

L3:RTM.MCH.P6.03
Tally Server Implementation in

OpenMC
Paul K. Romano, B. Forget

MIT
October 24, 2013

CASL-U-2013-0215-000

CASL L3 Report: Tally Server implementation
in OpenMC

Paul K. Romano and B.Forget

October 24, 2013

Abstract

As part of POR-6, an L3 milestone was completed on the implementation of
tally servers in OpenMC. In the present work, we make a number of refinements
to a theoretical performance model of the tally server algorithm to better predict
the performance of a realistic reactor simulation using Monte Carlo. The impact
of subdividing fuel into annular segments on parameters of the performance
model is evaluated and shown to result in a predicted overhead of less than 20%
for a PWR benchmark on the Mira Blue Gene/Q supercomputer. Additionally,
a parameter space study is performed comparing tally server implementations
using blocking and non-blocking communication. Non-blocking communication
is shown to reduce the communication overhead relative to blocking commu-
nication, in some cases resulting in negative overhead. The algortihm was
successfully tested on a full 3D core model of the BEAVRS benchmark with
240GB of tallies (sub-pellet level).

1 Introduction

Typical parallel implementations of Monte Carlo particle transport rely on full
replication of the problem data on each process. This approach has been shown
to be highly scalable [1], but does not lend itself to problems where the memory
requirements exceed that of a single node. For the realistic analysis of light-water
reactors (LWRs), the memory requirements can be quite severe. Neutron interaction
cross sections, which need to be stored for over 400 nuclides at various temperatures,
may consume up to 100 gigabytes of memory for a practical simulation.1 For a
robust depletion calculation, the required tally memory is likely to exceed 0.5
terabyte [4]. Treating realistic tally memory footprints thus requires some form
of decomposition across compute nodes. Two decomposition methods have been
proposed previously for addressing this problem: domain decomposition [5, 4] and
data decomposition [6].

In a recent paper [7], Romano et al. demonstrate an implementation of data
decomposition via a tally server algorithm and show that it offers a viable means of

1A number of novel algorithms may ultimately enable simulations involving continuous temperature
distributions to be performed using cross sections at 0 K [2, 3].

1

CASL-U-2013-0215-000

performing full core light-water reactor simulations via Monte Carlo. A theoretical
model was developed to predict the performance of a simulation using the tally
server algorithm relative to a simulation based on full memory replication. The
model depends on a number of machine-, code-, and problem-specific parameters.
In the present work, we revisit the derivation of the expected performance and
make refinements to a number of assumptions and parameters. The goal is to
develop a more realistic expectation for the performance of the tally server algorithm
specifically when applied to simulation of LWR problems and test the algortihm on
sub-pellet level tallies.

2 Tally Server Model

During a Monte Carlo simulation, estimates of integral physical parameters, referred
to as tallies, are made by keeping running sums of scores from events such as colli-
sions or particle tracks. Normally, tallies are stored in local memory. Synchronization
between processors is typically performed only after simulating a predetermined
number of particles, referred to as a batch. However, since tally data is not needed
for determining the random walk of a particle, it can be stored remotely.

In the tally server algorithm, the tally data is stored in the address space of a
process whose sole purpose is to receive scores from other processes (which we call
tally servers) and increment the tallies accordingly. Thus, a total of p processes are
divided into c compute processes and s tally servers. Each of the compute processes
is assigned a set of particles that it will track. As particle tracking is simulated, an
array of scores is sent to a tally server at each event that results in a contribution to a
tally. Since all tally accumulation is performed on the server, the compute processes
do not need to store the tallies in memory (other than meta-data describing the
tally).

The goal of the analysis here is to develop a model for the expected time to
simulate N particles using the tally server algorithm relative to a classic simulation
with no data decomposition. To that end, we first define a number of parameters:

µ= particle tracking rate [1/second],
f = number of tallying events per particle,

d = tally data sent per event [bytes],
α= application-level latency [seconds],
β = application-level inverse bandwidth [seconds/byte].

