly non-Gaussian.

(vi) Check the convergence of the algorithms by increasing the number of quadrature points
used in (7) or number of iterations in DRAM or DREAM chains.

The verification criterion (i) is illustrated in Section 4.2 for a linear algebraic model
where one can analytically specify the parameter distribution. This provides an initial test
to verify the basic functionality of the QUESO inference library. Verification criteria (ii)—
(vi) are illustrated in Section 4.3 for a steady-state heat equation with measured data. This
provides a prototype for heat transfer processes analogous to those embodied in the thermal-
hydraulic code CTF.

4.2 Algebraic Test

As a first verification test of the DAKOTA-QUESO model calibration capability*, we employ
the linear algebraic model
Y=0-Q+c¢

where @ is an uncertain parameter and ¢ is an independent and identically distributed error
term that is normally distributed with mean ¢ = 0 and standard deviation o. The goal is

4All uncertainty and inference techniques employed by DAKOTA /QUESO require the ability to sample
a given probability space. In particular, generation of training data for the surrogate model and generation
of the synthetic calibration data (see Section 2.4) require the sampling of a probability space with known
density. For the sampling, instead of pure random sampling we have elected to use Latin Hypercube Sampling
(LHS) which is available through DAKOTA. This sampling method is well-established in the statistical
literature as a more reliable approach for spreading samples over the entire probability space. This is done
by subdividing the space into equally probable regions and sampling these regions in a way that enforces
marginal stratification of each input, promoting space-filling coverage of the input space. LHS is known to be
no worse than pure random sampling and typically performs significantly better for a negligible computational
cost.
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to use measurements y of Y to inform on the distribution of Q. To achieve this, we generate
synthetic data y in such a way as to allow the exact posterior distribution of @ to be known
analytically. In our implementation, the QUESO suite was used to sample n data values
y; from a normal distribution having mean b - ¢ for b = 0.045213 and ¢ = 1, and standard
deviation ¢ = b/2. This results in a normal posterior density of @ having mean p, = ¢,/b
and standard deviation o, = 0.5/4/n, where g, is the sample mean of the n data values
y;. The sampled y values are employed as input to the inference capability (QUESO), with
the prior distribution for @ assumed non-informative. We will compare the posterior density
obtained this way to the analytically calculated PDF determined using Bayes’ formula, which
is considered to be the exact result.

For this test, four calibration data sets of sizes n = 1,10, 100, 1000 were generated with
QUESO using the process described in the previous paragraph. For this example, 150,000
QUESO posterior samples were generated. After the burn-in discussed in Section 2.3, there
were 100050 remaining and each tenth value was subsampled and used for inference.

Figure 1 shows the posterior density from QUESO using 1, 10, 100, and 1000 observa-
tion(s) of the response. As expected, the estimated posterior distribution converges towards
an atom at the posterior mean fi .

Table 4 shows analytical and estimated values of the posterior standard deviation o,

‘—Analytical‘ 2.5¢ ‘ ‘ ‘—Analytical‘
---QUESO DRAM¢ ---QUESO DRAM

Posterior
o
N
Posterior

0.3 1r
0.2r
0.5¢
0.1
0 0 1 2 3 0 0 1 2 3
Parameter Values Parameter Values

(a) (b)

‘_Analytical‘ o5l ‘—Analytical‘ i
7 -~ ~QUESO DRAMj ---QUESO DRAM
6t 20l
5° 5
8 S 45l
84l S 15
2 1]
o g
3 10
2, i
5
1 7 J L |
o ‘ ‘ ‘ | I ‘ ‘
0 1 2 3 0 0 1 2 3
Parameter Values Parameter Values

(c) (d)
Figure 1: Posterior density using (a) 1, (b) 10, (c¢) 100 and (d) 1000 data values.
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Measurements 1 10 100 500 1000
Or 0.50000 0.15811 0.0500 0.02236 0.01581
Osample 0.49917 0.15714 0.04993 0.02255 0.01596

Table 4: Standard deviation values ¢ for increasing numbers of data values.

where the estimated value is the sample standard deviation of the 10050 DAKOTA-QUESO
posterior samples. Here we see the effect of diminishing returns — while 10 data values
provides an improvement in o, of more than 3x over a single measurement, increasing from
500 to 1000 data values provides a much smaller reduction in o,. We note the estimates
of o, are expected to approximately follow the Monte Carlo convergence rate of O(1/4/n),
which is confirmed by the results of Table 4.

