Power uprates
and plant life extension CASL-U-2013-0213-000

LNASL

Consortium for Advanced Simulation of LWRs

Engineering design L3:VUQ.SAU Q.P7.01
and analysis
Y Separate Effects V&YV for Hydra-TH

Brian Williams
Lori Pritchett-Sheats
Los Alamos National Laboratory

Kevin Copps

Science-enabling
high performance
computing

Laura Swiler
Sandia National Laboratories

Ernesto Prudencio

University of Texas Austin
September 30, 2013

Fundamental science

Plant operational data

LA e
l..l. 480008 Sas sas -
490908 . .

(il Ll

L] e
S LLIY
LIl

Separate Effects V&V for Hydra-TH
CASL Milestone L3:VUQ.SAUQ.P7.01

Brian Williams?, Lori Pritchett-Sheats?, Kevin Copps3, Laura Swiler4, and Ernesto
Prudencio®

1Statistical Sciences Group, Los Alamos National Laboratory
2Computational Physics and Methods Group, Los Alamos National Laboratory
3Validation and Uncertainty Quantification Processes Department, Sandia National
Laboratories
4Optimization and Uncertainty Quantification Department, Sandia National
Laboratories
SInstitute for Computational Engineering and Sciences (ICES), UT-Austin

1. Introduction

Validation of computational models (referred to as codes) for specific applications
involves quantitatively establishing their fidelity to representative observational
data. Codes generally consist of multiple component models, each containing one or
more input parameters. These inputs typically describe boundary and initial
conditions, but may also represent uncertain quantities in closure laws needed to
complete calculations of interest. Parameters in this latter category (referred to as
calibration inputs) are often tuned to separate effects data representative of the
phenomenon being modeled. Predictions of integral effects experiments tailored to
the applications of interest are made based on these tuned parameters, and if they
compare favorably to the observed data relative to its quantified observational
error, the code is deemed validated for these applications.

The above approach to code validation typically ignores the fact that calibration
inputs are inherently uncertain in an epistemic sense. Their optimal values are not
known a priori to the analyst, a reality explicitly acknowledged by the act of tuning
them to experimental data. In fact, uncertainty in the observational data used to
tune such parameters should be formally transferred to their estimation.
Furthermore, this implied uncertainty should be carried through the predictions
upon which code validation decisions are made, and eventually accounted for in
quantifying uncertainty in figures of merit used to make decisions in reactor
applications. Unfortunately, these fundamental steps of rigorous uncertainty
quantification are often not conducted in practice.

This fact is acknowledged by the Verification, Validation and Uncertainty
Quantification (VUQ) focus area of the Consortium for Advanced Simulation of Light
Water Reactors (CASL). VUQ has undertaken several projects over the last three
years to bring mathematical rigor to the probabilistic inference of calibration inputs.
For example, Markov chain Monte Carlo (MCMC) methods such as DiffeRential

2

Protected under CASL Master NDA Official Use Only
CASL-U-2013-0213-000

Evolution Adaptive Metropolis (DREAM) and Delayed Rejection Adaptive Metropolis
(DRAM) have been previously made available to CASL researchers for Bayesian
calibration of model inputs through the Design Analysis Kit for Optimization and
Terascale Applications (DAKOTA) developed and distributed by Sandia National
Laboratories [1].

Bayesian calibration involves assuming an initial (prior) probability distribution for
the calibration inputs, which often derives from subject matter expert opinion and
analysis of available separate effects experiments, but may be diffuse or non-
informative if little information about these parameters is available initially.
Experimental data are then identified to cover integral effects of specific relevance
to the application at hand. These data, in conjunction with their assumed or
inferred uncertainties, are used to update the probability distribution of the
calibration inputs. This updated distribution, referred to as the posterior, thus
accounts for both the initial assessment of uncertainty in the parameter values and
the knowledge gained through constraints imparted by the integral effects
experimental data. Unfortunately this posterior distribution is generally not
available analytically, but may be sampled via MCMC (for example) using modern
computational tools.

In many applications, the code(s) needed to solve the problem at hand are
sufficiently complex that only tens or hundreds of runs may be feasible within the
allowable time horizon. Direct application of MCMC may require thousands of runs
or more, limiting its usefulness. However, a small number of carefully planned code
runs can be utilized to build a fast surrogate model, which can be used to predict
code output at arbitrary parameter settings (within specified bounds) with
quantified uncertainty. A validated surrogate can then be used in place of direct
code runs in a MCMC implementation, allowing a good approximation to the
calibration input posterior distribution to be sampled as necessary. Such a
surrogate-based approach to Bayesian model calibration has been implemented in
the Matlab package Gaussian Process Models for Simulation Analysis (GPMSA)
developed at the Los Alamos National Laboratory (LANL).

GPMSA as currently implemented in Matlab is not compatible with the Virtual
Environment for Reactor Analysis (VERA), the CASL platform for deployment of
predictive, science-based simulation technology to support performance
enhancement of light water reactors. To address this, VUQ has had an ongoing
collaboration with the Institute for Computational Engineering and Sciences (ICES)
at the University of Texas Austin to deploy GPMSA through their Quantification of
Uncertainty for Estimation, Simulation, and Optimization (QUESO) library [2]. The
QUESO library can be interfaced through the current release of DAKOTA, which is
the designated VERA component supporting uncertainty analysis for CASL
applications.

Prior to calibration of model parameters in codes, the codes should have been
rigorously verified. The verification process involves several aspects including

3

Protected under CASL Master NDA Official Use Only
CASL-U-2013-0213-000

software quality assurance (SQA), code verification and solution verification. Code
verification typically involves comparison of code calculations against analytical or
manufactured solutions, while solution verification analyzes numerical convergence
of code solutions as meshes are successively refined. In the coming fiscal year, VUQ
will integrate the Percept [3] software developed at Sandia National Laboratories for
solution verification analysis into VERA.

This report has two primary objectives: (1) Demonstrate solution verification
analysis tools in Percept, and (2) Provide an update on the status of GPMSA
deployment in QUESO. Section 2 briefly describes the application used to
demonstrate Percept and DAKOTA-QUESO-GPMSA. This application involves large-
eddy simulation of a lid-driven cavity (LDC) flow, which serves as a verification and
validation benchmark problem for Hydra-TH, a VERA component used for CFD
calculations of thermal hydraulic phenomena. Section 3 provides an overview of
Percept with a demonstration of solution verification analysis on the LDC flow
application. Section 4 provides an overview of GPMSA and describes its
implementation in DAKOTA-QUESO for the LDC flow application. Section 5
concludes with a discussion of the next steps planned for evolution of these
capabilities in the upcoming fiscal year.

2. Lid-driven Cavity Flow Demonstration Problem

The LDC flow benchmark problem for Hydra-TH is described in detail in Section 3.1
of the Hydra-TH Verification and Validation (V&V) manual [4]. We provide a brief
discussion here to orient the reader with basic elements of this benchmark.

This problem focuses on the large-eddy simulation of a LDC flow at a Reynolds
number of Re = 10,000. Calculations are performed with Hydra-TH for each of two
turbulence models, the Smagorinsky subgrid-scale (SSGS) model and the wall-
adapted large eddy (WALE) subgrid-scale model. The solution verification study
conducted with Percept considered three hexahedral grids, starting from a coarse
mesh with 32 x 32 x 16 elements (reflecting cavity dimensions of 1 unit in the x and
y directions, and 0.5 unit in the z direction) and continuing with two successive
refinements constructed as described in Section 3. The grid spacing is geometrically
stretched away from the wall in the stream-wise x and vertical y directions, and
uniform in the span-wise z direction.