The latency and inverse bandwidth are determined by the network interconnect; f ,
µ, and d will depend on the machine hardware as well as the code being used and
the model being simulated. Thus, while these parameters may be hard to predict,
they can easily be measured from an actual simulation. Once these parameters are
known, we can develop a rough estimate for the time-to-solution with and without
tally servers. In a normal simulation without tally servers, the expected time to

2

CASL-U-2013-0215-000

simulate N particles is, assuming perfect parallel scaling,

t0 =
Nµ

p
. (1)

When the tally server algorithm is used, there are two sources that lead to overhead:
1) availability of fewer processors to simulate particles and 2) network communica-
tion for tally data from compute processes to the servers. The expected simulation
time when using tally servers is identical to the expression in Equation 1 but with p
replaced by c:

tc =
Nµ

c
. (2)

Since f (α+ dβ) is the expected tally server communication time for one particle
and N/c is the number of particles per processor, the total expected communication
time is

ts =
f N

c
�

α+ dβ
�

. (3)

We then define t = tc+ ts as the total simulation time using tally servers. Combining
Equation 1, Equation 2, and Equation 3, we obtain an expression relating the
simulation time with and without tally servers:

t

t0
=

p

c

�

1+
f

µ

�

α+ dβ
�

�

. (4)

The first factor on the right-hand side of Equation 4, p/c represents the loss in
efficiency due to having fewer processes tracking particles. The remaining term
within the square brackets represents the loss in efficiency due to the necessary
network communication. In this work, we will primarily be concerned with the
communication overhead,

∆s =
f

µ

�

α+ dβ
�

. (5)

2.1 Model Refinements

In the previous work by Romano et al. [7], estimates of the tally server parameters
were made by analyzing a hypothetical depletion simulation of the Monte Carlo
Performance Benchmark [8] on two target supercomputers: the Titan Cray XK7
at Oak Ridge National Laboratory and Intrepid Blue Gene/P at Argonne National
Laboratory. For the sake of simplicity, some of the assumptions made in estimating
these parameters were not conservative. We now revisit those assumptions to
develop more realistic estimates to determine what effect, if any, they have on the
expected performance of the tally server algorithm on a modern supercomputer.

2.1.1 Target Model

Rather than look at the Monte Carlo Performance Benchmark, which contains many
unrealistic simplifications (e.g., no fuel enrichment zoning and no control rods),

3

CASL-U-2013-0215-000

we have chosen as our target problem the BEAVRS PWR benchmark model [9].
This model includes accurate enrichment loadings, burnable absorber patterns, and
control bank positions as well as faithfully-modeled axial grid spacers, core baffle
structures, neutron shield panel structures, and relevant core internals. The use
of a different model will have an impact on µ and f . For Mira Blue Gene/Q, the
particle tracking rate for the benchmark is about 1/µ= 69particle/s. This is very
similar to the particle tracking rate for the Monte Carlo performance benchmark
on Blue Gene/P, and the number of tracks in fuel is virtually the same at f = 21.
Assuming the same physical quantities need to be tallied, d will not change. As in
our previous work [7], a range of d will be investigated.

2.1.2 Annular Regions in Fuel

In a depletion simulation, six reaction rates for each nuclide must be tallied each
time a particle track crosses fuel. Furthermore, it is necessary to subdivide fuel
regions into annular segments since spatial self-shielding will result in the outer
part of a fuel pin depleting faster than the inner part. The impact of this subdivision
of the fuel on f and µ has not previously been accounted for. With an increasing
number of subdivisions, the number of events that will result in contributions to
tallies will increase. At the same time, the time to simulate a single particle will
increase since there will be more surface crossings, re-evaluation of cross sections,
and tallying events.

To explicitly determine the effect of fuel subdivision on f and µ, a series of
simulations were run using the OpenMC Monte Carlo code [1] on the BEAVRS PWR
benchmark model varying the number of annular regions in the fuel from 1 to 10.
Figure 1 shows the dependence of f on the number of annular regions. While not
intuitively obvious a priori, this figure demonstrates that the number of tracks in
fuel is directly proportional to the number of annular regions.