4.3 Physical Verification Test

The second verification example is a steady-state heat model for an uninsulated aluminum
rod in open air with a heat source at one end and dissipation due to conduction and air-
cooling along the length of the rod. This provides a prototype illustrating certain heat
transfer properties that are similar to the phenomena modeled by CDT that is simple enough
to have an analytic state solution.

As detailed in [8], the steady-state model is

T,  2(a+Db)h

dz2 ~  ab k [T5() = Toms)
dT. P dT. h ®)
d; (0> = E ) d; (L) = E[Tamb - TS<L)]

Here ® is the source flux at = 0, h is a convective heat transfer coefficient, k = 2.37% is
the thermal conductivity for aluminum, and 7T is the steady-state temperature at positions
x along a rod with cross-sectional dimensions a = b = 0.95 cm and length L = 70 cm.
Hence ab is the cross-sectional area and a + b results from the surface area of an infinitesimal
unit. The parameters are taken to be ¢ = [h, ®]. The forcing term on the right-hand side of
(8) and boundary condition at z = L result from Newton’s law of cooling with ambient air
temperature T,,,,. The boundary condition at x = 0 quantifies heat input by the source.
Data consists of temperature measurements at 15 equally spaced spatial locations
x; = xo + (i — D)Az,i = 1,---,15, where 2y = 10 cm and Az = 4 cm. Steady state
temperature data for a rectangular, uninsulated aluminum rod is compiled in Table 5.

z (cm) 10 14 18 22 26 30 34 38
Temp (°C) | 96.14 80.12 67.66 57.96 50.90 44.84 39.75 36.16

z(cm) | 42 46 50 54 58 62 66
Temp (°C) | 33.31 31.15 20.28 27.88 27.18 26.40 25.86

Table 5: Steady state temperatures measured at locations z for an aluminum rod.
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Figure 2: (a) Model fit to the steady-state temperature data, and (b) residuals at the 15
spatial locations.

It is illustrated in Chapter 7 of [8] that ordinary least squares techniques yield the
optimal parameter estimates ® = —18.41 and A = 0.00191. The error variance estimate is
0% = 0.0627 and the covariance matrix, computed using analytic sensitivity relations, is

—2.0286 x 107¢
2.0972 x 10710

2.1034 x 1072

V=1 90286 x 10-

(9)
The standard deviations for the errors and sampling distribution are

o =0.2504 , 06 = 0.1450 , o = 1.4482 x 107°. (10)

The model fit to this data using the optimal parameter estimates is illustrated in Fig-
ure 2(a) and the residuals are shown in Figure 2(b). The latter is checked to verify the validity
of the hypothesis that errors ¢; in the statistical model (2) are independent and identically
distributed (iid). The residuals in Figure 2(b) do not exhibit a discernable pattern thus
indicating the validity of this assumption.

Due to the highly nonlinear dependence of the solution 7'(z,q) on the parameters g,
there is no analytic relation for specifying input uncertainties in terms of measurement
uncertainties. Furthermore, the latter must be inferred from the data since they are not
directly measured. Hence this example provides a prototype for illustrating the verification
criteria (ii)—(vi) in Section 4.1. We compare the QUESO implementation in DAKOTA with
MATLAB DRAM and DREAM packages. As detailed in Section 7, the verification of the
DREAM algorithm in DAKOTA using this, and other problems in the proposed verification
suite, constitutes a future proposed milestone.

