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Abstract

This report describes work directed towards completion of the Thermal Hydraulics Meth-
ods (THM) CFD Level 3 Milestone THM.CFD.P7.05 for the Consortium for Advanced Sim-
ulation of Light Water Reactors (CASL) Nuclear Hub effort. The focus of this milestone was
to demonstrate the thermal hydraulics and adjoint based error estimation and parameter sensi-
tivity capabilities in the CFD code called Drekar::CFD. This milestone builds upon the capa-
bilities demonstrated in three earlier milestones; THM.CFD.P4.02 [12], completed March, 31,
2012, THM.CFD.P5.01 [15] completed June 30, 2012 and THM.CFD.P5.01 [11] completed
on October 31, 2012.
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1 Background

Full scale system level simulations of high Reynolds number flows in PWR reactors with coupled
neutronics and conjugate heat transfer remain a very computationally challenging problem. Even
solving the turbulent flow alone in a geometry representing only a fraction of the entire system
remains a very difficult problem. For this class of problems solving the Reynolds averaged equa-
tions is currently the only feasible option for obtaining solutions. Unsteady RANS or large-eddy
simulation may someday be feasible. Until then there is a great need to develop steady-state RANS
models and push this methodology as far as it can be and understand the strengths and weaknesses
and quantify uncertainties. For this reason RANS modeling capabilities are being developed in
Drekar for the CASL program.

Our approach is to use fully implicit and fully coupled finite element methods that are very
efficient for achieving steady-state solutions and for coupled multi physics simulations (e.g., tur-
bulent flow and conjugate heat transfer). These solutions can be obtained by integrating a transient
solution to steady-state with very large time steps (pseudo-time stepping), sometimes directly to
steady-state and also by parameter continuation where an initial simulation at a particular param-
eter value (e.g., Re) is then continued to trace out an entire solution branch (see e.g., [13]). An
important feature of the Drekar infrastructure is that it supports error estimation, sensitivity and
uncertainty quantification (UQ) algorithms. This is in both an embedded and in a black-box mode
with an existing coupling interface to DAKOTA. This technology was demonstrated in a com-
panion VUQ milestone that carried out an initial UQ study (L3:VUQ.SAUQ.P5.02) using Drekar
and two RANS models. Finally Drekar also has the potential capability to carry out parameter
continuation along with bifurcation and linear stability studies as well [13].

A detailed description of Drekar is beyond the scope of this report. A theory manual was writ-
ten as part of an earlier milestone and is available as a CASL archive [10]. Instead, the main ideas
behind the RANS models and how they couple to the Navier-Stokes equations will be presented.

In this report the Spalart and Allmaras [17] is used. This model includes a single time de-
pendent advection-diffusion-reaction PDE for the eddy viscosity. This viscosity couples to the
Navier-Stokes equations using the Boussinesq approximation. Therefore, the stress tensor in the
momentum equation is modified by an additional ”effective” viscosity.

A variation of the classic k− ε two equation model, due to Lam&Bremhorst [8] has been
implemented and tested (see THM.CFD.P4.02 [12]) however, serious robustness issues remain
when wall damping functions are incorporated into wall bounded flow simulations. For this reason,
it was not used to generate any solutions referenced in this report.

Steady-state solutions to the 3×3 rod/spacer grid problem using the Spalart-Allmaras RANS
turbulence model have been demonstrated and reported on earlier in the theory manual [10] and an
earlier CASL level 2 milestone report (THM.CFD.P4.02) [12]. For these solutions we were able
to take time steps that grew to CFL > 10,000 which allowed the code to quickly integrate to 2.5
seconds of physical time.
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In the remaining sections, RANS models appropriate for solving incompressible high Reynolds
number flows with heat transfer are described along with the modifications to the momentum
equations necessary for coupling. The milestone description contained three main tasks;

1. complete the isothermal LES of the 3x3 periodic rod/spacer grid prototype model,

2. simulate the thermal hydraulics in a prototype reactor core model and,

3. compute parameter sensitivities and error estimation of a Quantity of Interest derived from a
CASL benchmark test problem.

The results are broken into three main sections that correspond to the three milestone tasks. The
task (1) section is quite brief. A 12M element mesh solution was completed late CY2012 and from
that solution it was determined that an additional level of refinement was necessary. However, due
to availability of compute resources and interruptions to user access this refinement level has not
been completed. The task (2) section first presents a validation of heat transfer by solving fully
developed laminar flow in a pipe and comparing the Nusselt number to analytically derived values.
This test is then repeated for fully developed turbulent pipe flow. We then present thermal hy-
draulic solutions for the 3x3 periodic rod/spacer grid reactor model applying constant temperature
and constant wall heat flux boundary conditions. The section is concluded with a demonstration
a conjugate heat transfer simulation of the same reactor core model. The task (3) section also be-
gins with a validation of the error estimate and parameter sensitivity predictions by solving fully
developed rectangular duct flow for which an analytic solution exists. The problem establishes the
accuracy of the error estimates and parameter sensitivities to a quantity of interest that can also
be computed analytically. The final problem investigated is the CASL benchmark problem two,
steady-state swirling flow through a sudden expansion tube. Parameter sensitivity to a quantity of
interest along with error estimations are computed and the accuracy inferred. We conclude with a
summary of the work presented in this report.
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2 RANS Model for Incompressible Turbulent Flows

In the Reynolds Averaged Navier-Stokes turbulence model methodology, a time filter is applied to
the dependent flow variables resulting in the decomposition of the instantaneous velocity field into
mean and fluctuating components,

u = u+u′ (1)

and produces new equations that that are very similar to the unfiltered equations with the addition
of the Reynolds stress τt ,

τt =−ρu′⊗u′. (2)

This new apparent stress arises mathematically through the filter operation applied to the nonlinear
advection term. It is responsible for the modification of the flow field through turbulent fluctu-
ations. In terms of numerical simulation, it represents the “closure problem” in that additional
information or equations are now required that describe τt in order to close the filtered system of
equations making solutions possible. Given a description of τt , it is added to the ”real” stresses
in the original momentum equation, providing the necessary coupling. A common approach is to
use the Boussinesq approximation where the Reynolds stresses are related to the filtered stresses
through the following;

τt =−ρu′⊗u′ ≈ µt [∇ū+∇ūT ]− 2
3
[µt∇ · ū+ρk]I (3)

where µt is the turbulent or eddy viscosity and

k =
1
2

u′ ·u′ = 1
2
(u′u′+ v′v′+w′w′) (4)

is the turbulent kinetic energy. The last term in Equation 3 is necessary for the trace of both sides
of the expression to be consistent. Now the closure problem reduces to the task of calculating the
eddy viscosity and turbulent kinetic energy.

