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Abstract

HE purpose of the present document is to formulate Jacobian-free Newton-

Krylov algorithm for approximate projection method used in Hydra-TH code.
Hydra-TH is developed by Los Alamos National Laboratory (LANL) under the
auspices of the Consortium for Advanced Simulation of Light-Water Reactors
(CASL) for thermal-hydraulics applications ranging from grid-to-rod fretting
(GTRF) to multiphase flow subcooled boiling. Currently, Hydra-TH is based on
the semi-implicit projection method, which provides an excellent platform for
simulation of transient single-phase thermalhydraulics problems. This algorithm
however is not efficient when applied for very slow or steady-state problems,
as well as for highly non-linear multiphase problems relevant to nuclear reac-
tor thermalhydraulics with boiling and condensation. These applications require
fully-implicit tightly-coupling algorithms. The major technical contribution of the
present report is the formulation of fully-implicit projection algorithm which will
fulfill this purpose. This includes the definition of non-linear residuals used for
GMRES-based linear iterations, as well as physics-based preconditioning tech-
niques.

il
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Chapter 1

Introduction

HE solution of the time-dependent incompressible single- and multiphase flows
Tposes several algorithmic problems due to the div-free constraint, and the con-
comitant spatial and temporal resolution required to perform time-accurate solu-
tions particularly when complex geometry is involved. The initial deployment
of Hydra-TH has focused on projection methods because of their computational
efficiency and accuracy for transient flows. However, when applied to slow tran-
sients and steady-state problems, the currently existing projection methods are not
cost-effective, due to stability restrictions imposed by material Courant limit. For
these applications, fully-implicit algorithms are required. Here, we reformulate
semi-implicit projection method to fit into the fully-implicit Jacobian-free New-
ton Krylov solution strategy.

We start with a short description of governing equations, defined in Chapter
3. Even though we limit our discussion here to single-phase flows, the basic ideas
introduced are extendable to multi-fluid formulation [NC12].

A detailed review of projection methods is beyond the scope of this document,
but a partial list of relevant work is provided for the interested reader. Projec-
tion methods, also commonly referred to as fractional-step, pressure correction
methods, or Chorin’s method [Cho68] have grown in popularity over the past
20 years due to the relative ease of implementation and computational perfor-
mance. This is reflected by the volume of work published on the development
of second-order accurate projection methods, see for example van Kan [Kan86],
Bell, et al. [BCG89], Gresho, et al. [Gre90, GC90, GCCHY95, GC96], Almgren,
et al. [ABCH93, ABS96, ABCO00], Rider [Rid94b, Rid94a, RKM*95, Rid95],

1
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2 CHAPTER 1. INTRODUCTION

Minion [Min96], Guermond and Quartapelle [GQ97], Puckett, et al. [PABT97],
Sussman, et al. [SAB799], and Knio, et al. [KNW99]. The numerical perfor-
mance of projection methods has been considered by Brown and Minion [BM95,
MB97], Wetton [Wet98], Guermond [Gue96, Gue97], Guermond and Quartapelle
[GQI98b, GQ98a], and Almgren et al. [ABCO0]. A short introduction to semi-
implicit projection method is given in Chapter 4.

The main technical contribution of this report is described in chapters 5 and 6,
introducing fully-implicit projection and its physics-based preconditioning.

Concluding remarks are given in the final chapter 8.

CASL-U-2013-0288-000-b



Chapter 2
Hydra-TH

YDRA-TH [Chr11] refers to the specific physics module that provides the hy-

brid finite-volume/finite-element incompressible/low-Mach flow solver. This
is built as one of the many physics modules using the Hydra multiphysics toolkit.
The toolkit provides a rich suite of components that permits rapid application
development, I/O interfaces to permit reading/writing multiple file formats for
meshes, plot data, time-history and surface-based output. The toolkit also pro-
vides run-time parallel domain decomposition with data-migration for both static
and dynamic load-balancing. Linear algebra is handled through an abstract in-
terface that permits use of popular libraries such as PetSC and Trilinos. Hy-
dra’s toolkit model for development provides lightweight, high-performance and
reusable code components for agile development. Currently the toolkit supports
finite-element based solvers for time-dependent heat conduction, time-dependent
advection-diffusion, time-dependent incompressible flow, multiple Lagrangian hy-
drodynamics solvers, rigid-body dynamics, etc. In addition, unstructured-grid
finite-volume solvers are available for solving time-dependent advection-diffusion,
Burgers’ equation, the compressible Euler equations, and incompressible/low-
Mach Navier-Stokes equations. There are also interfaces to the FronTier front-
tracking software and to level-set methods.