Verification Results

For the DAKOTA-QUESO implementation, we employed a direct Python interface.?
To ensure burn-in, or convergence to the posterior, as detailed in Section 2.3, we employ

5The direct Python interface allows DAKOTA to pass parameter values directly to the model in memory,
bypassing the need to write the values to disk. The implementation of the model runs nearly instantaneously,
so writing to disk represents a significant overhead that should be avoided if possible. Using the direct
interface provides a speedup of approximately 30x for the overall MCMC sampling process. The Python
interface is not enabled by default in DAKOTA and must be explicitly enabled when compiling.
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chains of length 30,000 which we verify are converged and fully mixing. For the QUESO
implementation, we employed the value ¢ = 0.2604 for the measurement error which was
obtained using the ordinary least squares analysis. It is shown in Chapter 8 of [8] that this
is consistent with the value o = 0.2504 obtained using MATLAB DRAM to sample the
error distribution. The extension of the DAKOTA package to sample a density for o will be
addressed in a future milestone; see Section 7.

We summarize here four verification tests for the algorithms and codes. These are based
on the verification criteria (ii)-(vi) in Section 4.1.

(1) We illustrate in Figure 3 the marginal densities for h and ® obtained through direct so-
lution of Bayes’ relation (4), DAKOTA-QUESO, and MATLAB DRAM and DREAM.
It is observed that all four densities agree thus providing a first verification test.

(2) The contour plot in Figure 4 illustrates the correlation between h and ® and compares
the ordinary least squares optimum, marked with a black dot, with the mean of the
joint distribution, marked with a blue circle. Comparison with the contour plots for the
direct Bayes’ solution and sample plots for MATLAB DRAM and DREAM, plotted in
Figure 5, provides a second verification test.

(3) A third verification test is provided by Table 6 where the standard deviations obtained
with the four techniques are compared with the ordinarily least squares (OLS) estimate
for the sampling distribution. The close agreement of first four with the OLS estimate
is due to the fact that the estimated densities shown in Figure 3 are nearly Gaussian.

(4) To illustrate burn-in properties, we plot in Figure 6 the MATLAB DRAM densities for
h and ® obtained with differing chain lengths. When combined with statistical tests
and visual observation of the chains, this provides a final verification test.

Whereas not all of these tests will be performed with CASL codes, they illustrate typical
tests that should be conducted to verify the accuracy of calibrations obtained using Bayesian
inference.

x 10
3 3 :
— DAKOTA-QUESO — DAKOTA-QUESO|
-=-- MATLAB DRAM 55 -=-- MATLAB DRAM
257 - - MATLAB DREAM : - MATLAB DREAM
5 — Direct Bayes 5 | — Direct Bayes _
5 2r B 31—3 2
k) 7]
o [e]
15 15
g £
<) o
L 5 L
g g
0.5 0.5
Q : : . 0 ; : : :
-9 -188 -186 -184 -182 -18 -178 1.86 1.88 1.9 192 194 196 1.98
Parameter Values of ® Parameter Values of h %107

(a) (b)
Figure 3: Marginal densities for (a) ® and (b) h generated through direct solution of Bayes’
relation (4), DAKOTA-QUESO, MATLAB DRAM and MATLAB DREAM.
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Figure 4: Joint density for A and ® constructed using DAKOTA-QUESO.
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Figure 5: Contours for the direct method and joint samples from MATLAB (a) DRAM and
(b) DREAM.

He of Hn Op,
Direct -18.417 0.146 | 1.915 x 10™® 1.461 x 107
QUESO -18.417 0.139 | 1.915 x 10™® 1.400 x 107
MATLAB DRAM | -18.417 0.152 | 1.915 x 10> 1.524 x 1079
MATLAB DREAM || -18.417 0.143 | 1.915 x 10™° 1.438 x 107°
OLS -18.417 0.145 | 1.9101 x 10™® 1.448 x 107°

Table 6: Mean and standard deviation for the parameters ¢ and h.
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Figure 6: Densities obtained using MATLAB DRAM with differing chain lengths.