Figure 1: Number of tracks in fuel as a function of the number of annular regions.

In OpenMC, each time a particle enters a new material, the macroscopic cross

4

CASL-U-2013-0215-000

sections must be calculated. This is true even if the particle hasn’t changed energy.
Thus, as the number of annular segments in fuel increases, the calculation time
will increase due predominantly to the extra cross section evaluations. Figure 2
shows the dependence of µ on the number of annular regions as measured by
OpenMC running on an Intel Core i5 Processor. While the relative simulation time
also increases linearly with the number of annular regions, unlike the number of
tracks the two are not directly proportional since only a fraction of the simulation
time is spent tracking particles in fuel.

2.1.3 Network Interconnect

For the present analysis, rather than looking at the Titan Cray XK7 or Intrepid
Blue Gene/P supercomputers, our target architecture is the Mira Blue Gene/Q
supercomputer at Argonne National Laboratory. Mira has 48 racks, each with 1024
nodes containing a 16-core PowerPC A2 processor for a total of 768,432 processor
cores. More importantly, the Blue Gene/Q network interconnect utilizes a 5D torus
and has lower latency and high bandwidth than the interconnect used for Blue
Gene/P. The nearest-neighbor MPI latency has been observed to be about 2.0µs [10]
and the maximum-hop latency is about 3.0µs [11]. In our analyses we assume
an average latency of α = 2.5µs. The internode single link bandwidth is about
1.8 GB/s [11]. Consequently, we will use β = 5.55 · 10−10 s/byte. Table 1 gives
a summary of the parameters used in the model predictions for the tally server
overhead as well as those used in our previous work [7].

Table 1: Parameters used for tally server overhead model

Parameter Description Intrepid Mira

α Latency (s) 3.53 · 10−6 2.5 · 10−6

β Bandwidth (s/byte) 2.60 · 10−9 5.55 · 10−10

1/µ Particles/second 76 69
d Data/event (bytes) 0 – 15,360 0 – 15,360
f Events/particle 21 21–213

2.1.4 Predicted Overhead

As discussed earlier, the increase in simulation time when using tally servers can
be attributed to 1) having fewer processors tracking particles and 2) network
communication. The first factor that increases the simulation time is known and is
simply determined by the user’s choice of p, c, and s. Thus we will evaluate only
the overhead from network communication as given in Equation 5.

In the previous section, we demonstrated that when subdividing the fuel pins into
annular regions, the number of tallying events per particle f is directly proportional
to the number of annular regions, whereas µ increases only slightly. Thus, the
communication overhead based on (5) will increase almost in direct proportion to

5

CASL-U-2013-0215-000

the number of annular regions. Figure 3 shows the predicted overhead on the Mira
supercomputer as a function of d for varying numbers of annular regions based
on the results in Figure 1 and Figure 2. The upper limit on d is 15,360 bytes, the
amount of tally data for six reaction rates in each of 320 nuclides within a material.
The latency and bandwidth of the interconnect were taken from Table 1. Even when
10 annular regions in the fuel are modeled, the maximum predicted communication
overhead is still under 20%.

2.1.5 End-of-batch Accumulation

One aspect of the algorithm that was not previously accounted for in the model of
overhead is the accumulation of tallies at the end of a batch. For statistical purposes,
after a set of N neutrons are simulated, the accumulated score for each tally random
variable is added to a running sum, and the square of the accumulated value is
added to a sum of squares. These sums enable the sample variance to be calculated
at the end of the simulation. When a tally server algorithm is used, the task of
incrementing these two sums is shifted from the compute processes to the servers.
Said another way, the total amount of work the compute processes must perform is
reduced slightly. As a result, the reduced work may partially or completely negate
the network communication overhead.