Both the SSGS and WALE turbulence models have three calibration inputs that are
exposed to the user through the Hydra-TH control file. The Percept solution
verification studies were conducted with these parameters set to their nominal
values, while the demonstration of Bayesian input calibration was carried out on the
three parameters of the SSGS model. Table 1 provides the nominal values for the
SSGS and WALE inputs, along with bounds on the allowable variation of the SSGS
inputs.

4
Protected under CASL Master NDA Official Use Only
CASL-U-2013-0213-000

Table 1. Calibration inputs for SSGS and WALE turbulence models.

SSGS WALE
Parameter Nominal Minimum | Maximum | Parameter Nominal
Cs 0.18 0 0.36 Cw 0.5
Prandtl 0.8889 0.8 1 Prandtl 0.8889
Schmidt 1 0.5 1.5 Schmidt 1

The outputs considered for calibration are mean velocity in the stream-wise x-
direction (u) computed along the vertical centerline, and mean velocity in the
vertical y-direction (v) computed along the horizontal centerline. The calculated
kinetic energy profile at the nominal parameter settings was observed to reach a
stationary state prior to the passage of 100 time units, and mean velocities
computed from calculated velocities in the 100 to 500 time unit window constitute
the u and v figures of merit. All calculations for the DAKOTA-QUESO-GPMSA
demonstration were made using the medium resolution (64 x 64 x 32 element)
mesh constructed for the LDC verification study reported in the Hydra-TH V&V
manual [4], as Section 3.1.3 of this manual indicates convergence of mean velocities
was qualitatively observed at this grid spacing.

DAKOTA was run to generate 50 Latin hypercube samples in the three calibration
inputs of the SSGS turbulence model, and Hydra-TH was run at each setting to
obtain calculated mean u and v velocities. The Latin hypercube parameter settings
along with the calculated mean u and v velocities were used to construct surrogate
models for fast prediction of mean u and v velocity with quantified uncertainty, valid
for arbitrary parameter settings within the prescribed ranges of Table 1.
Specifically, the 50 calculated u velocities are centered and scaled, as are the 50
calculated v velocities. The transformed calculations are stacked and subjected to
principal component analysis, and the three eigenvectors associated with the three
largest singular values are selected to represent the observed joint variation in u
and v velocities from the 50 runs. In GPMSA, the surrogate models have the
following form,

n(t) = kiw; (t) + kows (t) + k3’w3<t) + e

where t denotes the three calibration inputs, n(t) denotes the surrogate model
evaluated at ¢, k; denotes the i-th eigenvector having associated coefficient w;(t), and
e denotes a Gaussian noise process collectively representing the contribution to
output variation from unused eigenvectors. The coefficients w;(t) are modeled as
independent Gaussian processes. Additional details pertaining to how predictions
with quantified uncertainties are generated from this representation are provided
in [5].

The experimental data on u and v velocities published by [6] were used to calibrate
the three SSGS inputs of Table 1. The prior distribution on the calibration inputs
was assumed to be uniform on the ranges given in Table 1. Figure 1 plots the

5
Protected under CASL Master NDA Official Use Only

CASL-U-2013-0213-000

calculated mean u and v velocities from the 50 Hydra-TH runs employing the SSGS
turbulence model with the experimental data.

0.1

oe

. o i +
$
02 | 02 +

h

0.4

o- + + +
p o fhedeed

02 ,++*++

0 on 0z 03 04 05 o8 07 08 o8 1 0 o 0z o3 04 05 o8 o7 08 09 1

y X

Figure 1. Plot of 50 Hydra-TH calculations from variation of SSGS inputs (yellow)
and experimental data with 3-0 uncertainty (blue).

The Percept verification study described in Section 3 considered four figures of
merit in addition to the two mean velocities introduced above, namely elements of
the Reynolds stress tensor viewed along particular slices of the LDC spatial domain.

The 50 Hydra-TH runs employing the SSGS turbulence model were automated using
the DAKOTA fork simulation interface described in Section 13.3.3 of the DAKOTA
users manual [1]. The DAKOTA input file used to set up the 50 Hydra-TH runs is
provided in Appendix A. DAKOTA was run with this input deck by invoking the
command

dakota —i <DAKOTA input file>
The keyword
analysis driver = 'driver.sh --submit'

given in the input file causes DAKOTA to run the driver.sh script of Appendix B
in submit mode. DAKOTA proceeds by running the dprepro script, which creates a
work directory for each run (50 in this case) into which a Hydra-TH control file is
copied that has input settings specified by the Latin hypercube sampling plan for
that run. These run-specific Hydra-TH control files are created from the generic
Hydra-TH control file provided in Appendix C, in which tags for each of the three
SSGS inputs being varied are replaced by dprepro with actual input values for each
run. The driver script also outputs the file job.1ist, which lists the 50 commands
that are issued subsequently to run Hydra-TH and generate the necessary figures of
merit from each run. The script dprepro itself does not actually run Hydra-TH, and
so it completes its tasks by copying a dummy results file into each work directory so

6

Protected under CASL Master NDA Official Use Only
CASL-U-2013-0213-000

DAKOTA (which expects results to have actually been generated from running a
code as part of the fork interface) exits cleanly.

Once job.list has been created, the jobs were then submitted to the scheduler by
running the submit all.sh script of Appendix D with job.1list asits
argument. All Hydra-TH runs for this demonstration were conducted on the 154-
node, 2464 CPU Pinto machine belonging to the LANL turquoise network.

Upon completion of each job, Hydra-TH writes a binary plotstat file in the
Exodus II file format to each work directory. The standard use case for Hydra-TH is
to manually extract the figures of merit from plotstat using the Kitware software
ParaView. Given the number of jobs required to generate the needed figures of
merit for surrogate construction, we developed a new Hydra-TH use case to
automate the process of extracting figures of merit. The steps in ParaView required
to extract mean u and v velocities were collected in an interactive session, and then
exported by ParaView to the python script of Appendix E. The DAKOTA input deck
of Appendix A was then invoked again, but now with a modified

analysis driver keyword:

analysis driver = 'driver.sh --collect'

This runs the driver. sh script again, but now in collect mode. The python
script of Appendix E is invoked in each work directory, resulting in the creation of
two output files u.csv and v.csv containing the extracted u and v velocities at
their corresponding y and x coordinate values, respectively, along with additional
information not needed for our demonstration. The script driver.sh then parses
these output files and creates new output files u. txt and v. txt for each run that
contain only the u vs. y and v vs. x figures of merit required for our demonstration,
and wraps up by concatenating these new files into a single results.out file for
each run. Finally, the make output.sh script of Appendix F is run to collate the
results.out files from each run into the single matrix of stacked u and v
velocities required by DAKOTA for subsequent invocation of QUESO-GPMSA.

3. Percept Verification Study

Percept is a software package that provides tools for code and solution verification
[3]. Percept was used in this study to:

1. produce a uniformly refined sequence of grids,

2. extrapolate the value of the figures of merit as the mesh size approached
zero, including the mean velocity and Reynolds stress tensor,

3. and compute the convergence rates of these figures of merit with respect to
the mesh size.

7

Protected under CASL Master NDA Official Use Only
CASL-U-2013-0213-000

Percept is a small set of libraries written in the C++ and Python language. It is based
on the Sierra Toolkit and developed in concert with the Sierra computational
simulation package at Sandia National Laboratories [7]. In addition, Percept is
currently distributed with an open source license as part of Sandia’s Trilinos
package [8].

Because meshes used to model this physics work best with a strong grading near
boundaries, a special type of mesh refinement implemented in Percept was used to
place the new nodes, or vertices. The refined meshes start from an existing coarse
mesh, and the desired grading was created in the initial coarse mesh.

The algorithm in Percept for respecting the grading calculates the position of a new
node on mid-edges is as follows. It is assumed that the spacing of new nodes varies
linearly on the edges, and the spacing is integrated along the edge to get a new
midpoint position.