9CASL-U-2013-0203-001 



3 Governing Flow Equations

The equations governing fluid motion are the Navier-Stokes equations. These equations are listed
in Table 1. They represent the conservation of mass and momentum. These equations are written
in “residual” form which is typical for the discretization of these equations via the finite element
method. In these equations, ρ is the density (a constant), u = ui, i = 1,2,3 is the ”Reynolds

Table 1. Navier Stokes Equations.
Governing Equations

Continuity Rρ = ∇ ·u = 0
Momentum Rm = ρ

∂u
∂ t +ρu ·∇u−∇ ·T−ρfi = 0

Energy RT = ρCp
∂T
∂ t +ρCpu ·∇T +∇ ·q+∇ ·qr−∇ · = 0

Averaged” velocity vector with index i representing Cartesian components in the (x,y,z) directions,
T is temperature, Cp specific heat, T is the stress tensor for a Newtonian fluid;

T =−pI+ τ + τt =−PI+µe f f [∇u+∇uT ]− 2
3

µe f f (∇•u)I (5)

where p is the isotropic hydrodynamic pressure, µe f f is the effective dynamic viscosity that can
have contributions from turbulence models (e.g., µe f f = µ + µt), and I is the unity tensor. It is
common practice to replace the pressure in the momentum equation with the sum of hydrodynamic
pressure and turbulent kinetic energy;

P = p+
2
3

ρk. (6)

Therefore, the equations are closed by providing an estimate of the eddy viscosity and turbulent
kinetic energy.

3.1 Heat Flux Vector

The heat flux vector is given by the Fourier model:

q =−κ∇T (7)

where κ is the coefficient of thermal conductivity which can be specified by the specific heat
capacity, dynamic viscosity and Prandtl number (Pr); κ = µCp/Pr.

A radiation source, qr, also appears in the temperature equation. For low speed flows, ρfi
would induce a buoyancy force through temperature gradients that have components orthogonal to
the gravity vector.
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3.2 Viscous Dissipation Source Term

In the case of low speed incompressible flow, the viscous dissipation flux term ∇ · (τ ·u) is written
in non-conservative terms as; Φ = (τ : ∇u) = 1

2 µ‖∇u+∇uT‖2− 2
3 µ(∇ ·u)2 and is implemented

as a source term. This term is sometimes omitted from the equation.

3.3 Turbulent Heat Flux Closure Model

The averaged temperature equation contains the turbulent heat closure term, ρu′h′, which includes
the fluctuating enthalpy h′ =CpT ′ and is modeled using the Boussinesq analogy;

qt =−ρu′h′ ≈−κt∇T (8)

where a turbulent or eddy conductivity is defined as;

κt =
µtCp

Prt
(9)

and Prt is the turbulent Prandtl number.

Similar to the assumption that lead to equation 5 the total heat flux combines the laminar and
turbulent contributions; (q = q+qt). In the simulation of turbulent flows, the viscosity coefficient
in the viscous fluxes is replaced with the sum of the natural and eddy viscosity (µt + µ) and the
heat conductivity is replaced by the sum of natural and turbulent conductivity (κt +κ) in equations
(5, 7). The turbulent Prandtl number Prt is also specified.

For RANS models that do not model the turbulent kinetic energy such as the Spalart-Allmaras [17]
model presented below, the terms that contain turbulent kinetic energy that appear in the Favre av-
eraged momentum and energy equations are simply neglected. The assumption being made that it
is negligible compared with the total energy.

Note that an additional closure term appears in the temperature equation due to filtering the
dissipation term;

Φ = τ : ∇u = τ : ∇u+ τ ′ : ∇u′. (10)

In this equation the (:) symbol is used to represent a double contraction between two second-order
tensors. The second term on the r.h.s. of equation 10 is currently being neglected.

3.4 Spalart-Allmaras Eddy Viscosity Model

The Spalart-Allmaras turbulence model equation [17] for an incompressible fluid is given in Ta-
ble 2. The eddy viscosity is given by,

µt = ρν̂ fv1. (11)

11CASL-U-2013-0203-001 



Table 2. Spalart-Allmaras RANS Turbulence Model Equation.

Rν̂ = ρ
∂ ν̂

∂ t +ρu ·∇ν̂−∇ ·
(

ρ

(
ν+ν̂

σ

)
∇ν̂

)
−Cb1ρν̂ Ŝ+Cw1 fwρ

(
ν̂

d

)2
− Cb2ρ

σ
(∇ν̂ ·∇ν̂) = 0

Functions defining the source terms and non-conservative viscous terms in the model are listed
below;

χ =
ν̂

ν

fv1 =
χ3

χ3 +C3
v1
, fv2 = 1− χ

1+χ fv1
, fw = g

(
1+C6

w3

g6 +C6
w3

)1/6

g = r+Cw2(r6− r), r =
ν̂

Ŝk2d2

Ŝ = (2ΩΩ)1/2 +
ν̂ fv2

k2d2 , Ω =
1
2
(
∇u−∇uT) (12)

where Ω is the rotation tensor. Model parameters are listed in Table 3.

k Cb1 Cb2 σ Cw1 Cw2 Cw3 Cv1 Cv2

0.41 0.1355 0.622 2/3 Cb1
k2 + 1+Cb2

σ
0.3 2.0 7.1 5.0

Table 3. Model parameters for Spalart-Allmaras turbulence
model.