CASL-U-2013-0288-000-b
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Chapter 3

Governing Equations

IN the current chapter, we formulate governing fluid dynamics equations consid-
ered in the following chapters. We discuss both incompressible and (weakly'")
compressible formulations.

3.1 Mass conservation

The mass conservation principle in divergence form is

dp

—+V- =0. 3.1

5 TV (V) 3.1
Incompressible. In the incompressible limit, the velocity field is solenoidal,

V-v=0 (3.2)

while density can be either constant, or variable — a function of some material
index function x? (in multiphase flow configurations), p (). This implies a mass
density transport equation,

dp dp

Compressible. We are considering two compressible flow configurations:

!Projection algorithms are generally considered inadequate for strong (shock-wave
dynamics) compressible flows.

>The index function y could be either the level set function (for the LS method
[Set99]), or the volume fraction (for the VOF method [HN81]).

5
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6 CHAPTER 3. GOVERNING EQUATIONS

1. Acoustically-filtered, p (7"). In this case, the velocity field can still be
divergence-free, eq.(3.2), which allows to eliminate sound waves from con-
sideration and simplify numerical treatment.

2. Fully-compressible, p (P, T), in which case the energy equation is tightly
coupled to both mass and momentum conservation.

3.2 Momentum conservation

The conservation of linear momentum is

ou - ou _ ooy
p&t pjaxj_ﬁxj

pfi (3.4)

where v; are components of the velocity vector v, o;; is the stress tensor, p is the
mass density, and f; is the body force. The body force contribution pf; typically
accounts for buoyancy forces with f; representing the acceleration due to gravity.

The stress may be written in terms of the fluid pressure and the deviatoric
stress tensor as

045 = —p@j + Tij (35)

where p is the pressure, d;; is the Kronecker delta, and 7;; is the deviatoric stress
tensor. A constitutive equation relates the deviatoric stress and the strain rate, e.g.,

The strain-rate tensor is written in terms of the velocity gradients as

. 1 8’02‘ an
Si =5 (6% 1 ax,-) . (3.7)

3.3 Energy conservation

The energy equation may be expressed in terms of temperature, T, as

pC, T 0

a y "
<pUijT) - a—z? tq (3.8)
J
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3.4. SCALAR TRANSPORT AND TURBULENCE 7

where (), is the specific heat at constant pressure, ¢; is the diffusional heat flux
rate, and qm represents volumetric heat sources and sinks, e.g., due to exother-
mic/endothermic chemical reactions. Fourier’s law relates the heat flux rate to the
temperature gradient and thermal conductivity

oT
i = 3.9
%= (3.9)
where x is the thermal conductivity.
Alternatively, one can solve in terms of specific internal energy:
8pu a aqj 2 aU i
—+ — ) == O —p—L 3.10
with a given function
u=JF(T)

For example,
U(T) :uO+OU (T_To)

where v, and 7| are the values of specific internal energy and temperature at some
reference point, while C), is specific heat. ® represents viscous heating, which we
will ignore, as well as the last term in eq.(3.10), as the flow of interest is incom-
pressible.

