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Abstract: This work applies the predictive modeling procedure formulated by Cacuci and Ionescu- 

Bujor (2010) to assimilate experimental data from the international OECD/NRC BWR Full Size Fine- 

Mesh Bundle Tests (BFBT) benchmarks to calibrate and reduce systematically and significantly the 

uncertainties in the predictions of the LWR thermal-hydraulics code FLICA4. The BFBT benchmarks 

were  designed  by  the  Nuclear  Power  Engineering  Corporation  (NUPEC)  of  Japan  for  enabling 

systematic validation of thermal-hydraulics codes by using full-scale experimental data. This work 

specifically uses BFBT experimental data for the “pump trip for a high-burnup assembly” in the 

predictive modeling formalism to calibrate parameters and time-dependent boundary conditions (power, 

mass flow rates, and outlet pressure distributions) in FLICA4, yielding best-estimate predictions of axial 

void fraction distributions. The resulting uncertainties for the best-estimate time-dependent model 

parameters  and  void  fraction  response  distributions  are  shown  to  be  smaller  than  the  a  priori 

experimental and computed uncertainties, thus demonstrating the successful use of predictive modeling 

for the large-scale reactor analysis code FLICA4 using BFBT benchmark-grade experiments. 
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I. INTRODUCTION 
 
 
 
Gaining accurate knowledge about boiling transition and void fraction distribution is essential for the 

quantification of nuclear reactor safety margins. However, the theoretical principles underlying the 

numerical modeling of sub-channel void distribution are incompletely known, and the correlations 

replacing first-principles are not generally applicable to the wide range of geometrical arrangements and 

operating conditions found in operating LWRs of various types. From 1987 to 1995, the Nuclear Power 

Engineering Corporation of Japan (NUPEC) performed measurements1,2 of void fraction distributions in 

full-size mock-up fuel bundles for both boiling water reactors (BWRs) and pressurized water reactors 

(PWRs). The void fraction distributions were visualized using computer tomography technology under 

actual plant conditions for mesh sizes smaller than a sub-channel. In addition to measuring void fraction 

distributions, NUPEC also performed steady state and transient measurement of critical power in 

equivalent full-size mock-ups. The NUPEC measurements are internationally considered to be highly 

reliable, thereby providing a comprehensive database for the development of consistent mechanistic 

models for predicting void fraction distributions and boiling transition in sub-channels. The international 

OECD/NRC BWR Full-Size Fine-Mesh Bundle Tests (BFBT) benchmarks1,2 were established based on 

the  NUPEC  database  to  motivate  research  on  insufficiently  known  two-phase  flow  regimes  by 

facilitating a systematic comparison between full-scale experimental data and predictions of numerical 

simulation models. These benchmarks are particularly well suited for quantifying uncertainties in the 

prediction of detailed distributions of sub-channel void fractions and critical powers. 
 

As is well known, nominal (or mean) values of experimentally measured or computed quantities are 

insufficient, by themselves, for applications; the quantitative uncertainties accompanying the 

measurements are also needed, along with the respective nominal (mean) values. Combination of data 

and theirs uncertainties requires reasoning from incomplete, error-afflicted, and occasionally discrepant 
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information for extracting “best estimate” values for model parameters and predicted results (responses), 

together with “best estimate” uncertainties for these parameters and responses. 

 

Cacuci  and  Ionescu-Bujor3,4  have proposed  a comprehensive predictive  modeling methodology for 

large-scale nonlinear time-dependent systems, enabling the reduction of uncertainties in best-estimate 

predictions following the combination (“assimilation”) of experimental data with computational results 

(response sensitivities and propagated model parameter uncertainties). This predictive modeling 

methodology generalizes and significantly extends the results customarily used in nuclear engineering, 

as well as those underlying the so-called 4D-VAR data assimilation procedures in the geophysical 

sciences5. The predictive modeling methodology of Cacuci and Ionescu-Bujor3,4 also provides 

quantitative indicators constructed from responses sensitivities (to model parameters) and covariance 

matrices (for measurements, as well as model parameters and responses) for determining the consistency 

(agreement or disagreement) among the a priori computational and experimental data (parameters and 

responses). Once the inconsistent data, if any, is discarded, this predictive modeling methodology yields 

best-estimate values for parameters and predicted responses, as well as best-estimate reduced 

uncertainties  for  (i.e.,  smaller  values  for  the  variances  accompanying)  the  predicted  best-estimate 

parameters and responses. 
 