k is von Karman’s constant, and d appearing in the source terms represents the normal distance
to the wall. At a solid wall, µt = 0, and therefore the boundary condition is, ν̂w = 0. A different
formula for Ŝ has been proposed in Blazek [3] that prevents it from taking a value of zero. The
modified term, Ŝmod , is;

Ŝmod = fv3 (2ΩΩ)1/2 +
ν̂ fv2

k2d2 ,

fv2 =

(
1+

χ

Cv2

)−3

fv3 =
(1+χ fvv1)(1− fv2)

max(χ,0.001)
. (13)
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3.5 Normal Distance to the Wall

The Spalart-Allmaras turbulence model described above requires the normal-distance-to-wall (ndtw)
to evaluate the wall damping functions. models. The technique used in Drekar is presented by
Tucker [18]. A distance scalar variable is solved for from the equation listed in Table 4. It has the

Table 4. Equation for Determining Normal-Distance-to-Wall.
Rφ =−∇2φ −1

boundary condition, φw = 0 at walls. The normal distance is then determined from

d =−

√√√√ ∑
j=1,3

(
∂φ

∂x j

)2

±

√√√√ ∑
j=1,3

(
∂φ

∂x j

)2

+2φ (14)

and equals the minimum absolute value of the two choices. In Drekar::CFD, this equation is solved
once as a pre-processing step. The solution is then read from file at the initiation of the fluid solve.
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4 Computational Experiments

4.1 LES

The Large Eddy Simulation of periodic 3x3 spacer/rod 3d 10d model has been summarized in a
NURETH-14 conference paper [14], a level 2 CASL THM CFD milestone report (THM.CFD.P4.02) [12],
and a CASL senior scientific leadership team site review at Sandia National Laboratories Decem-
ber, 17, 2012 [16]. These reports contains LES ranging from 672K up to 12M element meshes.
These simulations were difficult to complete due to the job queuing system on Jaguar/Titan that
only allows 12 hours of continuous execution.

Time averaged statistics such as the pressure drop across the spacer grid, turbulence intensity
and eddy viscosity plotted along the center line of a sub-channel, and the total kinetic energy were
trending towards grid convergence but it was also clear that additional refinement was necessary.

A stretch goal associated with the LES task of the present milestone was to run a 24M element
mesh simulation. This simulation was started in the second half of CY2012. Nearly 0.25 sec.
(seven flow through times) has been completed. It was being run on Jaguar/Titan using 8,912
cores. However, do to insufficient computational resources and interruptions in user access to the
machine, this simulation has not been completed. Therefore, no new information of significance
has been generated for this report.

4.2 Fully Developed Pipe Flow

Kays&Crawford [7] have derived expressions for the Nusselt number for fully developed pipe
flow both laminar and turbulent. For laminar flow theoretical values for constant wall temperature
and constant heat flux wall boundary conditions have been derived. This is a very good thermal
hydraulic test case. In this section, we review the procedure for computing Nu for fully devel-
oped pipe flow and compare the analytic and semi-analytic values from Kays&Crawford [7] with
computed values from Drekar solutions.

4.2.1 Laminar Flow

Consider fully developed flow in a three-dimensional circular pipe. The flow is considered fully
developed when the radial velocity profile does not change with axial location in the pipe. This
condition can be achieved through periodic inflow-outflow boundary conditions and a momentum
source term driving the flow in the axial direction.

The Nusselt number is defined as;

Nu =
hD
κ

(15)
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where h is the local convection heat transfer coefficient, D is is a reference length scale which in
this case is the pipe diameter and κ is the thermal conductivity coefficient. The mean temperature
or mixing temperature Tm is the average temperature of a cross-section of the pipe and is defined
as;

Tm =
1

ρVA

∫
A

ρu ·nT dA (16)

where A is the cross-sectional area, V is the average axial component of velocity defined as;

V =
1

ρA

∫
A

ρu ·ndA (17)

and u is the velocity vector at a point on the integration surface and n is a unit vector normal to the
surface. Newton’s law of cooling can be stated as;

q̇′′w = h(Tw−Tm) (18)

where q̇′′w is the wall heat flux. The wall heat flux is defined as;

q̇′′w =
1
L

∮
L

κ
∂T
∂n

dl. (19)

In this case ∂T
∂n is the temperature gradient normal to the wall and tangent to the surface for which

the flux is computed and the integration is a line traversing the circumference of the tube. In a
similar way, the local (axial location) reference wall temperature is computed as;

Tw =
1
L

∮
L

T dl. (20)

The final definition of Nu is;

Nu =
hD
κ

=
q̇′′wD

κ(Tw−Tm)
. (21)

The analytic values of Nusselt number for fully developed laminar pipe flow for constant wall heat
flux and constant temperature are presented in Table 5 along with predictions using Drekar::CFD.
The percent difference between analytic and numerical values are also shown. For this large Prandtl

Nu Nu
(const. q̇′′w) (const. T )

K&C 4.364 3.658
Drekar 4.430 3.682

%∆ 1.5% 0.6%

Table 5. Fully developed laminar pipe flow, Nu (const. heat flux),
Nu (const. temperature), Re = 10, Pr = 7.0.

number, the near wall resolution is seven times greater for the thermal boundary layer than for the
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momentum boundary layer. Therefore, a very fine mesh was used to capture the thermal boundary
layer. The Drekar solutions (Pr = 7, ReD = 10) were obtained by solving direct-to-steady-state on
a mesh containing 344,064 elements. The tube diameter is (D = 0.01 m). Two views of a typical
computational mesh are shown in Figure 1 which are reproduced from an earlier CASL level
2 THM CFD milestone report [11]. In these simulations, the inflow velocity profile and initial

Figure 1. Two cut-away views of the 62,000 element tube
mesh [11].

conditions are parabolic with respect to the radius. These conditions correspond to the analytic
solution for velocity. The inflow temperature is constant and so the thermal boundary layer grows
in the downstream direction. The Nusselt number is derived assuming a fully developed velocity
field and temperature. Therefore, a thermal entry length is defined as the distance required for the
temperature boundary layer to reach a point where the cross-section profile no longer varies with
stream-wise location. Kays&Crawford derive the thermal entry length for laminar flow as;

x
D

= 0.05 Pr ReD (22)

for both constant temperature and constant heat flux wall boundary conditions. For the conditions
presented here, x

D = 3.5. The computational domain was x = 20D and Nu was computed at x =
10D.