3.4 Scalar transport and turbulence

In addition, we consider a coupled solution for transport of scalars:

dpo, 0 aJ, n "
BT + o, <pvj¢n> = e, +J, (3.11)
where by J, , and j;" we denote diffusive flux and volumetric sources for a scalar
¢, . Note that ¢, could represent turbulent transport quantities (e.g., turbulent
viscosity f,, or turbulent kinetic energy k and energy dissipation rate ). In this
case, momentum and heat diffusion coefficients are considered to be a function of
¢, . In the most general case,

u(T,gbn) and K(T,¢n>, n=0,...N—1

CASL-U-2013-0288-000-b



8 CHAPTER 3. GOVERNING EQUATIONS

As an example, we will consider Spalart-Allmaras turbulence model [SA92].
In this case, N =1, ¢, = p, and:

+ 1, Op,
g, =Htn DRIV (3.12)

g o 0xj

and

ne Gwlfw & 2 %8/% a:ut
J, =C,S,u, p <d> + oo Oz 1. (3.13)

where the damping functions and the rest of the coefficients are defined as:

1+C3 i
_ _ — - K 14
f g{g +C3] , g=r+C,, (7“ r), T PCRTENE (3.14)
B i, _ 1/ 0v; Oy
S, =S + pIERE foas =/2R;jRij, Rij = 5 (8x o, (3.15)
f = X3 ) f2 =1- X ) X:& (316)
o+ L—=x/fa iy,

and C,, = 0.1355,C,, =0.622,0 =2/3,¢ =041,C,, = C, =71,C, =5,
Cm - (% #)’ sz = 0.3 and wai =

Here, d is the normal diatance from the wall, while yx,, (T") is molecular dy-
namic viscosity, which is in general is a function of temperature. The effective
eddy viscosity and thermal conductivity are defined as

Hoy

wp,T)=p, (T)+pf, and &(u,T)=k, (T)+PT

(3.17)

t
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Chapter 4
Semi-Implicit Projection

OR simplicity, we consider here only incompressible, constant-density, isother-
mal, laminar flow formulation.

Following the well-established finite-volume procedure, we discretize mo-
mentum equation in space, integrate by parts, and apply the divergence theorem.
Using a piecewise-constant weight functions yields

d
pd_t/ VderLj{ pv(v-n)dfe—j{ T -ndl*+ Vdee—/ fdQ4.1)
e TI'e e Qe e

Using definition for the cell-average,

1 h
— 4.2
Qe Qe Y ( )

u =

the spatially-discrete momentum equations become
av

e v
e T

]{pv(v.n)dre—]{ 7 ndl* + Vdee—/ fdO° (4.3)
Te e Qe e

The projection algorithm can be derived a number of ways. Here, we choose to
first develop the time-integrator, and identify the terms associated with the projec-
tion via a Helmholtz decomposition of the velocity. Before proceeding we define

9
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10 CHAPTER 4. SEMI-IMPLICIT PROJECTION

the following mass, advective, viscous, gradient and body-force operators.

M = 0 4.4)
Alp V)T = ]{ (v ) dr® @.5)
Kv = %e‘r-ndl—‘e 4.6)
Bp — / Upas 4.7)
F - / £ (4.8)

We form the global operators, apply forward-Euler first, then backward-Euler
with explicit advection in both cases, and take the sum of the fully-discrete sys-
tems results in the following

VA = (1— 0)KV" + 0KV 4 (1 — 0)F" 4 9" —

(4.9)
_(1 - H)A(p, V)V” — QA(p’ V)vn—i-l _ Bﬁn _ HPB(pn—H _ ﬁ@)

where 0 < 6§ < 1, § = 0 corresponds to a forward-Euler, §# = 1/2 a trapezoidal
rule, and 6 = 1 backward-Euler treatment of viscous and body-force terms.

Using the Helmholtz decomposition as
PV = pv T 4 VA (4.10)
we introduce the following definition
A =0 At(p"t —p*) (4.11)

Plugging these into Eq. (4.9), the momentum equation can be formulated for
the approximate (“predictor”) velocity as

(M — OAL(K — A (p,v))] ¥ = [M + (1 — 0)At (K — A (p,v))] "+

+AL((1—O)F" +0F"" — Bp") + 4 10

0 0 0
VA
+W— OALET +iM/7zBﬂ’

CASL-U-2013-0288-000-b



11

Using the Helmholtz decomposition, and requiring Vv

ntl — 0, yields a

pressure-Poisson equation (PPE) that can be solved for the Lagrange multiplier

Al

Giv

V-EV)\:V~V* (4.13)
p

en a velocity and pressure at time-level n, the P2 algorithm proceeds as

follows.