The above mentioned predictive modeling methodology has been successfully applied by Petruzzi et al6 

to a blow-down thermal-hydraulics benchmark of interest to nuclear reactor safety, demonstrating that 

the assimilation of consistent experimental data leads to a significant reduction of uncertainties of the 

best estimate predicted results. Going significantly beyond the scope of the work by Petruzzi et al6, M.C 

Badea et al7  applied the predictive modeling methodology of Cacuci and Ionescu-Bujor3,4  to calibrate 

time-dependent model parameters and boundary conditions for the LWR core thermal-hydraulics code 

FLICA48  using   the BFBT benchmark measurements for the “turbine trip without bypass BFBT test 
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number  4102-001~009”,  to  obtain  best-estimate  predictions,  with  reduced  uncertainties,  for  the 

following physical quantities: (i) pressure drops   arising from steady one-dimensional FLICA4 

simulations; (ii) axial void fractions distributions arising from transient one-dimensional FLICA4 

simulations; and (iii) transversal void fraction distributions arising from steady three-dimensional 

FLICA4 simulations, at sub-channel level with cross-flows. 

 
The present work continues the predictive modeling and validation of the thermal-hydraulics code 

FLICA48, by using the BFBT experimental benchmark "pump trip in a BWR for a high-burnup 

assembly". The experimental data for this benchmark is designated as “BFBT case 4102-001 ~ 027”, 

and comprises the time-dependent record of the axial void distributions, at three elevations, in the BFBT 

test section containing a typical full-size (8x8) BWR-assembly subject to the “pump trip” design basis 

accident scenario. Section II of this work presents the salient predictive modeling formulas from the 

methodology of Cacuci and Ionescu-Bujor3,4 for the predicted best-estimate responses and parameters, 

along with the corresponding predicted best-estimate covariances. These formulas are subsequently used 

in Section III in conjunction with the experimental data from the BFBT “pump trip, case 4102-001 ~ 

027” benchmark to calibrate FLICA4 and produce best-estimate results, with reduced uncertainties, for 

the predicted void fraction distributions, as well as for the time-dependent power and mass flow 

distributions.  Finally,  Section  IV  summarizes  the  significance  of  this  work  and  offers  concluding 

remarks. 
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II. PREDICTIVE MODELING: SUMMARY OF FORMULAS FOR 
PREDICTING BEST-ESTIMATE MEANS AND COVARIANCES FOR MODEL 
PARAMETERS AND RESPONSES 

 

 
 
Following the work of Cacuci and Ionescu-Bujor3,4, the time-dependent physical system is considered to 

 
comprise  N

 model parameters and N    distinct responses, at every time node (step)    = 1, 2,... , Nt . 
 
Using  superscripts  to  denote  “time  nodes”  (or  “steps”),  the  (column)  vector  α

 of   N
 model 

 

 

parameters, and the (column) vector r  of N    responses can be represented at every time node    in 
 
 

component form as α = {〈n   | n = 1, N〈 },
 

r  = {ri

 

| i = 1,, Nr },
 

 = 1,... , Nt .  At any time node  ,
 

         
 
 

the system parameters are considered to be variates with known mean values (〈  )0 
, n = 1, N  , 

 

and 
n 〈 

 

 

known correlations between two parameters 〈
 and 〈 ∝ , at two time nodes ∝  and  ; these correlations 

 

 
are denoted as 

 

 
 
 
∝  

 
 
 

(   )0
 

 
 
 
∝  (  ∝  )0

 

c〈 ,ij  α 〈 �   i 
  〈 i 

 〈     〈  �  j j
 

  . (1) 
 