4.2.2 Turbulent Flow

We now consider heat transfer from the wall in fully developed turbulent pipe flow. This situation
is again realized by applying periodic inflow-outflow boundary conditions and a momentum source
in the axial direction. This problem was studied in an earlier CASL THM CFD level 2 milestone
report [11]. In that report, the law of the wall given by;

U+ =
1

0.41
ln(y+)+5.2 (23)

was reproduced using the Spalart-Allmaras RANS turbulence model. We summarize the results
from that report in the following Figures; 2, 3 and 4 which show the time-stepping to steady-state
history, mean velocity profiles and comparison of computational results to the theoretical law of
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Figure 2. Time history of total kinetic energy in the tube with the
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Figure 4. Law-of-the-Wall for the tube with the Spalart-Allmaras
turbulence model [11].

the wall respectively. These results show that given adequate near wall resolution (y+ ≤≈ 10) the
non-dimensional velocity profile (law of the wall) is accurately reproduced.

For the case of fully developed turbulent pipe flow, the time averaged velocity profile can be
approximated by a one-seventh power law. For Prandtl number near unity, Reynolds analogy states
that the temperature profile will be similar to the velocity profile [7], thus,

ū
ūc

=

(
1− r

rw

)1/7 T̄ −Tw

T̄c−Tw
=

(
1− r

rw

)1/7

. (24)

Using this assumption, Kays&Crawford [7] derived a Nusselt number based on the mean velocity
and temperature profiles (13-8);

Nu =
0.152 Re0.9

D Pr
0.833[2.25ln(0.114 Re0.9

D )+13.2Pr−5.8]
(25)

and for Prandtl number in the range (0.5-1.0), a simpler expression was derived (13-9);

Nu = 0.022 Pr0.5 Re0.8
D ReD < 105. (26)

These two formulas expressing ReD vs. Nu are plotted in Figure 5. The thermal entry length for
turbulent flow is much longer than the laminar case. It is estimated from Kays&Crawford that
for x

D = 20, the error in Nu is approximately 2% ([7] p. 264). Drekar::CFD simulations were
conducted using the Spalart-Allmaras RANS turbulence model. Nusselt numbers were computed
to compare with these two expressions. The computational mesh contained 167,936 elements. The

18CASL-U-2013-0203-001 



 10

 100

 1000

 10000  100000  1e+06

N
u

ReD

Nusselt Number for Pr=0.5,1.0,5.0 in tube3d

KC,Pr=5,eq.13-8
KC,Pr=5,eq.13-9
KC,Pr=1,eq.13-8
KC,Pr=1,eq.13-9

KC,Pr=0.5,eq.13-8
KC,Pr=0.5,eq.13-9

Figure 5. Kays&Crawford correlations for Nu vs. Re at different
Pr for fully developed turbulent pipe flow with constant heat flux
wall BCs [7].

ReD y+ ∆ymin Uz max.
24,800 1.69 1.513e-5 2.48
53,300 3.39 1.513e-5 5.33

113,900 6.71 1.513e-5 11.39

Table 6. Fully developed turbulent pipe flow with The Spalart-
Allmaras model.
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Reynolds number varied from 24,800-113,900, Pr varied from 0.5-1.5 and Prt varied from 0.5-
2.0. A summary of the flow conditions is contained in Table 6. ReD vs. Nu plots for variable Pr
and constant Prt are shown in Figure 6. ReD vs. Nu plots for constant Pr are shown in 7. The
predictions predict the correct slope but are shifted due to the influence of Prt. The computations
show that for Prt=1, the predictions improve as Pr increases. The computations also show that the
Prt lies somewhere between 0.5 and 0.9.
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Figure 6. Comparisons of Nu vs. Re between
Kays&Crawford [7] (eq.13-8) and Drekar for Pr=0.5,1.0,1.5,
Prt=1 and constant heat flux wall BCs.
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4.3 Heat Transfer in 3x3 Rod/Spacer Grid Model

In this section, we discuss results from steady-state RANS thermal hydraulic simulations of the
periodic 3x3 rod/spacer grid model. The mesh geometry spanned three diameters upstream of the
spacer leading edge and 25 diameters downstream of the spacer trailing edge. The inflow veloc-
ity was Uz = 5 m/s. The rod diameter was D = 0.0095 m. The flow properties were; density
(1 kg/m3), dynamic viscosity (2.462845e−7 kg/ms), heat capacity (1 J/(kg K)), thermal conduc-
tivity (1.69851e−7 W/(m K)) resulting in ReD = 192,800 and Pr = 1.45. The Spalart-Allmaras,
turbulence model was used in these simulations. The turbulent Prandtl number was varied from 0.5
- 1.5. The inflow temperature was (1 K). Two different wall boundary conditions were investigated;
constant wall temperature (Tw = 5 K) and constant heat flux (q̇′′w =−0.1 W/m2).

Four simulations using different mesh resolutions were run. The flow solution was first solved
by time marching pseudo-transient to steady-state without solving the energy equation. And then
in a separate execution, the temperature equation was solved by either pseudo-transient or direct-
to-steady-state with the flow solution supplied as data. The largest mesh, with 14,994,367 elements
was initiated by taking the mesh containing 1,874,296 and uniformly refining both mesh and so-
lution. The geometry was not changed by refinement. In Table 7 the mesh sizes and total kinetic
energy of the steady-state solutions are presented. The percent difference between a mesh and
the next finer mesh are computed. The kinetic energy is monotonically with mesh refinement.
Temperature contours on the center rod and at ten axial (z) planes for constant temperature and

Elements TKE/vol. %∆

1,874,296 12.61645 xxxx
3,879,436 12.87866 2.02
8,301,944 13.09879 1.70
14,994,367 13.14279 0.30

Table 7. Kinetic energy for the 3x3 rod/spacer grid steady-state
RANS simulations using the Spalart-Allmaras turbulence model,
for different mesh resolutions.

constant heat flux wall boundary conditions are shown in Figures 8 and 9 respectively. In both
cases, rapid mixing just beyond the mixing vanes is evident and the temperature distribution is
becoming more homogeneous. The difference between the total heat flux leaving the domain and
the heat flux entering the domain was computed for each of the four mesh resolutions and both
wall boundary conditions. Table 8 shows the heat flux along with the y+ and the total eddy vis-
cosity in the computational domain normalized by the kinematic viscosity. While these results to
not establish mesh convergence, and all four meshes are rather coarse based on y+, the quantities
are monotonically changing so trends can be established. A comparison of heat fluxes for a given
mesh for the two different boundary conditions is not really meaningful since the wall temperature
and the wall heat flux were chosen arbitrarily.
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Figure 8. Temperature contours in 15M element 3x3 rod/spacer
grid thermal fluid simulation with constant temperature wall BCs.