Let us define a spacing local to the node i of an element e at one end of an edge ij.
Letting d;; be the distance between the nodes i and j, the spacing associated with the
edge and element is,

e |

The element Jacobian matrix J. relates the physical coordinate derivatives to the
reference coordinate derivatives.

5 4 5 .9
%_Je(sx ow e o6&

We define the spacing at a node to be the average of the spacings of each of the
elements connected to that node,

i 1,e
Sz’j = avg Sij

8

Protected under CASL Master NDA Official Use Only
CASL-U-2013-0213-000

A new midpoint node position on that edge, relative to node j, is then computed by
integrating this linear variation in spacing. The distance a, of the new node from
node j, is

sﬁj + 3s] ;
=
4(33_7' + Sij)
A similar method is used to place midface, centroid, nodes on quadrilateral faces
from the edges to respect similar spacing. And a similar method is used again for
centroid mid-element nodes of hexahedral elements.

Figure 2 illustrates this respect spacing algorithm on meshes constructed for the
Hydra-TH LDC calculations.

Figure 2. One corner of the coarse mesh, of 32 x 32 x 16 elements, exhibiting the
initial grading in two of the axis aligned directions (left). The same corner of the
first refined mesh, of 64 x 64 x 32 elements, produced by Percept using the respect
spacing algorithm (right).

We analyzed the convergence of the fields in this simulation, varying in the x and y
directions.
* x-direction:
o the mean velocity component v(x)
o elements of the Reynolds stress tensor: <v’v’>(x) and <u’v’>(x)
* y-direction:
o the mean velocity component u(y)
o elements of the Reynolds stress tensor: <u’u’>(y) and <u’v’>(y)

9

Protected under CASL Master NDA Official Use Only
CASL-U-2013-0213-000

At any point at a specific x or y coordinate, as the mesh size h is refined, h, ¥2h, Y4h,
we see that the value of the Reynolds stress tensor may or may not converge
monotonically. Points with non-monotonic convergence are more often present in
the SSGS model, but are also noticeable in the WALE model. There may be a small
number of non-monotonic points in the mean velocity results, but this is not obvious
looking at the plots. This is not a serious issue in analyzing the convergence and
convergence rates. It is most often the case with finite element models or other
discretizations of partial differential equations that field values at points do not
converge monotonically.

Instead of analyzing the convergence of these fields pointwise, we instead integrate
the fields over the domain and then analyze the convergence of these global norms.
For this study we approximate the L2 norm of the velocity, and L2 norms of the
components of the Reynolds stress tensor over the range of x and y in the domain.
For example, we use the trapezoid quadrature to approximate the L2 norm of the
mean velocy u(x), integrated along the range of x,

1
||u(x)||L2:/ u? dx
0

To compute convergence rates, and extrapolate the value of the norms, we avoid
variability of different forms of regression by using a procedure called “Robust
Multi-Regression,” or RMR, described in [9]. The RMR procedure produces a set of
constrained regressions of the data over the sequence of meshes using several
regression techniques, L1, L2, Loo, weighted L2, ptheo L2, plower L2, and pupper L2. In
addition, the method may use L4, L8, Tikhonov, LASSO, and weighted variants of
each. We used a mixture of 12 regressions in the procedure employed for this
report. We will not go into the details of these various regression algorithms, but we
report the median, mean and standard deviation of the convergence rates output by
this procedure.

Figure 3 presents a L2 regression performed under the RMR for the SSGS model.
The L2 norm of the mean velocity component, ||u(x)||.?, is regressed on mesh size, h,
with mesh size plotted on a log-scale.

Tables 2 and 3 present convergence rates of the L2 norms of the six fields computed
using the SSGS and WALE models, respectively, integrated along the corresponding
range of x or y using the RMR (robust method of regression), and using the three
meshes in the sequence with mesh sizes h, ¥2h, Y4h.

Tables 4 and 5 present L2 norms of the six fields computed using the SSGS and
WALE models, respectively, for the three meshes in the sequence. The norms are
approximated using the trapezoidal rule.

10

Protected under CASL Master NDA Official Use Only
CASL-U-2013-0213-000

0.018 1

o o
o o
= =
» o

norm of SSGS mean velocity, |u_x|2
o
o
=
N

0.010

10! 10°
mesh size (h)

Figure 3: L2 regression of the values of ||u(x)]||.? on h for the SSGS model.

Table 2: Convergence rates of the L2 norms of the six fields for the SSGS model. N/A
entries indicate quantities exhibiting non-monotonic behavior.

SSGS

rates v(x) <vV'>(x) <u'v’>(x) u(y) <u'u>(y) <uv’>(y)

convergence
Median 1.0028 1.0056 1.0002 1.0002 N/A N/A
Mean 1.0061 0.93699 0.75574 0.99905

Std. deviation 0.0081 0.32836 0.35614 0.011849

Table 3: Convergence rates of the L2 norms of the six fields for the WALE model.
N/A entries indicate quantities exhibiting non-monotonic behavior.
WALE

rates v(x) <vV'>(x) <u'v’>(x) u(y) <u'u>(y) <uv’>(y)

convergence

Median 1.0007 N/A 1.0029 0.99965 N/A N/A
Mean 1.1677 . 0.88577 0.75059
Std. deviation 0.3722 . 0.28467 0.35247

Table 4. L2 norms of the six fields for the SSGS model. Non-monotonic behavior is
highlighted in red.

SSGS Il 12
L2 norms
mesh size v(x) <vV'>(x) <u'v’>(x) <uu>{y) <uv>(y)
h 0.018665 0.065560 0.030541 0.025155 0.033246 0.006287
¥ h 0.012596 0.064237 0.018513 0.017049 0.045295 0.012929
Yih 0.010043 0.033335 0.003693 0.012755 0.044755 0.005896
11
Protected under CASL Master NDA Official Use Only

CASL-U-2013-0213-000

Table 5. L2 norms of the six fields for the WALE model. Non-monotonic behavior is
highlighted in red.

WALE e 102
L2 norms
mesh size v(x) <u'v’>(x)
h 0.013202 0.045993 0.019010 0.009378 0.012933 0.000375
% h 0.009515 0.049642 0.015989 0.010031 0.033860 0.007982
Yih 0.008970 0.020846 0.001710 0.010648 0.028179 0.006516

Figure 4 plots the calculated mean v and u velocities used in this mesh convergence
study for the SSGS and WALE models.

0.1
0.8

0.1
|
04

0.2

04
|
02
|

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.2
1.0

0.1
0.8

0.0
0.4 0.6

0.2

-03
|
00

-04
|
-0.2
|

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

X

Figure 4. Calculated mean velocities for the SSGS (top) and WALE (bottom) models.

Figures 5 and 6 plot the two calculated Reynolds stress tensor components in the
stream-wise x and vertical y directions, respectively, used in this mesh convergence
study for the SSGS and WALE models.

12

Protected under CASL Master NDA Official Use Only
CASL-U-2013-0213-000

0.6

0.5h
—— 0.25h

06
|
04

%
<u'v'’>

0.4
0.2

)

0.6

0.5h

0.6
0.4

<u'v>

0.4
0.2

02
|
00

0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Figure 5. Calculated Reynolds stress tensor components in the stream-wise x
direction for the SSGS (top) and WALE (bottom) models.

The first thing to note about the convergence behavior of the SSGS model fields from
Table 2 and Figure 4 is that the mean v(x) and u(y) velocities seem to converge
relatively well, at a rate of nearly one, i.e., O(h). Hydra-TH developers report O(h?)
convergence in the global kinetic energy norm. This difference may be due in part
to interpolation errors in our analysis introduced by obtaining our figures of merit
from lineouts in ParaView. The components of the Reynolds stress tensor in the
SSGS model do not fare nearly as well, and as seen in Table 4 and Figure 6 the two
components varying in the y-direction clearly do not behave monotonically.