 
 
 
 
The above correlations constitute the elements of symmetric covariance matrices of the form 

 
 
 

∝  0   ∝
 † 

0 ∝ 

 

∝  ∝    †
 

C〈    α (α  α  ) 
(α  α 

 = (C〈    ) = C〈 = (C〈   ) . (2) 
 
 

Similarly, the measured responses are characterized by mean values  (rm ) at a time node  , and by 
 
symmetric covariance matrices between two time nodes ∝  and   defined as 

 
 
 

C∝   α 
 

r  r ∝   r  r     
 

=  C∝ = C∝   = C∝ † 

. (3) m ( m )  �( m )  (   m   ) m (   m  ) 
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In general, the measured responses may be correlated to the parameters through response-parameter 
 
uncertainty matrices of the form 

 
 
 
 

C∝   α 
 

(r  r )∝  (α  α0 )    
. (4) r 〈  m �  

 
 
By using the maximum entropy principle in conjunction with Bayes’ theorem, the methodology of 

Cacuci and Ionescu-Bujor3,4 combines the a priori information presented in Eqs. (1) through (4) with the 

“likelihood” provided by the simulation model (in the present case: FLICA4) to yield expressions for the 

best-estimate  predicted  values  for  the  model  parameters  and  responses,  along  with  corresponding 

reduced uncertainties (covariances), as follows: 

 
 
 

1.   Best-estimate predicted nominal values for the calibrated (adjusted) parameters: 
 
 

αbe  = α0 + (C 
 C  S (α0 )  ) C

 
 

(α0 )   d . (5) 〈 r 〈  �  �   d  
 

 
In component form, the above expression for the calibrated best-estimate parameter values can be 

 
written in the form 

 
 
 

    Nt
 〉  ∝ 

∝〉   Nt
  

 
(αbe ) = (α0 ) +  ∫   

∝
 

∝ =1 

⌠� 

 
〉 =1 

C〉 (S† )   
 � =1 

K ∝ d 
 , 
  

 = 1,, Nt , (6) 

 
where 

 denotes the corresponding  ( , ) -element of the  block-matrix C1 , with the block-matrix 
 

Cd  ( α0 ) defined as follows: 
 

C  (α0 ) α 
 
dd†

 =  ( r  S (α0 ) α ) ( r†   α† S (α0 

)† ) 

 
 
(7) 

= C α0     C S  α0
 

† 

   S α0     C + C  . 
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In the above (and subsequent) expressions, the superscript “ † ” denotes “transposition”. The block- 

 
 
matrix S that appears in the above expressions is defined as 

 

 
 
 
 
 
 
 

  , (8) 
 S Nt 1 

  S Nt Nt     
 

 
 

  ∝ ) -dimensional matrix components S∝ , 1 δ ∝ δ  , defined as 
 
 

  
 

 R1
 R1    

 
〈 ∝  

〈 ∝   
  ∝ 

 
∝    1 N   

s11 

 
s 

      

S∝    p∝      =  s∝ 
 =   Ri 

  , 1 δ ∝ δ  , (9) 

(  0 )  in  〈 ∝
 

 s∝  s∝    n  
  I 1 IN    

      
 RI  

RI    
 〈 ∝ 

〈 ∝   
 1 N   

 
  ∝ 

 
where the elements Ri 〈n represent the first Gateaux-derivatives of a computed response  Ri with 

 
respect to a model parameter 〈 ∝ . 