Figure 9. Temperature contours in 15M element 3x3 rod/spacer
grid thermal fluid simulation with constant heat flux wall BCs.

Interestingly, though, is the trend towards a lower heat flux as the resolution increases. This
may be due to a reduction in the amount of eddy viscosity in the system. As can be seen from
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Table 8, the total eddy viscosity goes down with increasing mesh resolution. This same trend
can be seen in Figure 10 which is reproduced from an earlier CASL level 2 milestone report
(THM.CFD.P4.02) [12]. In this Figure, the eddy viscosity is plotted for three different solutions
having different mesh resolutions along the center of a sub-channel of the same model geometry as
the one used in the current simulations. The eddy viscosity is computed using the Spalart-Allmaras
RANS model. The eddy viscosity is less for the higher resolution mesh solution.

Elements y+ Total ν̂t/ν H (const q̇′′) H (const. T)
1,874,296 66 453.947 2.418 2.691
3,879,436 54 426.666 2.165 2.687
8,301,944 47 409.065 2.160 2.645
14,994,367 44 382.678 2.130 2.514

Table 8. Heat flux leaving the domain for the 3x3 rod/spacer grid
steady-state RANS simulations using the Spalart-Allmaras model,
at different mesh resolutions. Heat flux computed with constant
temperature and constant heat flux wall boundary conditions.
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Figure 10. Normalized SARANS eddy viscosity for 1M, 3M and
6M element meshes of 3d 10d periodic 3x3 rod/spacer grid model
along center line of a sub-channel in z-direction [12].

Using the flow solution for the finest mesh, Prt was varied from 0.5 - 1.5 and the difference
in heat flux leaving the domain and heat flux entering the domain was computed for both wall
boundary conditions. Table 9 shows that the heat flux is indeed sensitive to Prt and that higher Prt,
the less heat exchanged to the fluid.

24CASL-U-2013-0203-001 



Prt H (const q̇′′) H (const. T)
0.5 2.155 3.270
1.0 2.130 2.514
1.5 2.091 2.055

Table 9. Variation of heat flux with Prt for the 14,994,367 el-
ement mesh. Heat flux computed with constant wall temperature
and constant wall heat flux boundary conditions.
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4.4 Conjugate Heat Flow

Drekar::CFD is a mult-physics solver. Two or more different systems of equations representing
two or more different physical models can be solved in a tightly coupled way. An example of
this is conjugate heat transfer between solid rods in a reactor core and water contained in the
reactor vessel. In this section conjugate heat transfer is demonstrated using the same reactor model
geometry for the fluid domain as discussed above for 3x3 rod/spacer thermal hydraulics problem.
The total mesh contained 2,601,044 elements. The fluid mesh contained 1,391,936 element and
the solid mesh contained 1,209,108 elements.

The inflow velocity was (Uz = 5 m/s). The fluid properties were; density (943 kg/m3), dynamic
viscosity (2.3e− 3 kg/ms), heat capacity (4248 J/kgK) and thermal conductivity (6.879 W/mK)
resulting in Pr = 1.42 and ReD = 192,800. The turbulent Prandtl number was specified as Prt =
0.9.

The solid material properties for the fuel pellets and the cladding were assumed to be equal to
Zirconium; density (6570 kg/m3), heat capacity (278 J/kgK) and thermal conductivity (12.4 W/mK).

The conjugate solid-fluid problem ran on Titan using 4096 cores until roughly two flow through
times were simulated (≈ 0.11722 sec.). At this point the flow was approximately steady-state, how-
ever, the temperature in the solid and fluid were not in balance. Since the temperature equations
are linear with respect to the flow variable, the two temperature equations can be solved simulta-
neously by prescribing the flow variables as data. This is a much more efficient way to achieve
a steady-state condition. The solid-fluid temperature equations were solved by pseudo transient
to steady-state using 256 cores, and took only 498 sec. and 74 time steps to reach 25 sec. of
computational time.

A constant volumetric source term, (1.0e8 J/m3s), produced an increase in temperature from
120 K to 175 K in the rods. The maximum temperature in the fluid is 138 K. Temperature contours
in the solid rods are shown in Figure 11. The rods are hottest at the center and cool radially due to
heat transfer to the fluid. Temperature contours on the surface of the center rod and on five axial
(z) planes are shown in Figure 12. Figure 13 shows an axial plane (z) of the temperature solution
just down stream from the mixing vanes. The contour scale was changed to emphasize temperature
mixing. Mixing due to swirl is evident.
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Figure 11. Temperature contours in solid rods of a 3x3 rod/spacer
grid conjugate heat transfer simulation.

Figure 12. Temperature contours in fluid region of a 3x3
rod/spacer grid conjugate heat transfer simulation.
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Figure 13. Temperature contours in an axial (z) plane just down
stream of the mixing vanes in a 3x3 rod/spacer grid conjugate heat
transfer simulation. Note a change in scale to emphasize tempera-
ture mixing.

