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1 Executive Summary

This report documents the completion of milestone L3-THM-CFD-P7-08. The objective of
this milestone was to study the use of adjoint methods in numerical simulations of boiling
flow in order to efficiently compute output sensitivities and to estimate numerical errors. The
scope of the physics considered was restricted to a one-dimensional drift-flux model, which was
discretized using a high-order discontinuous Galerkin finite element method. Output adjoint
solutions were computed using a discrete adjoint method, which built on an implicit primal
formulation. Numerical errors were then computed using an adjoint-weighted residual, which
when localized to elements also drove a mesh refinement strategy. The adjoint solver was
verified by checking the convergence rate of output sensitivities computed with the adjoint.
In driving mesh refinement, for the one-dimensional cases considered the benefits of using
an adaptive strategy were marginal compared to uniform refinement. Similar behavior has
been observed for other equations, such as the Euler and Navier-Stokes equations of gas
dynamics. Based on experience with the latter equations, we expect improved performance
of the adaptive algorithm in problems of higher spatial dimensions.
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2 Introduction

Large numerical simulations in fluid dynamics generate massive amounts of data which can
be daunting to post-process and verify. Indeed the expense of these calculations usually leaves
few resources for verifying whether the solutions are sufficiently accurate. Inaccuracies due
to the numerical discretization, which include effects of mesh size, polynomial order, and
time step, can degrade results. Moreover this can be a “silent” degradation in that the user
may not see anything obviously wrong with a computed solution (e.g. contour plots may be
mostly smooth), even though the solutions contain unacceptably large errors for engineering
purposes. The problem is most pronounced for equations with convective transport, which
include many thermal hydraulics simulations.

In this milestone we address the error quantification problem through the use of output-
based methods, which are used to quantify and minimize errors in scalar outputs of interest.
The robustness and efficiency of these methods arise from the fact that they specifically target
for refinement those and only those areas of the computational domain that are important for
predicting the output. They are well-suited for convection-dominated flows because through
the use of adjoint solutions they properly account for error propagation effects, which can be
troublesome for many heuristic adaptive indicators.

In this work we demonstrate the application of output-based methods to drift-flux models
of thermal hydraulic flows. Although the study is restricted to one spatial dimension, many
of the lessons learned in the adjoint discretization, error localization, adjoint consistency, and
adaptive refinement will extend to multiple dimensions.

3 Approach

3.1 Model Equations

Drift flux models have been applied to study multiphase systems in one dimension, often in
the context of pipe flow. These models are relatively simple compared to more complex 2-
or 3-D simulations, and are therefore used to exemplify the benefits of error estimation and
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adaptation. Following [1], we have a 4-equation model:

∂ρm
∂t

+
∂

∂z
(ρmvm) = 0 (1)
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ρm

Vdj

)
∂pm
∂z

(4)

The subscript m denotes a mixture-averaged quantity, while d and c denote the diffused
(gas) phase and continuous (liquid) phase, respectively. Thermodynamic properties (kc, kd,
cpd, cpc, µc, µd, ∆hdc) are fixed to a reference state of saturated water at 5 MPa. The reference
state is denoted by ref . Thermodynamic properties of the mixture are calculated as in [1].

A compressible formulation is used to calculate the void fraction, phase densities, and
pressure from the conserved states. First, we construct αref = αρd/ρd,ref , an approximate
void fraction to determine whether the flow is in a regime of “large” or “small” void fraction.
For small void fractions (αref < 0.5), the liquid is assumed to be compressible and ρd is
assumed to be the reference density. Pressure is calculated from a linear fit to NIST data for
the liquid, p(ρc). Conversely, for large void fractions, the gas is assumed to be compressible,
ρc = ρc,ref , and p = p(ρd).

Two correlations were implemented for the drift velocity, one from Ishii and Hibiki (for
undistorted bubbles) and the Chexal-Lellouche model [2]. A simple correlation for the co-
variance term, which is valid across many flow regimes, was found in Ishii and Hibiki. Wall
friction was included (the fm term in 3) using a mixture-Reynolds number and an explicit
form of the Darcy friction factor from [3]. The wall heat term qw is the heat added per unit
length of the pipe.