 
 
The covariance matrix Crc appearing in Eq.(7) is a symmetric block-matrix that denotes the covariances 

 
of the computed responses, and is defined as follows: 

 
 
 

 C11   C1Nt     

C α 
 rc rc 

      ;
  

C∝  = 
∝ 

S C〉 (S∝〉 )†  
= (C∝  )† 

;
  

 , ∝ =
  
1,..., N . (10) 

rc   rc   〈 rc t 
 CNt 1 

  CNt Nt     =1 〉 =1 
  rc rc  

 
The  vector  d ,  which  first  appears  in  Eq.  (5),  denotes  the  vector  of  “deviations”  reflecting  the 

discrepancies between the nominally computed responses and the corresponding nominal values of the 
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† 1 
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(11) 
 

2.   The best-estimate predicted nominal values for the calibrated (adjusted) responses: 
 
 
 

r (αbe ) = r + (C    C
 S (α0 )  ) C

 
 

(α0 )   d . (12) m m r 〈  �    �  d  
 
 
 

At a specific time node  , each component (rbe )  
of r (αbe ) 

 

has the explicit form 
 
 
 

(rbe )
  

= (r
 Nt 

)  + 
〉  

C∝  
 ∝ 

C〉  (S† )
 ∝〉   Nt  

K ∝ d
   

, 
 

 = 1,,
  

. (13) 
m  ∫   m 

∝ =1 ⌠� 
 r〈 
〉 =1 

  d 
 � =1   Nt 

  
 

3. The expressions for the predicted best-estimate covariances be
 and be

 corresponding to the 
 
 

best-estimate parameters 
 

αbe 
 

and responses r (αbe ) , respectively, together with the predicted 
 

 
best-estimate parameter-response covariance matrix Cbe  . The block-matrix components, which 

 

 
correlate two (distinct or not) time-nodes, of these calibrated best-estimate covariance matrices 

 
are given below: 

 
 
 

(Cbe )∝
 Nt 

= C∝   
Nt      

C〉   
 〉 

C� (S† )
 〉�  〉   

K 
 

C∝   
 
S� C�∝

  
, (14) 

〈  〈     〈 r   〈    d       r〈   〈    
 =1 〉 =1 � � =1  � � =1  

 

(Cbe )∝
 Nt 

= C∝   
Nt      

C〉  
 〉 

C�  (S† )
 〉�  〉   

K 
 

C∝   S� C�∝ 
  
, (15) 

r m     m  r〈    d       m  〈 r  
 =1 〉 =1 � � =1  � � =1  

 

(Cbe  )∝
 Nt 

= C∝   
Nt      

C〉  
 〉 

C�  (S† )
 〉�  〉   

K 
 

C∝   S� C�∝ 
  
. (16) 

r〈 r〈 
    m   r〈    d      〈 r  〈    
 =1 〉 =1 � � =1   �  � =1  
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The methodology of Cacuci and Ionescu-Bujor3,4  also provides the consistency indicator 
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 

1 
2 †   0       α d �Cd (α  ) d . (17) 

 
 
 

As the above expression indicates, the indicator  2   represents the square of the length of the vector d , 
 
measuring  (in  the  corresponding  metric)  the  deviations  between  the  experimental  and  nominally 

 
computed responses. Note that  2   can be evaluated directly from the originally given data (i.e., given 

 
parameters and responses, together with their original uncertainties), once the response sensitivities have 

 
been computed by either forward or adjoint methods9. Recall that the  2   (chi-square) distribution with 

 
n degrees of freedom of the continuous variable x,  0 δ x < , is defined as 

 
 
 
 

P  x <  2  < x + dx 
 

� k x  dx = 1 xn 21e x 2 dx,
  

x > 0, 
 

n = 1, 2, . 
 
(18) ( ) n (  ) 2n 2 ℘ ( n 2)  (  )

 
 

 

The  2 - distribution is a measure of the deviation of a “true distribution” (in this case – the distribution 
 
of experimental responses) from the hypothetic one (in this case – a Gaussian). The mean and variance 

 
of  x  are x = n  and var ( x ) = 2n . As the dimension of  d  indicates, the number  n  of degrees of 

 

 
freedom characteristic of the calibration under consideration is equal to the number of experimental 

 
 
responses,  i.e., 

Nt 

n =  Nr 

 
.  The  value  of 

 

 2    computed  using  Eq.  (18)  provides  a  very  valuable 
 =1 

 
quantitative  indicator  for  investigating  the  agreement  between  the  computed  and  experimental 

responses, measuring essentially the consistency of the experimental responses with the model 

parameters. 
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III. FLICA4 PREDICTIVE MODELING OF THE PUMP-TRIP NUPEC BFBT 
BENCHMARK EXPERIMENT 