Algorithm 1 Basic P2 Algorithm

1. Solve for v*

[M — AL (K — A(p,v))] v = [M + (1 — 0)At (K — A(p,v))] v+
(4.14)
+At (1 —6)F" + 0F""" — Bp")

2. Form the right-hand-side of the PPE, solve for \,

K, =D (4.15)

3. Update the pressure

1
P =P+ = 4.16
p P+ o Al (4.16)

Note that testing over the last 20 years or so has indicated that using 0, =

1

/2 to update the pressure can lead to temporal oscillations in the pressure.

For this reason, we use Hp = 1 in the implementation.

4. Project the cell-centered velocities

1
vl =¥ — ZBA 4.17)
P

5. Compute face gradients and project the face-centered velocities

1
Uy :’ch— p—f((B))\)fn (418)

6. Repeat steps 1 - 5 until the termination time is reached

CASL-U-2013-0288-000-b
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Chapter 5
Fully-Implicit Projection

IN the present chapter, we consider non-linear solution strategies for fully-implicit
projection-based algorithms.

5.1 Incompressible, isothermal, laminar flow

For the sake of simplicity, we first consider isothermal, laminar, constant-density
flows. The governing equations are eqs.(3.2) and (3.4). Let’s define the following
vector field, based on Helmholtz decomposition:

1
vVi=v+-VA (5.1)
p
splitting a vector field into solenoidal and irrotational parts. In the following, we
shall call this vector field “HD velocity”.
We will consider three options for defining the vector of unknowns. First, the
vector of primitive variables,

u=|2
- V -~
Second, in terms of Lagrange multiplier:
v=|2
- V -

and third, in terms of HD-velocity and Lagrange multiplier:

w- |2
|V

13
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14 CHAPTER 5. FULLY-IMPLICIT PROJECTION

5.1.1 On interpretation of Lagrange multiplier

Let us write momentum conservation equation as

8_V:_—VP—V-(V®V)+—VT+f (5.2)
ot p p

and then in the following semi-discrete form:

__n+1 _ )\n 7L+1 0)\ n-i—%
S g Ay [ pttr o (22
v % SV ( Al + (8t> ) +

~ ~ (5.3)

~

AL (—v (FOV)+ivr+ f) B

where we used eq.(5.1) and P” is a discrete pressure representation in the HD-
velocity “predictor” step. Thus,

* 7L+% )\n )\n+1 - )\n
pr=pr oA A 5.4
At At >4)

Leading to the following discrete definition of the Lagrange multiplier:
N = AL (P - ) (5.5)

From this equation, one can see that the Lagrange multiplier represents a measure
of numerical error in time discretization of pressure gradient of momentum equa-
tion. In order to make a sensible projection algorithm, it is necessary to have this
error, so that the PPE and projection are well defined.

Pressure form: P(®)

The first obvious option is to ignore pressure in the “predictor” step, as in the
original Chorin’s method [Cho68, Cho69], leading to

7L+%

A s AP (5.6)

As we show in our numerical experiments (Section 7.2), this form leads to the
first-order accurate solutions, for both pressure and velocity.

CASL-U-2013-0288-000-b



5.1. INCOMPRESSIBLE, ISOTHERMAL, LAMINAR FLOW 15

Pressure gradient form: P(V)

In the semi-implicit method described in Chapter 4,

n 1 n n o
P 2 = (1 — Gp) P + GpP i + O <At1+4ep(1 9p)> (Trapezoidal rule)

N 5.7
P P " + O (At) (Forward Euler)
leading to
A= g At (P”“ - P”) (5.8)
Thus,
prpe 2 (5.9)
B 0,At '
~——
(98" At+..
and
OP\"
AL s 0 AR | — 5.10

Therefore, \ is a representation of the second-order truncation errors, and we call
this scheme as “pressure gradient” form.