To model this effect, we break up the average time to simulate N particles into
two components, Nµ = Nµt + µb, where µt is the average time to transport a
particle and µb is the average time to calculate sums and sums-of-squares. Since µb
is directly proportional to the total number of tally scores, which in turn is typically
proportional to d, we can express it as µb = µ′bd. Without tally servers, the total
time to simulate N particles on p processors becomes

t0 =
Nµt +µ′bd

p
. (6)

When tally servers are used, the time spent incrementing the sums is offloaded to
the servers. Thus, the total tracking time on c compute processes is

tc =
Nµt

c
(7)

As before, when we combine Equation 6, Equation 7, and Equation 3, we obtain an
expression relating the simulation time with and without tally servers:

t

t0
=

p

c

µt + f
�

α+ dβ
�

µt +
µ′bd

N

. (8)

The communication overhead, defined earlier as the bracketed term minus unity,
now includes a term in the denominator that will increase with d:

∆s =
µt + f

�

α+ dβ
�

µt +
µ′bd

N

− 1. (9)

6

CASL-U-2013-0215-000

According to Equation 9, it is possible for the communication overhead to be negative
if N f (α+ dβ)< µ′bd. If d is sufficiently large that the latency is negligible (α≈ 0),
then the condition for negative overhead becomes N f β < µ′b. While this condition
no longer depends on d, µ′b can still increase if the total number of tally score bins
is increased (e.g., by refining a mesh over which scores are being tallied). Figure 4
shows the predicted overhead on the Mira supercomputer as a function of d for the
original model in Equation 5 and the modified model in Equation 9. The parameters
µt , α, and β are all from Table 1 and it was assumed that µ′b/N = 50ns/byte. This
value was chosen merely to demonstrate that negative overhead is possible and that
µ′b need not be exceedingly large. For small values of d, the overhead is dominated
by the latency term. For larger values of d, Equation 5 results in an increasing
overhead due to the bandwidth term whereas Equation 9 results in decreasing
overhead since N f (α+ dβ)< µ′bd.

To summarize, there are two key takeaways:

1. Negative overhead is possible due to offloading the incrementing of tally sums
and sums-of-squares to the tally servers and is more likely to occur when a
large number of quantities are being tallied.

2. In practice, the beneficial effect of offloading this operation may be masked by
large N . Particularly in reactor simulations where it is expected that a single
batch of neutrons may exceed one billion neutrons, it is unlikely that negative
overhead could be achieved.

The foregoing analysis has thus far assumed that network communication is
blocking. However, if non-blocking communication is used, the communication
operations may overlap with computation. In the best case scenario, the non-
blocking sends from compute processes would return instantaneously implying that
ts = 0. This in turn would imply that

∆s =
µt

µt +
µ′bd

N

− 1=−
µ′bd

Nµt +µ′bd
. (10)

We see here that with non-blocking communication, negative overhead is possible
regardless of the size of N .

While non-blocking communication may reduce the network communication
overhead at the sender to a level that is negligible or even negative, it’s important
to keep in mind that the time to complete a batch of neutrons is still limited by the
lesser of the time the compute processes require to transport the particles and the
time the tally servers require to accumulate tallies. The latter time is constrained
in the sense that an excessively large support ratio, c/s, would result in network
contention at the tally servers. For the tally server, there is no computation to be
performed and thus no opportunity to overlap communication and computation—
handling communication is the sole purpose of the server. In light of this, the latency
and bandwidth of the network are still crucial parameters that have a bearing on
the feasibility of the tally server algorithm.

7

CASL-U-2013-0215-000

3 Results

A complete implementation of the tally server algorithm in the OpenMC Monte Carlo
code was previously described by Romano et al. [7]. The initial implementation,
which was based on blocking communication, was tested over a wide range of
parameters on two supercomputers: the Titan Cray XK7 supercomputer at ORNL
and the Intrepid Blue Gene/P supercomputer at ANL. It was argued based on the
performance model that in the limit of an optimal support ratio, the use of non-
blocking communication could reduce the total overhead by a factor of two, but
such an implementation was never tested. Since then, a tally server algorithm based
on non-blocking communication has been implemented in a branch of OpenMC.