 
 
 
 
III.A Description of the BFBT “Pump-Trip High-Burnup” Experiment 

 
 
 
 
The BFBT facility is limited to a maximum pressure of 10.3 MPa, a temperature of 315°C, a power of 

 
12 MW, and a maximum mass flow of 20.83 kg/s. The coolant circulation is ensured by a pump, and the 

amount of coolant required by a specific experiment is regulated by valves that are located directly 

behind the pump filter. To avoid thermal shocks, the single-phase coolant is pre-heated in the inlet 

section. For the various BFBT experiments, corresponding two-phase flow conditions are provided 

inside the test section by the electrically heated rods in the mock-up BWR test assembly, which is 

contained inside a pressure vessel. The BFBT experimental benchmark "pump trip in a high burnup 

BWR assembly" has been selected in this work in order to calibrate the core thermal-hydraulics code 

FLICA47. The experimental data for this benchmark is designated as “case 4102-001 ~ 027”, comprising 

the time-dependent record of the axial void distributions, at three elevations, in a mock-up of a typical 

8x8 BWR assembly. Figure 1 indicates the three elevations (at 682 mm, 1706 mm, and 2730 mm, from 
 
bottom to top) at which the void fraction responses R1 , R2 and R3  were measured. Figure 2 depicts the 

 
cross-sectional view of the BWR assembly. The typical power distribution in an actual BWR assembly 

is simulated using electrically heated rods. The various numbers in Figure 2 indicate various power 

peaking factors, which are specified in Table 1. The boundary conditions imposed on the test section are 

shown in Figure 3, and represent actual operating conditions for a typical BWR for the so-called  “high- 

burnup case”. 
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Group number Group type Power Peaking Factor 

1 Heater 1.30 

2 Heater 1.15 

3 Heater 0.89 

4 Heater 0.45 

5 Water tube 0.00 

 
 

Table 1: Power peaking factors for the “pump trip high burnup” assembly 
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Figure 1: BFBT Test Section 
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Figure 2: Cross sectional view of BWR mock-up assembly 
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Figure 3: Time-dependent (experimentally measured) boundary conditions for the mass flow rate (top 
left), power distribution (top right) and the outlet pressure (bottom) 
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III.B. Predictive Modeling Using FLICA4 
 
 
 
 
The predictive modeling formulas presented in Section II were used in conjunction with experimental 

measurements of void fractions (at the three levels indicated in Figure 1) together with the following 

FLICA4 time-dependent parameters: mass-flow, power-distribution and outlet pressure. The values of 

the time-dependent parameters mass-flow, the power-distribution and the outlet pressure were extracted 

from the corresponding data set (i.e., the case 4-102-009~027” of the BFBT benchmark) at every 100 

milliseconds, for a total of 1800 values during the 60 seconds of the considered pump-trip transient. The 

relative standard deviations for the mass flow rate, power distribution and outlet pressure were 1.5%, 

1.5%, and 1%, respectively; these measurements were considered to be uncorrelated in time. 
 
 
 
 
As shown in Figure 1, the void fraction distributions were measured at three different axial positions: 

2703 mm, 1706 mm, and 682 mm. These experimental measurements, together with their standard 

deviations, are depicted in Figure 4: the data at 2703 mm is labeled R1 , the data at 1706 mm is labeled R2 

 
and the data at 682 mm is labeled R3 . In the absence of information to the contrary, these experimentally 

measured responses were considered to be uncorrelated, and their relative standard deviations were 

estimated to be 5%. Figure 4 also depicts, using dashed-lines, the nominal values of the void fractions 

computed using FLICA4. For these computations, the test section, including the BWR assembly, were 

modeled by using a CAD representation involving a uniform hexahedral discretization with 1000 axial 

sub-divisions. This discretization makes it possible to determine accurately the void distribution at the 

measurement levels within a reasonable computational time. As Figure 4 indicates, the FLICA4 results 

seem to be consistent with the measurements during the period between 15 seconds and 45 seconds, but 

appear to be inconsistent with the measurement at the start of the transient (until about 15 seconds into 
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the transient) and at the end of the transient, beyond 45 seconds. The results presented in Figure 2 also 
 
indicate that the FLICA4 computations are more consistent with the measurements at high values of the 

 
void fraction (i.e., for the responses R1  and R2 ) but are systematically lower than the measurements for 

 
low values of the void fractions (i.e., for response R3 ). 