The pressure term in the enthalpy equation 4 is calculated by treating the pressure gradient
as a new state variable. Thus, the term is considered a source term in the equations. The gas
source term in 2 is calculated using subcooled and bulk boiling models. The subcooled boiling
model is based on the model in the PATHS thermal-hydraulics code. In PATHS, the void
fraction is computed directly from various heat transfer correlations for multiphase flow. This
void fraction is considered a “target” void fraction that the code should reach. The source
term is then made to bring the void fraction toward this target,

Γd = ρdvm
∂αtarget

∂z
. (5)

As with the pressure, the gradient of αtarget is treated as a new state variable. For the case
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of bulk boiling, the mass transfer is computed using the heat transfer deficit. Interphase heat
transfer is computed using standard correlations for Nusselt numbers.

Although time-dependent simulations are possible, the current work focuses on steady
state solutions.

3.2 Primal Discretization

The 4-equation model is discretized using the Discontinuous Galerkin method, which allows for
high-order solutions and fast convergence. The above equations are re-cast into the following
general form

∂U

∂t
+

∂

∂z
F (U,Q, Q̃) = S(U,Q, Q̃)

∂U

∂z
−Q = 0

∂Ũ

∂z
− Q̃ = 0 (6)

Here, U are the state variables ρm, αρd, ρmvm, ρmhm. The auxiallary state variables Ũ , for
which derivatives are computed, are pressure and target void (p and αtarget). The derivatives
of the auxiliary states are denoted by Q̃.

The 1D domain is discretized into elements, in which the solution is assumed to be a
polynomial. At the interfaces between elements, a numerical flux must be computed since
the solution is discontinuous at the interface. Here, the inviscid fluxes (only functions of U)
are upwinded using the flux Jacobian of the average state. Since the problem is small (only
four state variables), the complete eigen-decomposition of the flux Jacobian can be performed
cheaply. Note, the eigen-decomposition was not done analytically due to the many complicated
correlations in the inviscid fluxes (covariance, drift velocity, etc.). The Lax-Friedrichs flux,
which is more stable but less accurate, was also implemented. In addition, it was also verified
that when the covariance and drift velocity are ignored, the wave speeds (eigenvalues of the flux
Jacobian) correspond to previously published results on two-phase flow (see [4]), with values of
vm, vm, vm +a, vm−a, where the speed of sound a can be computed from the pressure-density
relation p(ρ).

The viscous fluxes are determined by first solving for the gradient quantities Q and Q̃
using a local discontinuous Galerkin (LDG) method for a linear problem. The DG scheme
then computes averages of Q and Q̃ that are used to evaluate the viscous fluxes at the element
boundaries. Finally, all of the source terms are added to an overall residual. Using exact
derivatives almost everywhere1, under-relaxed Newton iterations drive the residual to zero.
When Newton iterations fail to converge, BDF pseudo-time stepping is used since it is more
stable.

Multiphase models are almost always difficult to converge, and the drift-flux model pre-
sented here is no exception. In order to find a solution, a sequence of solves are performed with

1The complex-step method is used to find the derivatives of the eigenvectors/values with respect to the
state, since this is quite difficult to do analytically
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increasingly complex models. For example, the initial solve neglects all source terms except
gravity, and sets diffusion coefficients, covariance, and drift velocity to zero. The solution is
recomputed as models are slowly incorporated, using the most recent solution as an initial
guess. If one is concerned with adaptation or uncertainty quantification, then this is not a
significant hindrance, since one can often start with a baseline, converged solution and work
from there to either adapt the mesh or tweak parameter values.

3.3 Adjoint Discretization

The continuous adjoint equations for a complex multiphase model such as this one have
rarely, if ever, been derived. It has been shown, however, that the above DG discretization is
asymptotically adjoint consistent23. Thus, the discrete adjoint method will suffice to compute
an accurate adjoint solution. The adjoint for an output J(U) is then

Ψ =

(
∂R

∂U

T)−1
∂J

∂U
, (7)

where R(U) is the DG residual.

3.4 Error Estimation

The dual-weighted-residual method is used for output error estimation. Local residuals of the
solution are weighted with the adjoint to determine their effects on the output J . The error
estimates for each test function are summed to compute an estimate of the output error (the
absolute values can be summed for a conservative error estimate). The residuals and adjoint
are computed with respect to a fine discretization; in this way, the discretization error of the
solution is approximated.

Jtrue − J(U) ≈
∑

elements

ΨT
fineRfine(U)

In particular, the error associated with p (order) or h (element size) refinement can be com-
puted. The “fine” adjoint is computed by either solving exactly, approximately (linearizing
about a smoothed U), or simply by smoothing the original Ψ with a block-implicit smoother.
Currently, only h-refinement and simple smoothing of Ψ are used.