The performance model developed in section 2 depends on a variety of parame-
ters. For our target system, the Mira Blue Gene/Q supercomputer, α, β , and µ are
constant and can be determined based on measured data as previously discussed.
The remaining parameters are manipulated by varying the definition of the tallies
and the job parameters. To fully test the performance of the non-blocking tally
server implementation, a parameter study was performed that covers a range of the
parameters p, s, and d. For the present work, we have focused specifically on the
dependence of the communication overhead on d for varying support ratios c/s,
total number of processors p, and a fixed f . As expressed in Equation 9, we do not
expect the overhead to vary with either the support ratio or the total number of
processors—nevertheless we have chosen to include them as parameters since any
limitation to the scalability of the algorithm is likely to show up as a trend with p or
c/s.

To begin, a number of baseline simulations of the BEAVRS benchmark were run
without tally servers to determine the dependence of µt on d. These simulations
were run on Mira with 16 processors and a total of 32,000 particles per batch. Ten
batches were run both without tallies (referred to as inactive batches) and with
tallies (active batches). For each case, a tally was set up with a mesh filter and a
second filter to match only events within the fuel volume. Six reaction rates were
tallied for varying numbers of nuclides, starting with 5 nuclides and doubling the
number of nuclides up to 320. Thus, the amount of data sent at each event varied
from 240 bytes up to 15.36 kilobytes. Figure 5 shows the observed dependence of
µt on d normalized to the d = 5 case.

The parameter study using tally servers on the Mira supercomputer consisted of
two sets of 168 simulations with each combination of the following parameters: p =
16, 32, 64, 128, 256, 512, c/s = 1, 3, 7, 15, and d = 240, 480, 960, 1920, 3840, 7680, 15360.
The first set was performed with blocking communication between the compute
processes and the servers and the second set with non-blocking communication.
Like the baseline cases, the runs with tally servers had 10 inactive batches, 10 active
batches, and N/p = 500. The effective overhead from tally servers was determined
in the following manner. First, the expected overhead due to looking up cross
sections during tallying was subtracted from the active batch time based on the
results from the baseline cases. Then, the adjusted simulation time in active batches
was divided by the inactive batch time to determine the overhead in active batches.
The result is a quantity that is a proxy for the communication overhead, ∆s. One

8

CASL-U-2013-0215-000

should take note that it does not account for the fact that we have fewer compute
processes. The overhead calculated in this manner for c/s = 1, c/s = 3, c/s = 7,
and c/s = 15 is shown in Figure 6, Figure 7, Figure 8, and Figure 9, respectively.

Compared to our previous study, the observed communication overhead is lower
for large d primarily due to the higher bandwidth on Mira compared to Titan or
Intrepid. In all cases, the communication overhead is less than 6%, whereas for
Intrepid and Titan it had exceeded 30% in some cases. A more striking feature in all
the results is the fact that all non-blocking cases exhibit a clear trend of increasingly
negative overhead for large d. Based on the previous discussion, this is a direct
consequence of the fact that the incrementing of tally sums and sums-of-squares
has been offloaded to the tally servers. Had the choice of N been larger, this effect
would have been mitigated. That negative overhead could be observed at all is a
testament to the inherently fast network interconnect on Mira which results in little
overhead, especially when non-blocking semantics are used.

It is also of interest to observe the behavior of the tally server overhead with
increasing numbers of total processors. According to the performance model, the
overhead should not depend on the number of processors used. Figure 10 shows the
overhead plotted as a function of p for cases with d = 15360. For the simulations
where blocking communication was used, there is no clear trend with p. The
overhead when using 16, 64, and 128 total processor cores was consistently positive
whereas the overhead turned negative for 32, 256, and 512 total processors. Despite
the odd behavior with changes in p, there was little variation as a function of the
support ratio, c/s. When non-blocking communication was used, the overhead was
consistently negative for all cases.

3.1 Large Tally Performance

Recently, further analysis through our CESAR collaboration was performed to test
performance of the tally server algortihm on problems that considerably exceed
avaialble node memory. Figure 11 shows good performance as we increase the total
tally size up to 240GB. The figure indicates a performance penaly of roughly 30
% between inactice and active batches most of which is attributed to the tallies
themselves and not overhead from the tally server. Further analysis is ongoing to
evaluate the true cost of the algorithm.