 
A total of 1530 experimental responses (specifically: 510 void fraction values measured at every 100 

milliseconds at each of the three measuring levels, commencing at 9 seconds after the start of the 

transient, for a period of 60 seconds) were used in the predictive modeling formulas presented in Section 

II for calibrating FLICA4. The sensitivities of each of these 1530 responses to the FLICA4 time- 

dependent model parameters (power, mass flow rate, and outlet pressure) were computed by finite 

differences  using  forward  FLICA4-computatioms,  since  FLICA4  does  not  have  an  adjoint  model 

suitable for computing response sensitivities efficiently. 

 
 
 

 
 
 

Figure 4: Experimental records (circles), FLICA4 results (dashed lines), and predicted best-estimate 
mean values for the void fraction responses (stars) 

CASL-U-2013-0220-000



20  

 
 
The computational and experimental responses shown in Figure 4 have been combined (“data 

assimilation”) using the formulas presented in Section II to obtain best-estimate predicted responses, 

parameters, and corresponding reduced uncertainties. The predicted best-estimate mean-values of the 

responses are also shown (depicted by “starts”) in Figure 4; the predictive modeling formula shown in 

Eq. (14) has significantly improved the predicted mean-values of the void fractions, making the 

predictions practically indistinguishable from the experimental values. 

 
 
 
The top plot in Figure 5 presents the FLICA4-computed response uncertainties ( ±1standard deviation 

computed  using  Eq.  (11),  around  the  computed  nominal  values  presented  in  Figure  4).  These 

uncertainties underscore the discrepancies between the experimental measurements and the FLICA4 

computations for high void fractions, both for early and late times into the pump-trip transient. These 

discrepancies are caused by numerical instabilities in FLICA4 stemming from the rapid changes in the 

boundary conditions --especially the pressure. On the other hand, the bottom plot in Figure 5 presents 

the predicted best-estimate responses, computed with Eq. (14), together with the predicted one-standard 

deviation upper- (UUB) and, respectively, lower-uncertainty (LUB) bounds, computed using Eq. (16). 

These plots underscore the very significant improvement in the predicted responses, which have become 

almost indistinguishable from the experimental values for all three responses, for the majority of the 

duration of the transient. The only discrepancies between the predicted best-estimate values and the 

experiments remain for the last 5 seconds of the transient for the response R1 , at high void fraction 

values. The suppression of numerical instabilities following the data assimilation and model calibration 

of the time-dependent boundary conditions (also to be discussed in conjunction with the results depicted 

in Figures 5 and 6) in FLICA4 is underscored by the good agreement that can be visually observed in 
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Figure 5 (bottom) between the measured and predicted responses R2 and R3 . The visual impression 
 
indicated by Figure 5 (bottom), namely of barely consistent agreement between the experimental and 

 

 
predicted  void  fractions  for  the  high  void  fraction  responses R1 ,  but  very  good  agreement  for  the 

 
measured and predicted void fractions responses R2 and R3 , is confirmed by the numerical values of the 

 
“chi-square-like consistency indicators” presented in Eq. (18) , which were found to have the following 

 
values:  2  / N = 0.53 < 1.0 for the N R  = 510 degrees of freedom (measurements) for the response R1 ; 

 
 2  / N  = 1.02 � 1.0 for   the N R  = 510 measurements R2 ;   and  2  / N  = 1.01 � 1.0 the N R  = 510 

 
measurements R3 . Note that although the off-diagonal (a posteriori response-response) correlation terms 

 
in the matrices (Cbe )∝  

, computed using Eq. (15), are non-zero, they are inconsequential, being all less 
 