A cheaper error estimate can be computed by using the original adjoint solution rather
than a fine version; the original Ψ is just injected into the fine discretization (Ψinj). This is
often called the “computable correction.” Then, the “remaining error” can be estimated in

2The discretization is only asymptotically adjoint consistent because of the use of the auxiallary state
variables Ũ ; otherwise it would be fully adjoint consistent.

3Boundary conditions for the DG method, while not discussed, require great care to keep the method
adjoint consistent.
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this way:

Jtrue − J(U) =
∑

elements

ΨT
fineRfine(U) =

∑
elements

[Ψinj + (Ψfine −Ψinj)]
T Rfine(U)

εcomp =
∑

elements

ΨT
injRfine(U)

εrem =
∑

elements

(Ψfine −Ψinj)
T Rfine(U) (8)

Thus, in cases when strict Galerkin orthogonality does not hold, one can compute a “corrected”
output, Jcorr = J(U) + εcomp, with the associated error εrem.

3.5 Adaptation

In this work, the metric used for adaptation is |εcomp|. A simple growth rate in the number
of elements is prescribed, and the elements with the most error are refined by splitting those
elements in half. Thus, at each iteration the number of elements nt,i grows like nt,i+1 =
(1 +γ)nt,i, where γ is the fraction of elements refined. Currently, elements are refined at most
once per adaptive iteration, and coarsening is not used. These choices make the adaptive
process more stable at the cost of extra computation in some cases.

In order to alleviate some of the extra computation due to refining elements only once per
iteration, a modification of the above strategy was used. Suppose there were nmost elements
that contributed over 90% of the error in the total error measure. If nmost < γnt,i, i.e. most
of the error is concentrated in a small number of elements, only nmost elements are refined.
This is analogous to allowing multiple levels of refinement within one iteration, except that
here the error estimates are recomputed after the mesh is refined at each level. For the results
presented in this work, γ = 0.3.

4 Results

4.1 Test Problem

The code is set up to simulate water flowing upwards through a 2cm diameter, 5m long
heated pipe as shown in Figure 1. Physical properties are taken from the NIST database
(webbook.nist.gov) for isothermal water at 5MPa. Heat is applied to a portion of the tube
according to

qw(z) = 10

[
erf((z − 1))− erf((z − 3))

2

]
2πrtube (9)

The heat profile is a smoothed version of a discontinuous heat source for 1 < z < 3. The
inflow enthalpy is set just below saturation, ensuring that boiling occurs and that all of the
bubbles do not condense. The output of interest J is chosen to be the twice the average void
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1 m/s

2 cm output = αqw

5 m

Figure 1: Problem setup for sample solutions. Note, for the sake of a compact diagram, the
pipe is depicted as horizontal even though the flow is upwards (the z direction is to the right
in the picture).

fraction for a portion of the pipe in and upstream of the heat source:

J =

∫ 4

2

α(z)dz (10)

4.2 Primal Solutions

The solution to the test problem is shown in Figure 2. The plots are consistent with some
bubbles being produced in the tube mostly around z = 2. The density decreases as the
bubbles are produced, and the velocity increases due to bouyancy. The temperature decreases
initially because of some inaccuracies in the subcooled boiling model in which too much void
is produced at low temperatures. The excess void acts as a heat sink on the liquid. Note, the
saturation temperature is 537.09 K.

The convergence criterion is based on the infinity norm of the relative residual |R|max/|U |max.
The convergence tolerance was set to 10−7 because it was found that the relative residuals
oscillate around 10−7 after many iterations. Since this corresponds to a decrease of around 7
to 9 orders of magnitude, the solutions are well-converged even though the residuals do not
reach machine zero (around 10−14 here). In any case, the output convergence is still at or
above the expected rates. Figure 3 shows that the p = 0 solution (corresponding to a first
order finite volume method) converges even faster than first order (black line on the plot).
The higher order p = 1, 2, 3 solutions converge at the expected rate of (∆z)p+1.