4 Conclusions

In the present work, we have made further inroads towards evaluating the potential
for the tally server data decomposition algorithm to be applied to Monte Carlo simu-
lations of light-water reactors. The two major contributions are 1) improvements
in the theoretical performance model, and 2) a thorough parameter space study
looking at the impact of blocking vs. non-blocking communication in a real tally
server implementation in the OpenMC Monte Carlo code.

In our previous work, the Monte Carlo performance benchmark, otherwise
known as the Hoogenboom-Martin benchmark, was used as the basis for evaluating

9

CASL-U-2013-0215-000

tally server performance model parameters. That benchmark model was overly
simplified, and the recent introduction of a more realistic PWR benchmark, BEAVRS,
has allowed us to re-evaluate the model parameters. The change of benchmark
models did not have a significant effect on any model parameters. The simplified
theoretical model that was developed previously has also been refined to better
predict the performance of a realistic reactor simulation. Most importantly, the
effect of fuel subdivision on the number of particle tracks and calculation rate for the
BEAVRS benchmark was quantified using OpenMC. It was shown that the predicted
overhead due to tally servers increases linearly with the number of annular regions
in fuel. Nevertheless, even with 10 regions, the predicted overhead of using tally
servers is less than 20% on the Mira supercomputer over a wide parameter regime.
Thus, the subdivision of fuel pins into unique depletion regions should not be a
major impediment towards achieving high-fidelity simulations that rely on tally
servers.

A modified implementation of the tally server algorithm in OpenMC using
non-blocking communication was tested on the Mira supercomputer along with
the original implementation based on blocking communication. The observed
communication overhead was reduced when using non-blocking communication
as previously predicted. Furthermore, the communication overhead decreased to
the point that it was negative as the amount of data being sent at each tally event
increased. This was attributed to the accumulation of tally scores at the end of a
statistical batch being offloaded to the tally servers rather than being performed
by the compute processes. It is important to recognize that the negative overhead
observed is a consequence of the particular choice of run parameters and would
be unlikely to occur in a hypothetical reactor depletion simulation where the total
number of particles per statistical batch is necessarily very large, thus reducing the
importance of any end-of-batch operations.

The basic conclusions of our previous work, i.e., that the tally server algorithm
is a successful approach to circumventing on-node memory constraints associated
with detailed Monte Carlo reactor simulations, in unchanged in light of the evidence
presented in this work. While the tally server algorithm could already be employed
on the world’s fastest supercomputers today, the need for an extremely fast network
interconnect means that it may not be amenable for use on commodity computer
architectures that would more likely be used by scientists for day-to-day work.

Acknowledgements

The authors would like to acknowledge the help of John Tramm, Andrew Siegel and
Kord Smith in performing analysis on Blue Gene/Q and performing that large tally
calculations.

10

CASL-U-2013-0215-000

References

[1] Paul K. Romano and Benoit Forget. The OpenMC Monte Carlo
particle transport code. Ann. Nucl. Energy, 51:274–281, 2013.
doi:10.1016/j.anucene.2012.06.040.

[2] Gokhan Yesilyurt, William R. Martin, and Forrest B. Brown. On-the-fly Doppler
broadening for Monte Carlo codes. Nucl. Sci. Eng, 171:239–257, 2012.

[3] Tuomas Viitanen and Jaakko Leppänen. Explicit treatment of thermal motion
in continuous-energy Monte Carlo tracking routines. Nucl. Sci. Eng., 171:165–
173, 2012.

[4] Andrew R. Siegel, Kord Smith, Paul K. Romano, Benoit Forget, and Kyle
Felker. The effect of load imbalances on the performance of Monte
Carlo codes in LWR analysis. J. Comput. Phys., 235:901–911, 2013.
doi:10.1016/j.jcp.2012.06.012.

[5] Andrew Siegel, Kord Smith, Paul Fischer, and Vijay Mahadevan. Anal-
ysis of communication costs for domain decomposed Monte Carlo meth-
ods in nuclear reactor analysis. J. Comput. Phys., 231:3119–3125, 2012.
doi:10.1016/j.jcp.2011.12.014.