Pressure curvature form: P

Another usefull form can be created if we add one more time level to the pres-

sure discretization, {Pnfl, P, Pnﬂ}. With this, we can use the second-order

* . n y
extrapolation for P and trapezoidal rule for P iEr

n+ % n n -
p +5 _ (1 B ‘9;0) P+ QpP +1 L0 <At1+49p(1 9p)> (Trapezoidal rule) (5 11)
n—1 n :
P* - pP" + % At + O ( Atz) (Forward Extrapolation)
leading to
Pn _ Pn71

AL = g A (P"“ _ P") N (5.12)

2At,

CASL-U-2013-0288-000-b



16 CHAPTER 5. FULLY-IMPLICIT PROJECTION

or
1 Pn o Pn71

Pt =p" X AP 5.13

Y ( oA -13)

After some simple algebraic manipulations with eq.(5.12) under 6, = % and
At, = At,

A3 (2P\"
A T (S 5.14
T <8t2 ) (.14)

Thus, ) is a representation of the third-order truncation errors', and we call this
scheme as “pressure curvature” form.

In general, both pressure-gradient and pressure-curvature forms belong to the
class of “incremental projection” algorithms, as introduced in [BCG89].

5.1.2 Incremental forms

Let us search a new-time solution iteratively, defining new-iteration values U°’,
V© or W in the following incremental form:

=p +7p (5.15)
A =2 4 N (5.16)
v =¥ v (5.17)
V= v =7 %VAM (5.18)
and assume the following linearization of body force:
F —F"+F, (U°) v +£, (U)p (5.19)

'Trully speaking, this holds only for §, = %

CASL-U-2013-0288-000-b



5.1. INCOMPRESSIBLE, ISOTHERMAL, LAMINAR FLOW 17

where specific forms of the linearization matrix F, and vector f are problem-
dependent.

We note that from eq.(5.18),

00 1 © ! 1
v<><> _ _v)\<><> =V +vY — -V <)\<> + )\’> (5.20)
p P
and
_0 / —%° 1 o * 1 /
v v = — VA v — 2V (5.21)
P P
v<>
Thus,
v v _ tuy (5.22)
p
Also,
N =00t (57 - ) (5:23)
and

Plug eqs.(5.17) and (5.16) into eq.(4.9):
M (vo +v 1y - v"> = At(1— 0) [K — A(p,¥")] 7"+
=0 *! 1 /
f—At@K (V +v —1;V)\> —
—Ath A <p,v<> +v¥ - —vx) (vo +v¥ - —VX) +
p p

-

(5.25)

g

~A(p V) (VQ v —%v,\’)
+AH1 = 0)F" + A9 (FC +F, (v - %VXQ okt V) -
—AtBp" — A, B(p” + g\ — 0")

After re-grouping and collecting terms, the momentum correction equation
becomes:

[(Ate (K—A (p,VO) +IFV) — M) Iy —2f +B| X+

+ [M — Atf (K —A (p,VO> +F, ] v¥ = —res, 20

CASL-U-2013-0288-000-b



18 CHAPTER 5. FULLY-IMPLICIT PROJECTION

where

res, = M (VO — V") — At ((1 —O)KV" + 0KV ) +
LA ((1 —0)A(p,¥)F" + 0A (p,v<>> ) -
_At ((1 — O)F" + 0F° ) +

+At (Bp" +0B(p — ]5"))

(5.27)

To derive pressure correction (Lagrange multiplier) equation, we take diver-
gence of eq.(5.20):

0 o : 1 1
Vv =V Vv -V VN -V SV (5.28)
P P
After collecting the terms, we derive the following pressure correction equation:
1 /
V-=VXN -V v" =—res, (5.29)
p
where
1 O —
res, =V - ;V)\ -V.-v (5.30)

With this, linear iterations of a Newton-based algorithm are defined by the follow-
ing equation:

TN J\/[—AtG(K—A(p,VO)+IFV> N ,
0p P

Jacobian, Jy,,

T’@Sv

Non-linear residuals res, and res, are supplied to PETSC-SNES [BBET04]
for JFNK implementation.
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5.1. INCOMPRESSIBLE, ISOTHERMAL, LAMINAR FLOW 19

5.1.3 Implicit treatment of advection operator

In the present section, we discuss Hydra’s treatment of advection operator, and
introduce modifications removing operator-splitting on spatial variation of an ad-
vected scalar.