5 CTF: Surrogate Model and Interface to QUESO

Here we discuss the construction of a surrogate model for CTF and the use of the Bayesian
inference techniques of Section 2 to quantify parameter uncertainty using simulated data.

5.1 Surrogate CTF Model Construction

Two types of surrogate models are employed in the later cases: a linear regression model and
a GP model. We show some simple tests that verify the accuracy of these surrogate models.

5.1.1 One Parameter Case

The first parameter that we consider is the inlet mass flow rate (MFR). Figure 7 depicts the
process of surrogate model construction using DAKOTA and validates the surrogate model

135000r
130 000r

125000¢

QOutlet Power

120000¢

-0.10 -0.05 0.00 0.05 0.10
Inlet MFR (%)

Figure 7: Surrogate versus true model evaluations for one parameter case
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Figure 8: Vector linearity study for two parameter case.

predictions against the true model predictions determined by executing CTF. The red points
in figure 7 show 100 samples drawn from a uniform grid in the parameter space and evaluated
with the CTF model. 50 more samples are then selected at random to be used as training
data for the construction of the GP surrogate. Finally, we draw 500 more samples from a
uniform density and propagate them through the GP surrogate, with the black line showing
an interpolation of these values®. It can be seen that the surrogate interpolates the reference
data with a high degree of accuracy. Further, it is apparent that the one parameter case is
highly linear, with a correlation coefficient of p = 0.9999. Thus, for subsequent variations of
the one parameter case we will assume that a linear surrogate can also be used.

5.1.2 Two Parameter Case

Figure 8 shows a simple linearity study for the two parameter case comprised of the Inlet
MFR and Inlet Enthalpy. For visualization, the blue surface interpolates the model response
at 200 points sampled at random in the input space, with the actual sample points shown

6Note here that we do not reuse any samples at each step. The reference data (red points) are constructed
on a uniform grid, while the other two datasets are drawn independently and at random from a uniform
distribution.
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Figure 9: Comparison of true response to surrogate.

as the smaller points on the surface. Each line of colored points shows the model response
sampled along a random vector in the input space. For this case, it is apparent that the
response surface is highly linear. Table 7 gives the linear correlation coefficients for this case,
which give a quantitative assessment of the degree of linearity in the surface.

Figure 9 shows a direct comparison between the response computed by CTF and the
response computed by the GP surrogate. The blue surface in 9 is constructed based on 600
points sampled from a uniform mesh, with response computed directly via CTF. The black
points show the response of a GP surrogate model constructed from 200 training points, with
the surrogate model then evaluated at 1000 points randomly sampled from the same input
distribution as the direct model evaluations. It is clear from Figure 9 that the surrogate is
in good agreement with the true response values as computed by CTF.

H Inlet MFR \ Inlet Enthalpy \ Outlet Power

Inlet MFR 1.0 0.0 0.88
Inlet Enthalpy 0.0 1.0 0.48
Outlet Power 0.88 0.48 1.0

Table 7: Correlation coefficients for two parameter case.
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5.2 Calibration of parameters with CTF

In this section, we show the results from calibrating the CTF model by assuming the inlet
conditions to be uncertain with a range of variability of +10%, which is representative of
inlet reactor conditions uncertainties. For the single parameter case, the inlet mass flow
rate is assumed uncertain, and the outlet coolant power is assumed measured. The basic
assumption here is that the discrepancy between calculated and measured coolant power
originates from inlet conditions uncertainties. Two different surrogates were employed, the
GP surrogate model constructed by DAKOTA, and a linear regression model based on the
linearity illustrated in Figure 7.