Because of the wide standard deviation in the rates from the regression analysis, we
would also hesitate to say these converge at a specific asymptotic rate.

Regarding the WALE model, we also see from Table 3 and Figure 4 that the
convergence of the mean velocities fares relatively well, but the asymptotic rate is
not nearly as solid as we see with the SSGS model. This is reflected in the large
standard deviations in the convergence rate over the family of regressions we

13

Protected under CASL Master NDA Official Use Only
CASL-U-2013-0213-000

0.5
0.3

03 04
|
02

<u'u>
<u'v'>
0.0

02
|

0.1
02
|

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.5

— h
0.5h
—— 0.25h

03
|

03 04
01 02
|

<u'u’>
<u'v>
0.0

0.2

0.0
03
|

Figure 6. Calculated Reynolds stress tensor components in the vertical y direction
for the SSGS (top) and WALE (bottom) models.

performed. Further, with the WALE model, we see from Table 5 and Figures 5 and 6
that all but one of the components of the Reynolds stress tensor either does not
behave monotonically, or has a relatively higher standard deviation in the
regression.

The convergence behavior of the calculated mean velocities and Reynolds stress
tensor depends on the adopted time averaging, which was 100 to 500 time units in
the calculations reported on here. Additional analysis on the sensitivity of these
calculations to factors such as time averaging will be necessary before more
definitive conclusions on the convergence behavior of these calculations can be
reached. However, if further computations at finer mesh resolutions were
affordable we may have seen the Reynolds stress tensor components enter a more
asymptotic region with clear monotonic behavior.

14
Protected under CASL Master NDA Official Use Only
CASL-U-2013-0213-000

4. DAKOTA-QUESO-GPMSA Demonstration of Bayesian
Calibration

The statistical model of the experimental data employed in GPMSA for Bayesian
calibration combines the Gaussian process surrogate model introduced in Section 2
with empirical bias correction and observational error terms,

y=n(0)+d+e€

where 0 is the unknown, best value of the calibration inputs ¢t for fitting
experimental data y consisting of stacked u and v velocities, 8 is the bias correction
term often referred to as model discrepancy, and € models observational error. The
model discrepancy term provides an empirical representation of model form
uncertainty, in that it attempts to model observed differences between the “best”
parametric code representation of the stacked u and v velocities as approximated by
the fast surrogate, n(0), and the experimental data y within bounds established by
the observational error process €.

A nonparametric regression model is utilized by GPMSA to model for our
demonstration. For each of the mean u and v velocities, 7 Gaussian kernels with
specified standard deviations are centered at locations in index space (i.e., the y or x
coordinate dimension, respectively) of interest for capturing potential model form
uncertainty. For example, the discrepancy model §, for the u velocity takes the form

0y =djvg + -+ +dyvy

Here, the i-th kernel is evaluated on the grid of index coordinates corresponding to
the locations at which experimental data on u velocity is observed to generate
vectors d;, and the corresponding coefficients are modeled as independent zero-
mean Gaussian given an assumed common variance. This model is joined with a
corresponding discrepancy representation for v velocity, 8., to construct the d term
in the above Bayesian calibration model. Figure 7 plots the 7 kernels utilized in the
discrepancy model for u velocity (8.). This set of kernels is also used in the
discrepancy model for v velocity (8+).

For both u and v velocities, the best model fit does not represent the experimental
data well for small values of the index variables (y and x, respectively). As shown in
Figure 7, the statistical model utilizes closer and tighter kernels to model this
localized behavior, while wider and more spread out kernels suffice for the much
larger region of index space in which the model/data difference remains near zero
with little variation.

As indicated previously in Section 2, the unknown “best” calibration input value 0 is
assigned a uniform prior on the ranges of Table 1. The experimental data of Figure

15

Protected under CASL Master NDA Official Use Only
CASL-U-2013-0213-000

Figure 7. Kernel basis functions used in discrepancy models for the u velocity.

1 are combined with the fast surrogate for Hydra-TH calculations of mean u and v
velocities introduced in Section 2 according to the statistical model representation
above to arrive at the posterior distribution of 6, which is the critical quantity of
interest for follow-on uncertainty quantification studies that properly account for
parametric uncertainty. In other words, the posterior distribution of 6 represents
our most up-to-date knowledge about uncertainty in the “best” value of the
calibration inputs after accounting for both our prior knowledge about more likely
values for these inputs and the constraints on these values imposed by the
experimental data. A more detailed description of the technical methods underlying
this approach to Bayesian calibration is provided in [5].

As the posterior distribution of 6 is not available analytically, DAKOTA invokes
QUESO-GPMSA with the input file of Appendix G to sample this posterior using
DRAM. The DRAM method combines two essentially distinct but related methods
for improving mixing of the Markov chain so that it covers the posterior distribution
more effectively for any given number of iterations.

1. Delayed Rejection (DR). When a sample is rejected by the Metropolis
sampler, instead of being immediately discarded, a second stage proposal
sample that is allowed to depend on the previous rejected sample is
generated with an acceptance probability that is specially calculated to
guarantee convergence to the posterior density [10].

2. Adaptive Metropolis (AM). This method relies on global adaptation of the
proposal covariance based on previously accepted samples in the chain. At
specified intervals the proposal covariance is updated to reflect information
gained from the previous samples drawn by the chain. Unlike DR, the
adaptations persist through subsequent steps of the chain [11].

QUESO implements another MCMC algorithm referred to as multilevel [12]. This
method works by sampling successively from a collection of target distributions,
starting from the prior distribution and ending at the posterior distribution. This

16
Protected under CASL Master NDA Official Use Only
CASL-U-2013-0213-000

sequence of target distributions is established to sample efficiently from multimodal
posterior distributions, and may be user-specified or automatically generated by
QUESO. Multilevel also produces an estimate of the model evidence. The model
evidence, also known as the marginal likelihood, is often used for Bayesian model
selection (e.g. in the computation of Bayes factors). Models with larger evidence
values with respect to predetermined reference data are generally preferred
(subject to possible modification by prior model preferences), with the strength of
preference for a particular model determined by the relative size of its evidence
value compared with the evidence values of its competitors [13].

The DAKOTA implementation of QUESO-GPMSA involves a DAKOTA class that
instantiates the QUESO-GPMSA application, provides the correct experimental and
simulation data structures to QUESO-GPMSA, initializes the proposal covariance
matrix, and asks QUESO-GPMSA to perform the DRAM MCMC. The DAKOTA class is
called NonDGPMSABayesCalibration. Details about the class structure can be
found in the DAKOTA developer’s manual at the following website,
http://dakota.sandia.gov/docs/dakota/stable/html-dev/index.html.

From the DAKOTA user perspective, the DAKOTA user sees an input file that is
similar to other DAKOTA input files. The user must define the variables (e.g. the
ranges on the calibration variables as well as any “configuration” or state variables),
the responses from the simulation (in this case, the velocity fields as shown in
Figure 1), the interface to the simulation, the experimental data, and the method
used (in this case, Bayesian calibration using GPMSA). An example DAKOTA input
file is shown in Appendix G.