28CASL-U-2013-0203-001 



4.5 Embedded Uncertainty Quantification for Thermal Hydraulics

In this section we describe the use of embedded algorithms to estimate errors in a given Quantity of
Interest (QoI), compute parameter sensitivities and construct a linear surrogate model for UQ based
upon computed sensitivity in two CFD simulations. The first simulation is fully developed steady
laminar flow in a rectangular duct, for which an analytic solution exists. The second simulation
is steady-state turbulent flow through an axisymmetric sudden expansion duct using the Spalart-
Allmaras RANS turbulence model. The algorithms embedded in Drekar::CFD make use of the
same operators and tools that are used to solve the forward problem, namely, Jacobian matrix oper-
ator, weak residual operator, and automatic differentiation. Several CASL VUQ milestones related
to this work have been completed (L3.VUQ.SAUQ.P5.05) [19], (L3.VUQ.SAUQ.P6.01) [20], and
a detailed description of this approach can be found in [4]. In these milestone reports, the derivation
of adjoint based error estimation using Drekar::CFD were discussed and several examples includ-
ing steady-state turbulent flow simulations using the Spalart-Allmaras model were presented. In
this report, parameter sensitivities and a straight forward application to UQ are also included. For
a detailed explanation, the reader is referred to the above cited documents.

Predictive computational analysis and uncertainty quantification (UQ) for multi physics has
many open challenges including; uncertainties arising from: discretization errors, boundary and
initial conditions, model parameters and physical parameters. Analysis and design often focus on
a set of quantities of interest (QoI) rather than the entire state (e.g. partial differential equation
(PDE) solution). The stability, error, uncertainty propagation and sensitivity characteristics for
QoI can be significantly different from the PDE solution itself.

We are addressing these challenges for studies of a moderate number of QoIs dependent on a
large-number of parameters using fully coupled Newton-Krylov methods and embedded adjoint-
based methods to accurately and efficiently compute numerical error estimates and to conduct
sensitivity analysis for QoI. Adjoint methods have been well studied and demonstrated for systems
of PDEs (see; Bangerth&Rannacher [1], Becker [2], Eriksson et al. [5], Estep et al. [6]).

An algorithm for computing error estimates for a Quantity-of-Interest (QoI) is presented next
(taken from [19]). Given low and high order approximation spaces VL and VH respectively. We
will refer to low- and high-order approximations which typically correspond to linear and quadratic
basis approximations respectively. Let the weak solution to a system of PDEs be denoted by,

f(zL,vL) = 0 ∀vL ∈ VL (27)

which is achieved by repeated iterations of Newton’s method,

J∆zL =−f(zL,vL) (28)

where zL is a ”low” order approximation to the continuous solution and vL is a low order weight
function, J(zL,vL) is the Jacobian matrix, ∆zL is the solution update to zL and f is the residual
vector. Define a QoI as:

ΨΨΨH = (ΨΨΨ,vH) ∀vH ∈ VH . (29)

(1) Project the low-order approximation onto a higher-order basis:

P(zL) = zH . (30)
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(2) Compute a high-order residual:

rH =−f(zH ,vH) ∀vH ∈ VH . (31)

Remark

Unlike eq. 27 where Galerkin orthogonality exists, the residual is not necessarily equal to zero in
the higher-order function space.

(3) Form a high-order Jacobian linearized about the projected high-order solution:

JH(zH ,vH) ∀vH ∈ VH . (32)

(4) Solve the adjoint problem:
JT

Hφφφ H = ΨΨΨH . (33)

(5) Finally, estimate the error in the QoI from:

(ΨΨΨ,e) = (rH ,φφφ H). (34)

Remark

The transpose may represent taking the strong-form adjoint (see [4] for more discussion).

As an example, ΨΨΨ = ∂g
∂z where g is determined from,

g(z) =
∫

Ω

zδdΩ. (35)

In this functional, δ has a value of one inside a prescribed box and zero outside the box. In some
cases, the QoI is a boundary term such as heat flux from the wall, or lift or drag of an immersed
object.

(6) Compute sensitivity: Sensitivity in the QoI (g(z(λ ))) now parametrized by (λ ), is estimated
using the same algorithm described above only replacing eq. 34 with;

dg
dλ

=

(
ΨΨΨ,

∂r
∂λ

)
. (36)

Remark

The adjoint sensitivity can be entirely computed from a low order approximation making the pro-
jection, eq. 30 un-necessary and the adjoint problem low-order.
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4.5.1 Error Estimation and Adjoint Sensitivity Analysis for CFD: Fully-Developed 3D Rect-
angular Laminar Duct Flow

In this first example of adjoint based error estimation and sensitivity analysis the fully developed
steady laminar flow in a rectangular cross-sectional duct is simulated. For this problem, an analytic
solution exists,

u(y,z) =
16a2

µπ3 (−
∂ p
∂x

)
∞

∑
i=1,3,5,...

(−1)(i−1)/2
[

1− cosh(iπz/2a)
cosh(iπb/2a)

]
.
cos(iπy/2a)

i3
(37)

For a QoI, the average fluid x-component of velocity (Vx) is chosen;

V̄ =
∫ a

−a

∫ b

−b
Vx dydz. (38)

An analytic solution for the QoI also exists,

V̄ =
a2

3µ
(−∂ p

∂x
)

[
1− 192a

π5b

∞

∑
i=1,3,5,...

tanh(iπb/2a)
i5

]
. (39)

The reference solution was computed using 15 terms in the series. The forward solution was ap-
proximated using SUPG with Q1 elements and the adjoint equation was solved with Q2 elements.
Simulations were conducted with a Nx×Ny×Nz = 100×40×40 element mesh. Solutions were
computed at four Reynolds numbers Re = ρV L

µ
and the solutions were obtained by starting from

a trivial initial guess with a direct-to-steady-state solution procedure. Parameters in this simple
numerical sensitivity study were dynamic viscosity and pressure gradient (µ,G0) respectively.
Figure 14 shows a surface colored by magnitude of x-component of velocity. Table 10 shows
a comparison between the exact QoI and the Drekar predicted QoI and the adjoint based error
estimate for four Reynolds number solutions. The fourth column is the ratio of the adjoint based
error estimate and the true error (difference between exact and Drekar predicted QoI). Table 11
compares the sensitivity of the QoI to the viscosity and pressure at the four Reynolds number so-
lutions. The exact sensitivity is obtained by differentiating the analytical solution (Eq. 39) of the
QoI with respect to either viscosity or pressure gradient.