5.2.1 One Parameter Case

We illustrate first the use of QUESO to estimate a density for the Inlet MFR using synthetic
data generated in the manner described in Section 2.4. To construct a surrogate model,
we employed 51 samples drawn uniformly from within 10% of the nominal parameter value
reported in Table 2. We then ran CTF to T = 0.4 seconds using the nominal parameter
value to obtain the outlet coolant value y,s = 126,831.7. We constructed synthetic data
by sampling 400 values ¢; from a normal distribution with mean 0 and standard deviation
o= %yss = 4229.5 and adding these to ;.

To construct a posterior density using QUESO, we ran a chain of length 150,000 and dis-
carded 49, 950 during burn-in. Each tenth entry in the burn-in chain was used for inference.
Due to the low parameter dimensionality, we also constructed the ‘true’ posterior density by
approximating Bayes’ formula in the manner illustrated in (7). Finally, we can exploit the
observation that the outlet response exhibits a nearly linear dependence on the Inlet MFR
at the computed time, as illustrated in Figure 7, to compute an analytic normal relation for
the parameter density in the manner detailed in Section 4.2.

The three sets of normalized results are compared in Figure 10 where it is observed that
the QUESO posterior very closely matches the direct Bayes and analytic solutions. This

---QUESO DRAM

20 N |-- Direct Bayes
— Analytic
o
L
= 150}
o
£
S
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5
[2}
(o]
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Figure 10: Densities for the Inlet MFR obtained using QUESO DRAM, direct Bayes solution,
and the analytic solution.
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verifies the accuracy of the QUESO implementation. To provide a second verification test,
we note that the standard deviation o = 1.9093 x 10~% obtained using QUESO is within
1.24% of the analytic value 1.8859 x 1073,

5.2.2 Two Parameter Case

Secondly, we consider the performance of the QUESO DRAM package for estimating den-
sities associated with the two inputs Inlet MFR and Inlet Enthalpy. In the notation of
Section 2, these inputs are denoted by ¢ = [q1, g2].

We first used CTF to compute training data over the time interval [0.2,0.35] which we
used to construct a surrogate model that was quadratic in time and approximately linear
with respect to the parameters; e.g., see Figure 9. Using nominal parameter values, this
surrogate was then used to compute nominal outlet coolant responses y; at the four times
t; = 0.2,0.25,0.3,0.35. Fifteen noise values ¢;, drawn from a normal distribution with mean
p = 0 and standard deviation o = 0'0??01%, were added to the responses to generate 60
synthetic data values.

The prior distribution for ¢ was taken to be a zero mean normal distribution with covari-
ance matrix

0.1/3)2 0
0 (0.1/3)2 |

Because the response at the specified temporal values is approximately linear with respect
to the parameters, we can analytically specify the posterior distribution for ¢ based on this
assumed prior distribution.

We employed QUESO DRAM in the manner detailed for the one-parameter case to
construct marginal posterior densities for the two parameters as well as a joint density for q.
We compare the marginal QUESO posteriors with the analytic densities in Figure 11. We first
note that QUESO is accurately estimating both posterior densities. Secondly, the posterior
standard deviation op,s; = 0.01 for the Inlet MFR density has been reduced from the prior
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Figure 11: QUESO DRAM and analytic marginal posterior densities for the (a) Inlet MFR

with prior density and (b) Inlet Enthalpy.
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Figure 12: Contours for the analytic joint density and samples from the QUESO chain for
the Inlet MFR and Inlet Enthalpy.

value 0,0, = 0.1/3 &~ 0.033 as illustrated in Figure 11(a). Finally, we note that value
0.1696 produced by QUESO for the correlation between the two parameters closely matches
the analytic correlation value 0.1730. This is corroborated by the comparison between the
contours for the analytic joint density and the sampled chain elements as illustrated in
Figure 12.

In combination, this verifies the accuracy of the QUESO DRAM package for this appli-
cation and illustrates the capability of Bayesian inference to reduce input uncertainties as
measurements are acquired.