Stepping briefly through each section of the DAKOTA input in Appendix G: the first
section (strategy) states that we are running a single method (in this case, Bayesian
calibration). The second section (method) defines the particular method with the
keywords

bayes calibration gpmsa

The number of emulator samples defines the number of times we run the Hydra-TH
simulation code to generate data with which to build the emulator. In this case, we
indicate that we will perform 50 runs of Hydra-TH with the specification
emulator samples = 50

In this example, we ran the Hydra-TH runs previously and have produced a text file
with all of the results, so we can simply read that into DAKOTA and not execute

Hydra-TH, although we could run Hydra-TH inline if desired. The specification

import points file = 'williams9.txt' freeform

17
Protected under CASL Master NDA Official Use Only
CASL-U-2013-0213-000

indicates to DAKOTA that the results should be read in from the file
williams9.txt. Finally,

samples = 50000
indicates that there are 50,000 samples to be taken in the MCMC chain.

The next section (variables) states that we have 3 uncertain uniform variables.
These are the variables we wish to calibrate. We also have one configuration
variable: there is only one configuration in these experiments. Note that the
variables are all scaled before presenting them to DAKOTA. This is not strictly
necessary, but we scaled the variables in advance for this example.

The next section (interface) defines an interface to the simulation code. In this case,
the simulation driver is called hydra3. Note that we are not invoking hydra3 in
this particular example because we are reading in the simulation data, butitis a
necessary part of the DAKOTA specification and certainly can be used to run the
actual simulations in other examples.

The final section (responses) defines the number of calibration terms. We have
1001 terms for both velocity components of the response, so a total of 2002
calibration terms. There is only one set of experimental data,

num_ experiments = 1
and the data is found in the file called cas12.dat:

calibration data file = 'casl2.dat'

Note that Appendix G contains the current specification: we expect that the
DAKOTA specification will evolve as we add functionality to the way DAKOTA
handles experimental data.

Figure 8 compares three sets of calibration results: one from the Matlab
implementation of GPMSA, which utilizes a Metropolis-within-Gibbs MCMC
algorithm, and the other two from QUESO-GPMSA invoking DRAM and the
multilevel algorithms. The marginal posterior distributions for the elements of 6
presented in this plot indicate that the three distinct MCMC methods are producing
consistent results. This is confirmed in a qualitative sense by the summary statistics
presented in Tables 5 and 6.

Comparisons between summary statistics such as those presented in Tables 5 and 6
will be made more formal in a quantitative sense as this demonstration is further
developed into a verification test for QUESO-GPMSA. For example, although all the
correlation coefficients between parameters in Table 6 are close to zero in a
practical sense, the posterior correlations between C; and the other two parameters

18
Protected under CASL Master NDA Official Use Only
CASL-U-2013-0213-000

PDF
50 100
1 1
40 60 8 100
1 1
06 08 10 12 14
1

20

0.4
|

o - o - —
T T T T T T T T T T T T T T T T T T

0.000 0.005 0.010 0.015 0.020 0.025 0.800 0.810 0.820 0.830 0.6 0.8 1.0 1.2 1.4
Cs Pri Sct

Figure 8. Marginal posterior densities for the three SSGS inputs of Table 1 from
Matlab-GPMSA (blue), and QUESO-GPMSA DRAM (green) and multilevel (red).

Table 5. Posterior means and standard deviations for three SSGS inputs of Table 1.

Posterior Mean Posterior Standard Deviation
Parameter | Matlab-GPMSA [QUESO-GPMSA | Parameter | Matlab-GPMSA | QUESO-GPMSA
DRAM | Multilevel DRAM | Multilevel
Cs 0.00337 0.00360| 0.00360 Cs 0.00315 0.00292| 0.00327
Prandtl 0.80557 0.80629| 0.80581 Prandtl 0.00533 0.00568| 0.00523
Schmidt 0.90054 0.90574| 0.90460 | Schmidt 0.29541 0.27117| 0.28432

Table 6. Posterior correlations for three SSGS inputs of Table 1.

QUESO-GPMSA
Matlab-GPMSA DRAM Multilevel
Cs Prandtl Schmidt Cs Prandtl Schmidt Cs Prandtl Schmidt
Cs 1 -0.032 -0.056 1 -0.077 -0.012 1 -0.147 -0.172
Prandtl 1 -0.017 1 0.052 1 -0.077
Schmidt 1 1 1

appear to be larger (in an absolute sense) in the multilevel results than for
Metropolis-within-Gibbs or DRAM. These sorts of observations are easily amenable
to quantitative examination, and will be useful as verification tests to establish
confidence in the implementations of MCMC algorithmes.

Velocity predictions resulting from the Matlab-GPMSA analyses are presented in
Figure 9 for the u velocity and Figure 10 for the v velocity. In these figures, the
Hydra-TH runs conducted to generate the surrogate model of Section 2 are shown in
yellow and the experimental data with three standard deviation errors are shown in
blue. In the left panel, a 95% prediction interval for prediction of calibrated Hydra-
TH velocity is shown in green. Calibrated code predictions are obtained by running
posterior samples of the calibration inputs 6 through the code surrogate model (or
the code directly, if computational resources allow). In the right panel, a 95%
prediction interval for prediction of discrepancy 0 is shown in cyan. This result
indicates difficulty with predicting u and v velocity data for coordinate locations less
than about 0.25. In the center panel, a 95% prediction interval in shown in black for
discrepancy-adjusted predictions, i.e. calibrated code predictions (left panel)
adjusted for inferred discrepancy (right panel). In the upcoming fiscal year,

19
Protected under CASL Master NDA Official Use Only
CASL-U-2013-0213-000

capability for generating the predictions in Figures 9 and 10 will be incorporated
into QUESO-GPMSA.

calibrated simulator discrepancy-adjusted discrepancy
T T T : T T " 0.04

= -10.02

= 0.4 -+ -+ -1-0.02

= -{-0.04

¥ 4 - H-0.06

. . \ L , _0.08
0.5 1 o 0.5 1
axial location

Figure 9. Calibrated Hydra-TH u velocity predictions (left), discrepancy predictions
(right), and discrepancy-adjusted predictions (center).

o
ol
o
=
o

calibrated simulator discrepancy-adjusted discrepancy
0.2 T T T : T T T 0.04
- -0.03
o1 {4" g —+ g
it S -
[[e |
or t TWJ‘MLI T 1 -Ho.01
[T
W | 1o
01 | + |
- | ¢ - H-0.01
0.2+ -+ B
- -{-0.02
o3l } | + -{-0.03
| = -{-0.04
0.4 -+ -
- -{-0.05
0.5 . L \ L L L L . \ _0.06
o 0.5 1 o 0.5 1 o 0.5 1

axial location

Figure 10. Calibrated Hydra-TH v velocity predictions (left), discrepancy
predictions (right), and discrepancy-adjusted predictions (center).

Figure 11 provides a check on the surrogate-based calibration results. In both
panels, the Hydra-TH runs conducted to generate the surrogate model of Section 2
are shown in yellow and the experimental data with three standard deviation errors
are shown in blue. Ten samples from the posterior (calibrated) distribution of the
SSGS inputs 6 were drawn from the QUESO-GPMSA DRAM results and run through
Hydra-TH directly. The resulting u and v velocities are shown in magenta.
Comparing against the left panels of Figures 9 and 10, these calibrated predictions
are consistent with the surrogate-based calibrated predictions. The nominal

20

Protected under CASL Master NDA Official Use Only
CASL-U-2013-0213-000

calculation (i.e., u and v velocities computed at the nominal values of the SSGS inputs
of Table 1) is shown in green.

1.0
|
0.2

0.8
0.1

- iy

0.6
0.0

0.4
|

0.2

-04 -03 -02 -0.1

I T T T T I I T T T T I
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
y X
Figure 11. Comparison of calibrated predictions computed directly from Hydra-TH
(magenta) with experimental data (blue) and nominal Hydra-TH calculation (green).

The calibration process results in velocity predictions that are generally more
consistent with the experimental data than the nominal calculation. Of course, the
nominal SSGS inputs were not derived for the LDC application specifically. The
sensitivity of calibration results to specific applications depends on the robustness
of the deployed physics models and on the quality of the experimental data selected
for calibration purposes. Ideally, discrepancies observed between calibration
results for different applications should naturally diminish as the predictive
maturity of physics models and the quality, quantity and relevance of available
experimental data improves.