[6] Forrest B. Brown and William R. Martin. High performance computing and
Monte Carlo. Trans. Am. Nucl. Soc., 91(1):279–280, 2004.

[7] Paul K. Romano, Andrew R. Siegel, Benoit Forget, and Kord Smith. Data
decomposition of Monte Carlo particle transport simulations via tally servers.
J. Comput. Phys., 252:20–36, 2013. doi:10.1016/j.jcp.2013.06.011.

[8] J. Eduard Hoogenboom, William R. Martin, and Bojan Petrovic. The Monte
Carlo performance benchmark test - aims, specifications and first results. In
Int. Conf. Math. Comput. Methods Applied to Nucl. Sci. Eng., Rio de Janeiro,
Brazil, May 8–12 2011.

[9] Nicholas Horelik, Bryan Herman, Benoit Forget, and Kord Smith. Bench-
mark for evaluation and validation of reactor simulations (BEAVRS). In Int.
Conf. Mathematics and Computational Methods Applied to Nuclear Science and
Engineering, Sun Valley, Idaho, May 5–9 2013.

[10] Jeff Hammond. Mysteries of the deep: What happens inside of mpi on blue
gene/q and why it matters. In Leap to Petscale Workshop, Argonne, Illinois,
May 22–25, 2012. http://www.alcf.anl.gov/sites/www.alcf.anl.
gov/files/JeffsL2Ptalk_0.pdf.

[11] Kalyan Kumaran. Introduction to mira. In Code for Q Workshop, Argonne,
Illinois, April 30–May 2, 2012. http://www.alcf.anl.gov/sites/www.
alcf.anl.gov/files/bgq-perfengr.pdf.

11

CASL-U-2013-0215-000

http://www.alcf.anl.gov/sites/www.alcf.anl.gov/files/JeffsL2Ptalk_0.pdf
http://www.alcf.anl.gov/sites/www.alcf.anl.gov/files/JeffsL2Ptalk_0.pdf
http://www.alcf.anl.gov/sites/www.alcf.anl.gov/files/bgq-perfengr.pdf
http://www.alcf.anl.gov/sites/www.alcf.anl.gov/files/bgq-perfengr.pdf

Figure 2: Relative simulation time per particle as a function of the number of
annular regions.

Figure 3: Estimated tally server overhead on the Mira Blue Gene/Q supercomputer
as a function of the number of annular regions.

12

CASL-U-2013-0215-000

Figure 4: Estimated tally server overhead accounting for accumulation.

Figure 5: Observed dependence of µt on the amount of data tallied, d, on Mira.

13

CASL-U-2013-0215-000

Figure 6: Observed tally server overhead on ANL Mira with 1 compute process per
server.

Figure 7: Observed tally server overhead on ANL Mira with 3 compute process per
server.

14

CASL-U-2013-0215-000

Figure 8: Observed tally server overhead on ANL Mira with 7 compute process per
server.

Figure 9: Observed tally server overhead on ANL Mira with 15 compute process per
server.

15

CASL-U-2013-0215-000

Figure 10: Observed tally server overhead on ANL Mira as a function of p with
d = 15360.

	 -‐	 	 	 	

	 100	 	

	 200	 	

	 300	 	

	 400	 	

	 500	 	

	 600	 	

0	 50	 100	 150	 200	 250	

Ca
lc
ul
a&

on
	 R
at
e	
(n
/s
	 p
er
	 c
or
e)
	

Total	 Tally	 Data	 (GB)	

BG/Q	 Tally	 Server	 Scaling:	 Tally	 Data	 Size	 v.	 Calcula&on	 Rate	 (per	 core)	

Inac.ve	 Batch	

Ac.ve	 Batch	

Figure 11: Observed calculation rate observed with increasing tally size

16

CASL-U-2013-0215-000

	Introduction
	Tally Server Model
	Model Refinements
	Target Model
	Annular Regions in Fuel
	Network Interconnect
	Predicted Overhead
	End-of-batch Accumulation

	Results
	Large Tally Performance

	Conclusions