 

than 1%. Similarly, computing the matrix (Cbe  )∝
 

 

using Eq. (16) yields non-zero, but very small (all 
 

 
less than 1%) --and hence inconsequential-- a posteriori parameter-response correlations. Therefore, 

these correlation terms are not presented here. 
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Figure 5: Experimental records (continuous lines), FLICA4-computed ( ±1) standard deviations 
(top), and predicted best-estimate ( ±1) standard deviations (bottom) 

 
 
 
 
 
The predicted time-dependent best-estimate mass flow rate and power distribution, computed using Eq. 

(7), together with their accompanying predicted ( ±1) standard-deviations computed using Eq. (15), are 

shown in Figures 6 and 7. Both figures indicate that the predictive modeling procedure performs very 

well, practically “overlaying” the predicted values over the experimentally determined ones, reducing 

the experimental uncertainties even further. As shown in Figures 5 and 6, the predicted a posteriori 
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〈 

parameter ( ±1) standard-deviations are very small (less than 2%). These a posteriori standard deviations 
 

were computed by using Eq. (14); of course these computations yielded the complete matrices (Cbe )∝  
, 

 

 

not just the variances (diagonal terms). However, although these off-diagonal terms in (Cbe )∝
 

 

--namely 
 

 
the a posteriori parameter-parameter correlations-- were non-zero, they were inconsequential, being all 

less than 1%; therefore, these a posteriori parameter-parameter correlations are not presented here. 

 
 
 
 

 
 
 

Figure 6: Experimental (circles) and best-estimated (stars) mass flow parameters of the R1, R2 and 
R3 response for the FLICA4 time-dependent parameters 
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Figure 7: Experimental (circles) and best-estimated (stars) power distribution of the R1, R2 and R3 

response for the FLICA4 time-dependent parameters 
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IV. SUMMARY AND CONCLUSIONS 

 
 
 
 
This work has presented a large-scale application of the predictive modeling methodology proposed by 

Cacuci and Ionescu-Bujor3,4 to the three-dimensional thermal-hydraulics code FLICA48, which is 

routinely used for the analysis and design of light-water reactors (LWR).  This work continues the initial 

predictive  modeling  work  reported  by  M.C.  Badea  et  al7,  which  used  the  BFBT  benchmark 

measurements  from  the  experiment  “turbine  trip  without  bypass”  for  predictive  modeling  using 

FLICA4, for the following benchmark measurements: (i) pressure drops (steady one-dimensional 

simulations); (ii) axial void fractions distributions (transient one-dimensional simulations); and (iii) 

transversal void fraction distributions (steady three-dimensional simulations, at sub-channel level with 

cross-flows). The predictive modeling results presented in this work follow the assimilation of 

experimental data from the OECD/NRC BWR Full-Size Fine-Mesh Bundle Tests (BFBT) benchmarks 

“pump trip at high burnup,” and clearly demonstrate that assimilation of consistent information leads to 

more  precisely  predicted,  reducing  the  accompanying  uncertainties,  often  by  large  factors.  The 

predictive modeling’s quantitative “chi-square-like” indicator takes on values close to unity, indicating 

that the computations are consistent with the measurements. 

 

The predictive modeling formulas in this work use first-order response sensitivities only. Nevertheless, 

model response nonlinearities can be taken into account by iterative applications of these formulas, in 

the spirit of incomplete Newton methods that do not use Hessian information. This strategy results in 

considerable savings of computational memory, which is a very important consideration when dealing 

with large-scale realistic physical systems. The development of higher-order predictive modeling 

formalisms is very important not only for enabling the quantification of the impact of higher-order 
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sensitivities and correlations, but also for quantifying non-Gaussian features (e.g., asymmetries, 

importance of tails) of the posterior joint distribution of computations and experiments, and is therefore 

an important objective of ongoing research. 
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