6 Summary

In this document we have presented the basic theory behind the DREAM and DRAM meth-
ods that we employ for Bayesian model calibration. We describe the approach employed
in statistical simulation studies to generate synthetic data for use in studies verifying the
performance of these methods. This is the beginning of the procedure that we will develop
for using high fidelity codes like HYDRA to calibrate lower fidelity codes like CTF. This high
fidelity calibration is intended to result in the CASL version of COBRA (CTF) producing
a lower uncertainty in predictions of interest than other versions of COBRA, enhancing its
value to industry.

We then discussed the process for the construction of a surrogate that accurately predicts
code output but runs much faster than the code itself. This example uses CTF on a 17x17
grid (note this CTF input deck is the basis for CTF’s contribution to VERA-CS progression
problem 6) to construct a surrogate. Because this surrogate runs much faster than CTF,
a more detailed study of the uncertainty in CTF output is possible without the cost of
thousands of CTF runs. This surrogate construction will play a key role in VUQ of other
high CPU cost VERA components on CASL progression and challenge problems.

We then proceed to present verification results for all of our examples. It is important
to note that Bayesian methods are very powerful tools, but if applied improperly they are
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likely to generate misleading or incorrect results. This explains the large emphasis we have
placed on verification in this document, with the hope that practitioners will be empowered
to deploy the procedures outlined herein to conduct verification studies centered on their
own applications of Bayesian model calibration.

We first show that our calibration methods correctly solve a simple algebraic inverse
problem with analytical solutions. Here we demonstrate how adding calibration data reduces
the uncertainty in a single model parameter of interest. This demonstrates an approach
we propose to explore that would utilize HYDRA numerical experiments to reduce the
uncertainty in a larger set of CTF model parameters than that considered in this document.

We then show the calibration methods on a nonlinear heat conduction problem using
DREAM and DRAM and verify that the MCMC-based calibrations are correct. Here we
first compare the MCMC-based results to a direct solution of Bayes’ theorem. We follow
this by comparing DRAM results obtained by DAKOTA to DREAM and DRAM results
obtained by readily available MATLAB software and to the traditional least squares method
and show agreement.

Finally we demonstrate surrogate model construction with a 17x17 pin CTF model. We
employ this surrogate to quantify parameter uncertainty. This will be the main approach
deployed for uncertainty quantification of HPC applications in CASL that possess formidable
run times. The surrogate allows for fast uncertainty quantification that would not otherwise
be possible with current computer resources available to CASL if relying solely on direct
code calculations. We then demonstrate with synthetic data (similar to numerical exper-
iments with HYDRA) how inverse problems involving CTF model parameters would be
solved through Bayesian calibration, with the ultimate goal of reducing uncertainty in CTF
predictions of interest by leveraging the model parameter uncertainty reduction attained as
a result of this calibration.

7 Future Work

The VUQ focus area must address the need for DAKOTA to have direct access to all relevant
model parameters in CTF and also the need for automated extraction of relevant figures of
merit from CTF. The model parameters for which this access is required will be determined
through a hierarchical sensitivity analysis. First, assume in the short term that the droplet
field will not play an important role. One then can focus on six equations (three for liquid
and three for vapor) and the mass, momentum, and energy exchange between phases and
with the fuel rod clad. These assumptions (which can be relaxed in the future if necessary)
lead to six meta-parameters:

1. liquid friction with the wall (momentum)
2. liquid heat transfer with the wall (energy)
3. liquid friction with vapor (momentum)

4. liquid mass transfer with vapor, boiling at the wall, boiling in the bulk, and conden-
sation (mass and energy)
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5. vapor friction with the wall (momentum)

6. vapor heat transfer with the wall (energy)

These six meta-parameters will be exposed first. To do this, a multiplier must be applied
to the physics of the meta-parameter in the code. When the multiplier is one, the code answer
should only change by round off (based on a possible order of operation change caused by
an optimization in the compiler). After these six multipliers are added, the CTF regression
tests must be rerun to verify that the answers obtained are the same (to round off) as those
calculated with the unmodified version of CTF. To complete phase one, a separate DAKOTA
readable and writeable VUQ input file for these six meta-parameters must be created. At
this stage we will have enabled DAKOTA to perform basic VUQ studies with CTF under
VERA for all progression and challenge problems.