Re QoI QoI Adj. Eff
(Exact) (Drekar) Est. Err.

50 23.4292 23.4077 2.15e-2 1.01
150 70.2875 70.2230 6.55e-2 1.02
500 234.292 234.077 2.18e-1 1.01

1000 468.583 468.154 4.36e-1 1.02

Table 10. Error Estimation for CFD.
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Figure 14. Vx-component of velocity colored by the magnitude.

Re dQoI/dµ dQoI/dµ Error In dQoI/dG0 dQoI/dG0 Error In
(Exact) (Drekar) Sens. Est. (Exact) (Drekar) Sens. Est.

50 -7.8095 -7.8026 0.09% -4.686e-2 -4.686e-2 0.0015%
150 -70.285 -70.223 0.09% -0.14057 -0.14058 0.0014%
500 -780.97 -780.26 0.09% -0.46858 -0.46859 0.0015%

1000 -3121.0 -3121.0 0.09% -0.93717 -0.93718 0.0014%

Table 11. Adjoint Sensitivity Analysis for CFD.

Figure 15 shows convergence with mesh spacing for the exact error in the QoI, adjoint error
estimate in the QoI (Vx), and the exact relative error in adjoint sensitivity to viscosity (dQoI/dµ)
for Re = 500. Though convergence is close to the expected value discrepancies may be due to the
number of reference values retained in the series, and an issue related to implementation of higher
order periodic BCs. Using a laminar flow problem with an analytic solution and choosing a QoI
that also has an analytic solution allowed us to verify the accuracy of these adjoint based error
estimate and sensitivity analysis. In the next two sections, a much more challenging turbulent flow
problem which does not have an analytic solution will be investigated.
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Figure 15. Convergence of exact error in QoI, adjoint based esti-
mated error in QoI, and exact relative error in sensitivity.
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4.5.2 Adjoint Sensitivity Analysis for CFD: 3D Turbulent Swirling Flow in Circular Ex-
panding Pipe

The second error estimation and adjoint sensitivity analysis example deals with swirling flow in an
axisymmetric sudden expansion tube that was also investigated in an earlier THM CFD milestone
report [11], and defined by Pannala and Stagg in an earlier CASL report ([9]). The Reynolds num-
ber and swirl number were Re = 10e4 and S = 0.04 respectively. The Spalart-Allmaras turbulence
model was used in these simulations. At this Re and S, a steady-state solution is obtained. The
forward solution was obtained using SUPG with Q1 elements and the adjoint problem was solved
using Q2 elements. The mesh contained 300,000 elements and the axis of symmetry was along the
z-axis. The baseline forward steady-state solution was obtained by pseudo-transient to steady-state
time marching, requiring 180 time steps. The maximum time step reached the user-supplied limit
∆tmax = 10 and the solution was integrated to 250 time units. Following this psuedo-transient solu-
tion, a direct-to-steady-state solution was computed from this initial guess in three Newton steps.
Parameter sensitivities were then obtained by reading the forward solution into Drekar and solv-
ing the adjoint problem. Forward solutions for the four perturbed solutions (µ±1%,±10%) were
achieved by solving direct-to-steady-state using the baseline solution as an initial guess. These
solutions required two Newton steps for the 1% perturbation in µ and three Newton steps for the
10% perturbation.

In Figure 16 an example taken from a previous milestone is reproduced [11], showing the x-
component of velocity contours on a surface of constant z-component of velocity. In this case the
Re was the same however, swirl number was (S = 0.08). The parameter of interest in these initial
numerical sensitivity studies is the dynamic viscosity (µ). Two QoI were computed. The first
QoI(1) was the turbulent viscosity in the entire domain;

¯̂ν =
∫

Ω

ν̂ dΩ (40)

and the second QoI(2) was the average cross-stream kinetic energy;

KECR =
∫

Ω

1
2

ρ(u2
x +u2

y) dΩ. (41)

A local linear Taylor series model was constructed as a proposed surrogate model for sampling
UQ.;

q = q̄+
∂̄q
∂ p

(p− p̄) + H.O.T. (42)

Table 12 presents the computed values of the two QoI and sensitivity of the two QoI to dynamic
viscosity obtained by solving the adjoint problem. Table 13 shows an assessment of using a surro-
gate of the QoI obtained from the adjoint sensitivity computed in Drekar for assessing UQ in the
QoI to the parameter, in this case, µ . The significance of these results have an important impact
on UQ. For small variations in parameter space, these results suggest that a surrogate model con-
structed using Taylor’s series and the adjoint sensitivity can be used instead of repeated forward
solutions of the perturbed parameter which will greatly reduce the computational cost of the UQ.
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Figure 16. Image of axisymmetric sudden expansion tube at
steady-state conditions with S = 0.08. Iso-surface of z-component
of velocity colored by x-component of velocity, taken from [11].

QoI QoI computed from Drekar Adjoint Sensitivity
¯̂ν 3.866408e+1 -3.74189e+6

KECR 1.00374e-2 -248.265

Table 12. Estimate of two QoI and adjoint sensitivity for swirling
flow in axisymmetric sudden expansion tube.

Dynamic Viscosity ¯̂ν Computed ¯̂ν Estimated Rel. KECR Computed KECR Estimated Rel.
(µ) from Drekar from Adjoint Error from Drekar from Adjoint Error

1.01e-5 (µ+1%) 3.82937e+1 3.82899e+1 0.01% 1.00122e-2 1.00125e-2 0.003%
1.01e-5 (µ-1%) 3.90421e+1 3.90383e+1 0.01% 1.00620e-2 1.00622e-2 0.002%

1.01e-5 (µ+10%) 3.52712e+1 3.49222e+1 1.0 % 9.74522e-3 9.78914e-3 0.450%
1.01e-5 (µ-10%) 4.28242e+1 4.24060e+1 0.97% 1.02835e-2 1.02856e-2 0.020%

Table 13. Error Estimation and Adjoint Sensitivity Analysis for
CFD.
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4.5.3 Error Estimation 3D Turbulent Swirling Flow in Circular Expanding Pipe