For simplicity of presentation, we consider only time derivative and convective
terms of a generic scalar advection equation,

dwp ==V - (weV)
for an arbitrary scalar function ¢, where

1: volume coordinates
w = P * mass coordinates

etc.

In the context of ongoing discussion of momentum equation, ¢ represents com-
ponents of velocity vector v,, v, and v_. Vector v is generally a divergence-free
velocity field. Since we operate in terms of an approximate projection, there are
small numerical divergence errors, which will be accounted for by substracting
the correction term from the discrete representation of advection operator, as

dwp = —V - (wp¥) + weV - 9 532
W (Wp¥) +wpV - ¥ (5.32)

Correction

Next, we write the n-th and the (n + 1)-th time level dicrete contributions for
discretization at cell a as:

n+l_, . n
(1 —9) wfe —Fa = Lt :wr
-9 5 EACRETORE

n

e =]+ 633
+ (1 = 0) wQe"DV"

v

and

n+1

Yo —Pa

wl' n —n+1 n+1
_H;Tf[vf—irl(gpa " +o, +)_ f a

+0w QeI DY !

v”“} <S0:_n+1 _ (p_n+1)] 4 (5.34)
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20 CHAPTER 5. FULLY-IMPLICIT PROJECTION

where we used the LLF-based approximate Riemann solver’. Summation is per-
formed over all faces of the cell a. I', is the area of the face between cells a and
b, while v, is the face normal velocity and D is the discrete divergence operator,
corresponding to the used approximate projection.

Next, we add eqs.(5.33) and (5.34), using a simple linearization of non-linear
terms and re-grouping:

ngofO — wQap" =

wF n +n

_At(l—e); 5 [ (P + @) = o7 (¢ _gpa—")}_
_Atez%[vf (% - )_ 0 (‘PJM—@O;%)H (5.35)

FAL (1 — 0) WDV + At DY’

()

The sided face values are computed as

v, = ¢, + Vo,r,

(5.36)
90:_ = Sob_vgob(srb

where V is a limited gradient evaluated at cell center, and Jr is radius-vector
poniting from the cell center to edge. Plugging eq.(5.36) into eq.(5.35) and re-

2This is the “incompressible” version, where there exist only one eigenvalue — material
velocity.
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arranging,

o [ 00 00

Q(1- ADe°) o + At S “ls Uf(cﬁ“ ﬂp”)_ -
W<_tva>‘?a+t27 _‘o(oo <><>)_
f

; _

b a
_/

A0 p00

. " ARG @g@f&ra + o — §g0£‘5rb —
=Wy — At(1—0) 3 %L A o o n) +
f - (‘Pb — Vypor, — ¢ — V‘Paéra> (5.37)

+AL (1 —0) wQp"DI" —

n
v
f

A,?;n

@@jéra — @@Z’M,}) +
<@g0:'5rb + ﬁgpjéra>

'U<>
f

[
wl v (
— A9y —L | 7

J/

6’4050"

In the semi-implicit projection, the limited spatial gradients are evaluated at the n-
th time level, & = n, introducing some stability restrictions and operator-splitting
errors. In the fully-implicit projection, one can use current-iterate values, & = <,
removing these deficiencies upon non-linear iteration convergence.

5.1.4 Relevance to semi-implicit projection

To establish relation to the semi-implicit projection, we note that

OO 9
v =v " 4 2y\®° (5.38)
P
or
— % _ n+1 ep n+1
vVi=v + =V (5.39)
P

upon convergence of non-linear procedure. Also,

A=A N (5.40)
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22 CHAPTER 5. FULLY-IMPLICIT PROJECTION

We plug these into eq.(4.9), and re-group as

MY — (1-0) (KV' = A(p, V' )V' +F") = Bp" +

g
-

Sn

-+ [K - A(p,VO)] v+ F - [K —~ A(p,VO)} (%W\Q) + (541

(. J/

P,

=t 91) / 1 ! /
—0 <[K—A(p,v )] (;V)\) + mfp)\ +Fvv)

(. J/

5T,
Now, comparing with eq.(4.14), the difference is in the following term on the
r.h.s.:

m' = —0(8,+0J,) (5.42)

Further re-grouping, we can write:

[M At (K A (p,70>>} V= M+ (1= 0A (K = A ) s )
A ((1 —O)F" + 0F° — Bp" — 0 647" + m’)

where we used the results of Section 5.1.3 for discretization of advection operator.