In follow-on work, based on time and funding, we will then construct a tree from each
of these meta-parameters. We select the tree to expand by identifying the meta-parameter
having the largest sensitivity of these six meta-parameters with respect to induced figure
of merit variation in progression problems (5,6,7) or challenge problems (CIPS, CILC, RIA,
PCI, etc.). Each of these meta-parameters is comprised of multiple correlations with multiple
parameters in each and a set of decision points which selects the correlation to use (for
example, use laminar or turbulent friction factors based on the Reynolds number being less
than or greater than 2300). Depending on the depth of the tree, how many branches and
decision points, we can either add new meta-parameters to our VUQ input file or directly
expose the parameters from the correlations (add the parameters to the VUQ input file),
whichever is easier and makes more sense from a technical standpoint.

This approach is intended to provide VUQ with early access to the most essential model
parameters so that comprehensive and meaningful uncertainty quantification studies may
be conducted. It is important to note that for many of our early progression and challenge
problems, there will not be many parameters of interest since we will be operating at or near
an operational point. The large number of parameters in CTF will naturally get “pruned” by
the progression and challenge problems. For example, a large amount of CASL work by CTF
will be turbulent single phase flow. This involves a relatively small subset of parameters.

The output data from CTF is in a format that is primarily intended to be human readable.
This presents a challenge when running CTF in an automated fashion, where DAKOTA must
read a figure of merit. To this end, CTF must be modified to output a predefined set of
figures of merit. With this capability, DAKOTA can read the figure of merit, adjust the
parameters, and rerun CTF in an automated fashion. The figures of merit will be selected
from a PIRT analysis of the important progression and challenge problems.

In the remainder of this section, we discuss improvements that will be made to DAKOTA
in the future based on knowledge gained from studies done as part of this work. We believe
that these changes will improve the usability of DAKOTA for CASL applications. It should
be noted that many of the capabilities employed in this document are emerging experimental
capabilities in DAKOTA. Similar to other CASL software underdevelopment, there are gaps
in the documentation that should be improved. The VUQ team will put a major effort next
year into improving the documentation and providing best practices, user guidelines, and
detailed worked examples that clearly demonstrate the proper use of these new DAKOTA
tools for VUQ.
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7.1 Software Delivery

Work needs to be done to absorb the new uncertainty quantification capabilities into the
DAKOTA build process. We need to decide which platforms and compiles will be supported
by CASL for the use of DAKOTA and provide executables for these systems. When possible,
directions will be provided for advanced users to install the software.

7.2 Documentation

Documentation will be improved in the short term, but by the end of next fiscal year we will
have a Best Practices and User Guideline Document. This document will include worked
examples of how rigorous VUQ should be done for CASL applications.

7.3 Methodology Enhancement
The following capabilities will be added to DAKOTA during the next fiscal year:

1. The covariance matrix employed in the DAKOTA-QUESO DRAM proposal (jumping)
distribution is presently constructed automatically based on bounds provided by the
user, with no mechanism to enter a predetermined covariance matrix. A use case will
be provided that allows user specification of the proposal covariance matrix.

2. DAKOTA use cases will be provided that allow user specification of a measurement (ob-
servational error) covariance matrix. Specifically, we will address the setting in which
n observations are available, and the error process is assumed mean-zero Gaussian with
measurement covariance matrix 3. The following cases will be covered:

e X = diag{o?,i = 1,...,n}, where o? are fixed and input by the user for i =

1,...,n (DAKOTA checks if 62 > 0 for i = 1,...,n).

e ¥ fixed and input by the user (DAKOTA checks if 3 as specified is a legitimate
covariance matrix).

e ¥ = 0’R,, where 02 is input by the user as random or fized, and R,, is fixed and

input by the user (DAKOTA checks if 0?R,, is a legitimate covariance matrix).

e X =diag{o?R,,, 1 =1,...,m}, where the ¢? are input by the user as random or
fized, and the R, are fixed and input by the user fori =1,...,mandn =" n,
(DAKOTA checks if the 02R,,, are legitimate covariance matrices).