The log model evidence value for SSGS is 191645. Although meaningless as a stand-
alone statistic, in principle this figure could be compared with evidence values from
WALE and other turbulence models for this LDC setting (or, more generally, to
settings involving alternative reference experimental data) to quantitatively
determine which model performs best.

5. Discussion

This milestone was concerned primarily with two demonstrations of verification
and validation methodology utilizing Hydra-TH calculations of a lid-driven cavity
flow problem. In the first, the verification toolkit Percept was utilized to generate a
successively refined set of meshes to study the convergence behavior of Hydra-TH.
Quantitative methods based on the RMR (Robust Method of Regression) were
employed by Percept to analyze the convergence rates of field quantities. Because
pointwise values of the field quantities often do not converge monotonically, semi-

21

Protected under CASL Master NDA Official Use Only
CASL-U-2013-0213-000

global norms of those fields were analyzed in the RMR procedure. In the second, the
Bayesian calibration software GPMSA was utilized to illustrate probabilistic
calibration of code input parameters to experimental data. Implementations of
GPMSA in Matlab and QUESO were compared.

With regard to Percept, we learned that it was valuable for the mesh refinement
package to report on the histograms of elements sizes, and also to provide the
ability to report on edge length normal to the boundary for fluids simulation codes.
The new capability in Percept to respect existing mesh spacing (gradients in
element size near boundaries) provides a push button solution to creating a
uniformly (or quasi-uniformly) refined mesh sequence. This respect spacing
capability can also be used in conjunction with Percept’s ability to conform to
curved CAD geometry, along with an extensive mesh smoothing and element shape
improvement algorithm. These other capabilities were not necessary for this study
because the computational domain for the lid driven cavity geometry is an axis-
aligned cube.

The RMR procedure provides more confidence on possible regressions during
convergence analysis. The RMR procedure eliminates the use of an empirical safety
factor, like the GCI (Grid Convergence Index of [14]), and relies instead upon the
diversity of estimates and the use of statistics (mean, median, std. deviation, etc.) of
those estimates to provide safety.

The analyses of Section 4 showed that the Matlab and QUESO implementations of
GPMSA are producing consistent results. It should be noted that both the three
calibration inputs 0 and 22 statistical model parameters were calibrated by Matlab-
GPMSA, while in QUESO-GPMSA the statistical model parameters were fixed. In the
upcoming fiscal year, this demonstration will be extended so that QUESO-GPMSA is
verified on the full 25-dimensional parameter space and quantitative metrics will be
employed to more formally compare posterior summary statistics between the
distinct MCMC implementations.

QUESO-GPMSA is in the nascent stage of development. The VUQ focus area has
plans to extend QUESO-GPMSA capabilities in the upcoming fiscal year in the
following directions:

Integrate all Matlab GPMSA use cases into QUESO-GPMSA.

Integrate Metropolis-within-Gibbs MCMC capability into QUESO.

Integrate Matlab GPMSA prediction capabilities into QUESO-GPMSA.
Integrate Matlab GPMSA sensitivity analysis capabilities into QUESO-GPMSA.
Integrate Matlab GPMSA leave-one-out cross-validation capability into
QUESO-GPMSA.

SANL R

Currently, QUESO-GPMSA only implements Bayesian calibration for functional
output settings, in which the figures of merit are functions defined on a refined set
of index values such as temporal or spatial coordinates. The purpose of item #1 is to

22

Protected under CASL Master NDA Official Use Only
CASL-U-2013-0213-000

expand this use case in two directions, to cover scalar and multivariate output
settings. The multivariate output setting covers the situation in which the user
wishes to calibrate inputs to multiple scalar figures of merit simultaneously.

Item #2 will expand the suite of MCMC methods employed in QUESO to include the
single-site scan method employed by the Matlab version of GPMSA. Item #3 will
allow predictions of calibrated code output and discrepancy to be made based on
the Gaussian process surrogate models employed in GPMSA, with full quantification
of uncertainty. Item #4 will allow estimation of global sensitivity indices based on
ANOVA-based variance decomposition methods tailored to the Gaussian process
code surrogate models of GPMSA. Finally, item #5 provides a goodness-of-fit
diagnostic based on the leave-one-out cross-validation method that facilitates user
evaluation of the predictive capability of the Gaussian process-based code surrogate
model.

In the upcoming fiscal year, rigorous verification tests of QUESO-GPMSA will be
developed that cover all three main use cases: functional, scalar, and multivariate
output settings. These tests will involve comparison of QUESO-GPMSA calibration
results against both manufactured solutions and solutions obtained by the Matlab
implementation of GPMSA in the absence of analytical solutions.

Acknowledgements

The authors would like to thank J. Adam Stephens and Brian Adams of Sandia
National Laboratories for providing the driver.sh and submit all.sh scripts
and instructions for automating Hydra-TH runs under the DAKOTA fork simulation
interface. Greg Weirs of Sandia National Laboratories provided a tutorial on
generating Python scripts from ParaView to support automation of figure of merit
extraction from Hydra-TH output. Mark Christon and Jozsef Bakosi of Los Alamos
National Laboratory provided the experimental data and Hydra-TH control file and
meshes necessary to run the LDC validation problem, as well as considerable advice
on compiling and running Hydra-TH and interactively analyzing Hydra-TH output
with ParaView. Mark Christon generously exposed SSGS turbulence model
parameters in Hydra-TH to allow this Bayesian calibration study to move forward.
This research was supported by the Consortium for Advanced Simulation of Light
Water Reactors (http://www.casl.gov), an Energy Innovation Hub
(http://www.energy.gov/hubs) for Modeling and Simulation of Nuclear Reactors
under U.S. Department of Energy Contract No. DE-AC05-000R22725. Los Alamos
National Laboratory (LANL) and Sandia National Laboratories (SNL) are core CASL
partners.

23

Protected under CASL Master NDA Official Use Only
CASL-U-2013-0213-000

References

[1] Adams, B.M., Bohnhoff, W.].,, Dalbey, K.R., Eddy,].P., Eldred, M.S., Gay, D.M.
Haskell, K., Hough, P.D., Lefantzi, S., and Swiler, L.P. (2010). DAKOTA, A
Multilevel Parallel Object-Oriented Framework for Design Optimization,
Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis:
Version 5.1 User’s Manual. Technical Report SAND2010-2183, Sandia National
Laboratories.

[2] Estacio-Hiroms, K.C. and Prudencio, E.E. (2012). Quantification of Uncertainty
for Estimation, Simulation, and Optimization (QUESO): User’s Manual 0.46.0.
The University of Texas at Austin Center for Predictive Engineering and
Computational Sciences, Austin, TX.

[3] Copps, K.D. (2012). Percept: Tools for Verification, Presentation to DOE/CASL
roundtable, June 11, 2012. Technical Report SAND2012-4730 C, Sandia National
Laboratories.

[4] Bakosi, ., Christon, M.A,, Pritchett-Sheats, L., Luo, H., Xia, T., and Nourgaliev, R.
(2013). Hydra-TH Verification, Validation and Thermal-Hydraulics Benchmark
Problems. Technical Report LA-UR-13-22017, Los Alamos National Laboratory.

[5] Higdon, D., Gattiker,]., Williams, B., and Rightley, M. (2008). Computer model
calibration using high-dimensional output. Journal of the American Statistical
Association, 103 (482), 570-583.

[6] Prasad, A.K. and Koseff,].R. (1989). Reynolds number and end-wall effects on a
lid-driven cavity flow. Physics of Fluids A, 1(2), 208-218.