The final example deals with adjoint based error estimation in the same axisymmetric swirling
sudden expansion flow. The Reynolds number, swirl number and turbulence model are the same
as presented in the previous section. The QoI for this example is the volume integral of the x-
component of velocity over half the domain and quantifies to sum extent the strength of the recir-
culation;

ūx =
∫

1
2 Ω

ux dΩ. (43)

Half the domain was chosen in order to produce a non-trivial QoI due to axisymmetry. Had the
QoI been integrated over the entire domain, negative and positive values would have canceled
resulting in zero. Either half could have been chosen or alternatively, the y-component (uy) of
velocity over half the domain could also have been chosen. The swirl problem was run pseudo-
transient to steady-state first on a coarse mesh containing 35,964 elements using 128 cores. The
finer mesh containing 287,712 elements was constructed by uniform refinement of the coarse mesh
using STK Adapt, a Percept tool. The geometry was held constant for the refinement. STK Adapt
interpolates the coarse solution onto the finer mesh which provides a good initial guess for the
direct-to-steady-state solver. The fine mesh problem was run on 256 cores. The direct-to-steady-
state solver took 9 Newton steps, and an average of 17 Gmres iterations per Newton step (150
total) and a total solution time of 303 seconds to compute. A summary of the computational effort
to solve the forward problems is shown in Table 14. Clearly the combination of a coarse initial
solution obtained by a pseudo-transient procedure followed by a direct-to-steady-state solution on
the fine mesh is very efficient for this problem. Finally, the full computational time for solving
the 36K element Q1 stabilized FE nonlinear forward problem (starting from the pseudo-transient
solution) in one Newton step and solving the linear adjoint problem for the 36K mesh for the Q2
stabilized FE was 426 seconds on 128 cores.

Mesh Cores ∆tmax Number CPU time final time CFL
steps (sec.) (sec.) (min-max)

35,964 128 10 89 (time steps) 5100 250 9.5-100,000
287,712 256 N.A. 9 (Newton Steps) 303 N.A. ∞

Table 14. Summary of computational effort of error estimation
for Swirl flow with ReD = 10e4 and S = 0.04.

In Table 15 the results of the Drekar QoI computation and the adjoint error estimate are pre-
sented. The computation of the Drekar QoI for the 288K mesh is also presented. Additionally we
compute the estimated relative error in the Drekar QoI computation and then based on the finer
mesh (288K) QoI we compute the relative error assuming this as the reference value. Using the
adjoint for the 36K element mesh Assuming the finer mesh QoI is correct, this result shows that
the error estimation based on the adjoint solution is reasonably accurate. If time permits (essen-
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tially funding, not CPU time) a more complete study of the accuracy of this error estimate could
be obtained and reported.

Mesh QoI Error Relative Predicted Error Relative Computed Error
(Drekar) est. Adjoint from Reference

35,964 0.002054684 0.000380295 18.5%
287,712 0.002516202 22.5%

Table 15. Error estimation for Swirl flow with ReD = 10e4 and
S = 0.04.

These results suggest that even on a relatively coarse mesh, the error in a QoI related to a
complicated fluid flow problem can be accurately predicted using this methodology.
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5 Summary and Observations

In this milestone report the focus has been on two areas of investigation; numerical simulation of
the thermal hydraulics of a 3x3 rod/spacer grid reactor core sub-assembly and adjoint based error
estimation and parameter sensitivity applied to CFD simulations. These capabilities are highly
relevant to the CASL program.

The heat transfer from tube surface to the fluid was validated in a fully developed laminar pipe
flow by comparing computed Nusselt numbers to analytically derived values. In a similar way
Nusselt numbers were computed from solutions to fully developed turbulent pipe flow at differ-
ent Reynolds number and compared with empirical derived correlations of Nusselt number. The
comparisons show that the slope of the ReD vs. Nu plot is accurately predicted in the numerical
simulations. The results also show a sensitivity to Prt. Numerical simulations bound the correla-
tions if Prt is between 0.5-0.9.

Heat flux at the outflow plane in a 3x3 periodic rod/spacer grid sub-assembly reactor core
model was computed from four different mesh solutions. While grid convergent solutions have not
yet been achieved, heat flux, eddy viscosity generation and kinetic energy trends are all monotonic.
It was argued that the reduction in heat flux as the mesh is refined was due to a reduction in the
level of eddy viscosity present as the mesh is refined.

A demonstration of conjugate heat transfer in the same sub-assembly model was demonstrated.
The energy equation is linear with respect to the flow variables and so the conjugate problem is
solved in two steps. In the first step, flow is solve using pseudo-transient time stepping. In the
second step, the fluid flow solution is read into the code as data and the energy equations for both
solid and fluid are solved simultaneously.

In the second investigation adjoint based error estimates and parameter sensitives were com-
puted for two flow problems. The first problem was fully developed laminar flow in a rectangular
duct which has an analytic solution. The QoI that was chosen also has an analytic solution. There-
fore, the accuracy of the error estimates and sensitivities could be assessed. The accuracy was
found to quite good.

The second problem involved swirling turbulent flow through an axisymmetric sudden expan-
sion tube. The Spalart-Allmaras model was used in these simulations. Two QoI were selected; the
volume integral of eddy viscosity and cross-stream kinetic energy and dynamic viscosity was cho-
sen as a parameter. Sensitivities were computed with respect to viscosity. These sensitivities were
used to construct Taylor series based surrogate models of the QoIs. The QoIs were then computed
from the surrogate models and compared to computations were the viscosity was perturbed in the
same direction and amplitude as for the surrogate models. For both QoIs, the surrogate models
were found to be accurate representations of the QoIs. In the future, this approach may be applied
to UQ studies.

The final problem involved computing error estimates and for this problem two mesh resolu-
tions were used. The second mesh was obtained by uniformly refining the first mesh. The QoI
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was computed on both meshes and the error estimate was computed on the coarse mesh. The error
estimate of the QoI computed on the coarse mesh was compared to the relative error between the
two mesh resolution predictions of the QoI and were found to be in close agreement.
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