The last use case above represents the situation in which multiple replicate data sets
on a single response are available from independent laboratories. The default use case
will be ¥ = ¢?I,,, which is the case of replicate data on a single response from a single
laboratory.

3. DAKOTA will be extended to provide a use case allowing specification of noninforma-
tive prior distributions.
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4. DAKOTA will be extended to allow for user provided log-likelihood and log-prior sub-
routines with a mechanism to identify random parameters vs. fixed quantities. Al-
though most users will be satisfied with the previously identified, more specific options,
a more extensive capability to deal with multivariate or functional output data, and
hierarchical models, will be needed. This work may extend beyond the next fiscal year.
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Appendix A Sample DAKOTA input file

Figure 13 shows a prototypical input file for running calibration with CTF and DAKOTA-
QUESO. The first block, strategy, defines the type of problem to be solved by DAKOTA;
it will generally be set to single_method.

The method section lays out the configuration for the algorithm to employ, in this case
we select the one corresponding to Bayesian calibration with QUESO. We also specify that
we wish to construct a GP surrogate model from 200 real model evaluations.” Lines 9 and
10 enable the DRAM capability. Lines 13 and 14 give scaling factors; here they are set to
unit values.

The variables block declares the input parameters. These are required to be of type
continuous_design, which implies that they will have a non-informative prior distribution
with lower and upper bounds given on lines 18 and 19. The descriptors definition is an
optional specification that allows the user to give names to associate with the variables in
the output. Default names will be assigned if it is left empty.

In the responses block, the response of interest for the calibration process is given. This
also points to the data file containing the calibration data and describes how it is laid out.
The no_gradients and no_hessians options tell DAKOTA not to calculate gradient or
hessian values. Other options exist (e.g., numerical_gradients), but they are not used by
the QUESO interface.

In the final interface block, we specify how DAKOTA should interface with CTF. This
interface will only be called to initially construct the GP surrogate. fork indicates that
DAKOTA should spawn invocations as forked processes, with the asynchronous setting

"More complex surrogate model specifications can be given in a separate block, but this input illustrates
the simplest case.
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10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

ctf_calibration.in
strategy

single_method
method
bayes_calibration queso
emulator
gaussian_process
surfpack
emulator_samples = 200
rejection delayed
metropolis adaptive
samples = 200000
output verbose
likelihood_scale = 1
proposal_covariance_scale = 1 1

variables
continuous_design = 2
descriptors = ’inlet_mf’ ’inlet_enth’
lower_bounds = -.1 -.1
upper_bounds = .1 .1
responses

calibration_terms = 1
num_experiments = 100

calibration_data_file = ’caldata.dat’
freeform
descriptors = ’outlet_power’

no_gradients
no_hessians

interface
fork
asynchronous evaluation_concurrency = 6
analysis_driver = ’run_cobra.sh’

template_directory = ’template’
work_directory named ’workdir’
directory_tag directory_save

file_save
aprepro
parameters_file ’params.in’
results_file = ’results.txt’

Figure 13: Sample input file for DAKOTA-QUESO

indicating that up to 6 invocations can be run simultaneously. The remaining settings point
DAKQOTA to the various scripts and settings necessary to use the interface described in
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section 3.2. Note especially the aprepro setting, which tells DAKOTA it should format the
parameter data as input files for the DAKOTA preprocessor.

More detailed inputs and supporting files corresponding to the cases in this report will
be available on the casl-dev Git repository.
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