[7] Edwards, H. C., Williams, A.B., Sjaardema, G.D., Baur, D.G., and Cochran, W.K.
(2010). SIERRA Toolkit Computational Mesh Conceptual Model. Technical
Report SAND2010-1192, Sandia National Laboratories.

[8] Heroux, M., Bartlett, R., et al. (2003). An Overview of Trilinos. Technical Report
SAND2003-2927, Sandia National Laboratories.

[9] Rider, W.]., Wildey, T.M., and Weirs, V. G. (2013), Does Solution Adaptivity Help
or Hinder Solution Verification? Technical Report SAND2013-7920 (to be
released), Sandia National Laboratories.

[10] Tierney, L. and Mira, A. (1999). Some adaptive Monte Carlo methods for
Bayesian inference. Statistics in Medicine, 18, 2507-2515.

[11] Haario, H., Laine, M., Mira, A., and Saksman, E. (2006). DRAM: Efficient
adaptive MCMC. Statistics and Computing, 16(4), 339-354.

24
Protected under CASL Master NDA Official Use Only
CASL-U-2013-0213-000

[12] Prudencio, E.E. and Cheung, S.H. (2012). Parallel adaptive multilevel sampling
algorithms for the Bayesian analysis of mathematical models. International
Journal for Uncertainty Quantification, 2(3), 215-237.

[13] Wasserman, L. (2000). Bayesian model selection and model averaging. Journal
of Mathematical Psychology, 44, 92-107.

[14] Roache, P. (2009). Fundamentals of Verification and Validation. Hermosa
Publishers, Albuquerque.

25
Protected under CASL Master NDA Official Use Only
CASL-U-2013-0213-000

Appendix A. DAKOTA Input File for Hydra-TH Runs

strategy,
single_method
tabular graphics_data

method,
nond_ sampling
samples = 50 seed = 241
sample_type lhs
model,

single

variables,

uniform_ uncertain = 3
lower_bounds 0 0.8 0.5
upper_ bounds 0.36 1 1.5

descriptors 'c_s' 'prandtl' 'schmidt'

interface,

file save

work directory
directory_ tag
directory_save
named 'workdir'

responses,
num_response_functions = 5

no_gradients
no_hessians

fork
analysis driver = 'driver.sh --submit'
allow_existing results
parameters file = 'params.in'
results _file = 'results.out'

descriptors = 'Step' 'Time-Step' 'Time' 'RMS Div'

IKEI

Protected under CASL Master NDA
CASL-U-2013-0213-000

26
Official Use Only

Appendix B. driver.sh Script

#!/bin/tcsh

The path/name of the hydra input template.

set HYDRA_ TEMPLATE = ldc_Rele4_ssgs.cntl

The path/name of the parameterized hydra input file.
set HYDRA INPUT = ldc_Rele4_ssgs.cntl

The path/name of the job file to be submitted from each working directory.

set JOB = ../run_hydra.sh

The path/name of the file copied (and renamed) by this script in order to
supply Dakota with responses during the submission phase.

set DUMMY_RESPONSE = dummy_ responses.out

The path/name of the python script to extract required FOMs.

set PV_PY = ../pv-ldc-out.py

If the script is being run in collect mode.

This portion of the script is also a placeholder for any post-processing

that may be desired.

if ($1 == "--collect") then
setenv MODULEPATH ${MODULEPATH}:/usr/projects/views/modulefiles
module load paraview/4.0.l-mu
/usr/projects/views/ParavView/4.0.1/mu/bin/pvbatch $PV_PY

awk -F '\"*,\"*' 'BEGIN { getline; } { print $8 " " $1 }' u.csv > u.txt
awk -F '\"x ,\"*' 'BEGIN { getline; } { print $7 " " $2 }' v.csv > v.txt

cat u.txt v.txt > results.out
endif

If the script is being run in submit mode.
Do some basic checking to ensure the validity of the input.
if ($1 == "--submit") then

if ($# != 3) then

echo "Syntax is $0 <dakota params file> <dakota response file>"

exit -1
endif
if (! -f $2) then
echo "Unable to find specified Dakota parameters file: $2"
exit -1
endif
if (! -e ../$HYDRA TEMPLATE) then
echo "Unable to find hydra template: $HYDRA TEMPLATE"
exit -1
endif

Create the hydra input file

dprepro $2 ../$HYDRA_TEMPLATE $HYDRA_INPUT

Append this job to the list of those to be submitted
echo "${PWD}:$JOB" >> ../job.list

Create the dummy responses for dakota.
cp ../$DUMMY RESPONSE $3
endif

Protected under CASL Master NDA
CASL-U-2013-0213-000

27

Official Use Only

Appendix C. Generic Hydra-TH Control File

title
3-D Lid-Driven Cavity Re=10000

cc_navierstokes

nsteps 100000
deltat 0.01
term 500.0

time_integration
type fixed cfl
CFLinit 1.0
CFLmax 10.0
dtmax 0.
dtscale
thetaa
thetak
thetaf

end

25

[
e e e e
ocoooonN

Output options
pltype exodusii
filetype serial
plti 1000

ttyi 200

dump 0

Turbulence model
turbulence smagorinsky
c_s {c_s}
prandtl {prandtl}
schmidt {schmidt}
end

Material model setup
& assignment to sets
material

id 1

rho 1.0

mu 1l.0e-4
end
materialset

id 10

material 1

block 1
end

plotvar
elem vel

elem div

node vel

node pressure

node vorticity
node helicity

end

statistics
starttime 100.0
endtime 500.0

plotwinsize 20.0
end

plotstatvar
elem <velocity>
elem <pressure>
elem <vorticity>
elem tke
elem reynoldsstress

node <velocity>

node <pressure>

node <vorticity>

node tke

node reynoldsstress
end

Simple IC's
initial
velx 0.0
vely 0.0
velz 0.0
end

hydrostat
nodeset 1 -1 0.0
end

distance
sideset 1 -1 0.0 #1lid
sideset 2 -1 0.0 #walls
end

velocity
velx sideset 1 -1 1.0 #lid

vely sideset 1 -1 0.0

velz sideset 1 -1 0.0
velx sideset 2 -1 0.0 #walls

vely sideset 2 -1 0.0
velz sideset 2 -1 0.0
end

ppesolver
type AMG
amgpc hypre
itmax 250
itchk 1
solver cg
smoother ICC
coarse_size 1000
diagnostics off
convergence off
eps 1.0e-5
end

momentumsolver
type ILUFGMRES
itmax 50
itchk 2
restart 15
diagnostics off
convergence off
eps 1.0e-5
end

transportsolver
type ILUFGMRES
itmax 50
itchk 2
restart 15
diagnostics off
convergence off
eps 1.0e-5
end

end

exit

Protected under CASL Master NDA
CASL-U-2013-0213-000

28
Official Use Only

Appendix D. submit_all.sh Script

#!/bin/bash
Submission command:
SUBMIT="msub"
if [$# '= 1]
then
echo "Syntax is $0 <list of jobs>."
exit -1
fi
if [! -f S$1]
then
echo "$1 not found."
exit -1
fi
CWD=$PWD
for line in “cat $1°
do
WD="echo $line | cut -d":" -f1°
JOB="echo $line | cut -d":" -£2°
cd SWD
SSUBMIT $JOB
done
29
Protected under CASL Master NDA Official Use Only

CASL-U-2013-0213-000

Appendix E. ParaView Python Script pv-1dc-out.py

try: paraview.simple
except: from paraview.simple import *
paraview.simple. DisableFirstRenderCameraReset ()

plotstat = ExodusIIReader(FileName=['plotstat'])