4.3 Adjoint Solutions

The adjoint solution for the output J is shown in Figure 4. The adjoint has four components
because it is the sensitivity of the output to the residuals in the (four) governing equations.
The output is not directly dependent on the second two states, ρmvm and ρmhm. Therefore,
the output is not sensitive to residuals in the momentum or energy equations. This is shown
in the bottom plots of Figure 4. The upper plots show that the output is sensitive to the
accuracy of the solution for 0 < z < 4. This range includes both the range over which the
output has support (2 < z < 4) and also the upstream portion 0 < z < 2. However, solution
accuracy downstream of the output support does not affect the output, as one would expect.4

4The speed of sound in air-water mixtures is generally quite small compared to the speed in pure substances.
Indeed, the speed of sound in this example is always less than the mean velocity, so there are no backwards
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Figure 2: Primal solution for the test problem. Dotted lines indicate liquid density (top
left), nominal velocity (bottom left), and inlet temperature (bottom right). Mesh has 16 p=2
elements.
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Figure 3: Mesh convergence of J for the test problem. Black lines indicate the expected
convergence rate of p+ 1 for the DG method. The relative residual tolerance for each run was
10−7. Meshes ranged from 8 to 256 elements.
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Figure 4: Four components of the dual solution for the test problem. Mesh has 16 quadratic
elements (p=2).

The adjoint can be used to compute errors in the output. Thus, the accuracy of the
adjoint can be computed by perturbing the solution Ũ = U + ∆U and re-evaluating the
output. Figure 5 shows that the error in the adjoint-based estimate of J(Ũ)−J(U) converges
as O((∆U)2). This is expected because the adjoint captures linear sensitivity information,
leaving a quadratic error term:

J(U + ∆U)− J(U) =
∑

elements

∂J

∂R

∂R

∂U
∆U +O((∆U)2)

=
∑

elements

ΨT (R(U + ∆U)−R(U)) +O((∆U)2) (11)

4.4 Error Estimates

The adjoint can be used to estimate more than just ∆J due to arbitrary changes in the
solution. By taking a particular “solution change,” the adjoint can estimate the numerical
error in the simulation. This is described above in Equation 8. The error estimates for the
p = 2 meshes (number of elements from 8 to 256) are shown in Figure 6. The original output
is shown in blue, with the corrected version Jcorr in green. The “true” output was calculated
on a much finer mesh with p = 3. The conservative estimate of εrem is the dashed green
line5. As expected, the corrected output has less error than the original output and the error

propagating waves.
5The conservative estimate is

∑
|Rfine(U)(Ψfine −Ψinj)|, where the absolute values prevent error cancella-

tion.
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Figure 5: Accuracy of adjoint-based estimate of the output error. Black line is second order.
Points are averages of 50 random perturbations.

estimate is larger than the actual error in the solution. In addition, all quantities converge as
the mesh is refined.

4.5 Adaptively Refined Meshes

The adaptation scheme presented above was used on the test problem. The output convergence
is shown in Figure 7, alongside the uniform-refinement convergence results. The adaptive
process does work and in this case is generally no better or worse than uniform refinement. It
is expected that the adaptive process will show more significant benefit when used on higher-
dimensional problems with more localized outputs of interest. In addition, the convergence
of the corrected output Jcorr is shown in Figure 8. The corrected output has lower error than
the uncorrected version but converges at approximately the same rate.

5 Conclusions and Ongoing Work

In this milestone we have applied adjoint-based error estimation and mesh adaptation to a
one-dimensional drift-flux model discretized using the discontinuous Galerkin finite element
method. While the implementation of the discrete adjoint was relatively straightforward
after computing the required derivatives, some using the complex step method, we had to be
careful of adjoint consistency considerations when making choices in the primal discretization.
Sensitivity calculations showed that the adjoint was computed correctly. In addition, we
verified the adjoint-weighted residual error estimates by comparing to the true error in an
adaptive simulation. Finally mesh adaptation driven by the error indicator did lead to a
decrease of the error, albeit not at an improved rate compared to uniform refinement. Possible
reasons for this lack of improvement include the use of the computable correction to drive the
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Figure 6: Convergence of output with mesh refinement for p = 2. Note the horizontal axis is
degrees of freedom.
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Figure 7: Convergence of J with uniform (solid) and adaptive (dashed) refinement. Note the
horizontal axis is total degrees of freedom.
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Figure 8: Convergence of corrected output Jcorr with uniform (solid) and adaptive (dashed)
refinement. Note the horizontal axis is total degrees of freedom.

adaptation, and more fundamentally, the restriction to a one-dimensional simulation. In
multiple dimensions, regions important to a specific output will likely be more localized so
that the adaptive refinement will potentially show significant advantages compared to uniform
refinement.
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