AnimationScene3 = GetAnimationScene()
plotstat.NodeMapArrayStatus = []
plotstat.FaceVariables = []
plotstat.ElementVariables = []
plotstat.XMLFileName = 'Invalid result'
plotstat.FaceSetResultArrayStatus = []
plotstat.PointVariables = []
plotstat.FaceSetArrayStatus
plotstat.FaceMapArrayStatus =
plotstat.FileRange = [0, 0]
plotstat.SideSetResultArrayStatus = []
plotstat.ElementSetArrayStatus = []
plotstat.EdgeVariables = []
plotstat.FilePrefix = 'plotstat'
plotstat.FilePattern = '%s'
plotstat.EdgeSetArrayStatus =
plotstat.SideSetArrayStatus =
plotstat.Globalvariables = []
plotstat.NodeSetArrayStatus = []
plotstat.NodeSetResultArrayStatus =
plotstat.ElementMapArrayStatus = []
plotstat.EdgeSetResultArrayStatus =
plotstat.ModeShape = 0
plotstat.EdgeMapArrayStatus = []
plotstat.ElementSetResultArrayStatus = []

[]
[1]

[]
[1]

tsteps=plotstat.TimestepValues

AnimationScene3.EndTime = tsteps[-1]
AnimationScene3.PlayMode = 'Snap To TimeSteps'

RenderView3 = GetRenderView()

plotstat.FaceBlocks []
plotstat.EdgeBlocks = []

AnimationScene3.AnimationTime = tsteps[-1]

RenderView3.CacheKey = tsteps[-1]
RenderView3.CameraPosition = [0.5, 0.5, 3.147777478867205]

RenderView3.ViewTime = tsteps[-1]
RenderView3.UseCache = 0
RenderView3.CameraFocalPoint = [0.5, 0.5, 0.25]
RenderView3.CameraParallelScale = 0.75

PlotOverLine2.Source.Point2 = [1.0, 1.0, 0.5]

XYChartView2 = CreateXYPlotView()

RenderView3.CameraClippingRange

PlotOverLine2.Source.Resolution = 1000
PlotOverLine2.Source.Pointl = [0.0, 0.5, 0.25]
PlotOverLine2.Source.Point2 = [1.0, 0.5, 0.25]

plotstat.ElementVariables = ['<velocity>']

plotstat.ElementBlocks = ['Unnamed block ID: 1 Type: HEX']
RenderView3.CenterOfRotation = [0.5, 0.5, 0.25]

PlotOverLine2 = PlotOverLine(Source="High Resolution Line Source"

)

RenderView3.CameraClippingRange = [2.3712997040785329, 3.5674941410502132]

active objects.source.SMProxy.InvokeEvent('UserEvent', 'ShowWidget')

[2.3712997040785329, 3.5674941410502132]

Protected under CASL Master NDA
CASL-U-2013-0213-000

30
Official Use Only

'vtkvalidPointMask', '0']
DataRepresentation4.UseIndexForXAxis = 0

XYChartView2.ViewTime = tsteps[-1]

DataRepresentation4.XArrayName = 'Points (0)'

SetActiveSource(plotstat)

'vtkvalidPointMask', '0']
DataRepresentation5.UseIndexForXAxis = 0

PlotOverLine3.Source.Resolution = 1000
PlotOverLine3.Source.Pointl = [0.5, 0.0, 0.25]
PlotOverLine3.Source.Point2 = [0.5, 1.0, 0.25]

DataRepresentation5.XArrayName = 'Points (1)'

'0.290196"', '<velocity> (0)', '0', '0', '0']

Render ()

writervy = CreateWriter("v.csv", PlotOverLine2)
writervy.FieldAssociation = "Points" # or "Cells"
writervy.Precision = 10

writervy.UpdatePipeline()

writervx = CreateWriter("u.csv", PlotOverLine3)
writervx.FieldAssociation = "Points" # or "Cells"
writervx.Precision = 10

writervx.UpdatePipeline()

active objects.source.SMProxy.InvokeEvent('UserEvent', 'HideWidget')

DataRepresentation4 = Show()
DataRepresentation4.XArrayName = 'arc_length'
DataRepresentation4.SeriesVisibility = ['<velocity> (0)',

'<velocity> (1)',
'Points (1)',
'vtkOriginallIndices',

'Points
0,

'<velocity> (2)', '0', 'ObjectId', '0', 'Points (0)',
(2)', '0', 'Points (Magnitude)', '0', 'arc_length',

AnimationScene3.ViewModules = [RenderView3, XYChartView2

XYChartView2.LeftAxisRange = [0.0, 0.40000000000000002]
XYChartvView2.RightAxisRange = [0.0, 6.6600000000000001]
XYChartView2.TopAxisRange = [0.0, 6.6600000000000001]

DataRepresentationd.SeriesColor = ['<velocity> (Magnitude)',
'0.290196', '<velocity> (1)', '0.894118', '0.101961"',
DataRepresentation4.SeriesVisibility = ['<velocity> (0)',
'<velocity> (2)', '0', 'ObjectId', '0', 'Points (0)',
(2)', '0', 'Points (Magnitude)', '0', 'arc_length',
'vtkvalidPointMask', '0', '<velocity> (Magnitude)',

'0.301961",
'0.109804"]

'<velocity> (1)',
'Points (1)',
'vtkOriginallIndices',

'0.686275",

'Points
0,

PlotOverLine3 = PlotOverLine(Source="High Resolution Line Source"
PlotOverLine3.Source.Point2 = [1.0, 1.0, 0.5]

DataRepresentation5 = Show()

DataRepresentation5.XArrayName = 'arc_length'
DataRepresentation5.SeriesVisibility = ['<velocity> (0)',

'<velocity> (1)',
'Points (1)',
'vtkOriginallIndices',

'Points
0,

'<velocity> (2)', '0', 'ObjectId', '0', 'Points (0)',
(2)', '0', 'Points (Magnitude)', '0', 'arc_length',

DataRepresentation5.SeriesColor = ['<velocity> (Magnitude)', '0.301961', '0.686275"',
DataRepresentation5.SeriesVisibility = ['<velocity> (0)',
'<velocity> (2)', '0', 'ObjectId', '0', 'Points (0)',
(2)', '0', 'Points (Magnitude)', '0', 'arc_length',
'vtkvalidPointMask', '0', '<velocity> (Magnitude)',

'<velocity> (1)',
'Points (1)',
'vtkOriginallIndices',

'Points
0,

o',

1,

o',

o',

Protected under CASL Master NDA
CASL-U-2013-0213-000

31
Official Use Only

Appendix F. make output.sh Script

#!/bin/bash
ndirs=$(find . -type d | grep 'workdir' | wc -1)
filel=workdir.1l/results.out

for ((i=2; i <= $ndirs; i++))

do
dir=workdir.S$i
join $filel $dir/results.out > .tmp
mv .tmp results.out
filel=results.out
done
32
Protected under CASL Master NDA Official Use Only

CASL-U-2013-0213-000

Appendix G. DAKOTA Input File for QUESO-GPMSA Analysis

strategy,
single_method
tabular graphics data

method,
bayes calibration gpmsa,
emulator samples = 50
seed = 241

samples = 20000

variables,
active uncertain
uniform uncertain = 3
lower bounds = 0.
upper_ bounds 1
continuous_state
lower bounds = 0.
upper bounds = 1

interface,
system

file save file tag

responses,
calibration_terms = 2002

no_gradients
no_hessians

DAKOTA INPUT FILE - dakota_ bayes.in

import points file = 'williams9.txt'

analysis driver = 'hydra3'
parameters file = 'params.in'
results file = 'results.out'

calibration data file = 'casl2.dat'
freeform
num_experiments = 1
num _config variables =1

freeform

Protected under CASL Master NDA
CASL-U-2013-0213-000

33
Official Use Only