We can further notice that Helmholtz decomposition becomes

1
V=¥ 4V 4.V ()\O i X) (5.44)
H,—/ p

Voo

which leads to the following PPE:
1 % / —
Voov(\4N)=V-v (5.45)
p
which is exactly the same as eq.(4.13).

Concerning eq.(5.42), we would like to add a couple of comments.
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5.1. INCOMPRESSIBLE, ISOTHERMAL, LAMINAR FLOW 23

1. In semi-implicit P2 projection and in the following Picard iterations, the
term 0.7 , is naturally dropped.

e For P2 projection, this introduces certain operator splitting errors, which
not necessary means that the method becomes 1st-order accurate in
time. In fact, it is well established that the method converges with
the 2nd-order for velocity. It is however only 1-st order accurate for
pressure.

e For Picard iterations, dropping these terms means that convergence
rate is not quadratic, as non-linear iterations do not follow slope (de-
fined by Jacobian matrix), as some elements of the Jacobian matrix are
effectively zero-ed out.

2. In P2 projection, the term =, is also ignored. This would render only first-
order convergence in pressure. If closely inspected, P2 projection is es-
sentially the same as Bell et al.’s [BCG89] second-order incremental pro-
jection method, with the main difference in the interpretation/definition of
Lagrange multiplier (which makes time-collocated pressurfl,/ éﬁ"“, in con-

trast to the time-centered/shifted pressure of [BCG89]), p , and details
of the discretization for advection operator.

3. Keeping the term =, (obviously, within Picard iterations) should make pres-
sure converge with the second order. Notably, the term =, is effectively the
generalized® version of the pressure-update formula eq.(13) in [BCMO1].
Instead of adding (—%5tV?¢"*!) (in the notation of [BCMO1]) explicitely
to the left of eq.(5.48), we add the current-iteration-based correction to the
r.h.s. of the “predictor” velocity equation (5.43).

4. If the term E; is dropped, the “predictor” velocity equation (5.43) is effec-
tively decoupled from PPE, along the lines of the classical fractional-step
projection algorithm. There are small feedbacks which could be still in-
troduced by possible non-linear momentum source terms, and because of
fully-implicit treatment of advection operator, but these might be ignored
w/o significant impact. Thus, non-linear iterations could be wrapped up
around momentum equations updates, and the projection step applied last.
This might add some efficienly boost, due to saving on not solving the PPE
each non-linear iteration step.

3In addition to viscous effects, we account for splitting errors due to advection.
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24 CHAPTER 5. FULLY-IMPLICIT PROJECTION

5. Dropping the term =, is however undesirable when this algorithm is used
as a preconditioning for Newton-based non-linear solver, as upon non-linear
convergence, this predictor would produce different solution from what is
attempted to be solved by JFNK.

5.1.5 Picard Iterations

Based on eqs.(5.43)-(5.45) we can build point-iteration algorithm as follows.
Algorithm 2 Picard Iterations

1. Set initial guess for m = 0:

—0 —n
Vv = Vv
v =0
0 n
p =D
Py =0
2= 0
N =0

2. Start m*™ iteration.

3. Solve for v*:

[M N, <K<> - AQ)} ¥ = [M + (1 — 0)At (K™ — A" "+

A ((1 —O)F" +0 (F<> - 5A<>v<>) _ By — eat) (:40)

4. Compute face-centered velocities v;.

5. Form the right-hand-side of the PPE eq.(5.45), solve for P

K\ =D (5.47)
6. Update the pressure
00 _ o 1 100 (5.48)
L DN '
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7. Project the cell-centered velocities

_0¢
A%

1
—v —-B)\”° (5.49)
p

8. Compute face gradients and project the face-centered velocities

vp = v — p—lf((B)A“)f ‘n (5.50)

9. Picard iteration velocity and pressure corrections are now:

VJ _ i700 __i70
[EERCI (5.51)
which allows to compute errors as

M =Ly (V)

em _ o ) (5.52)
A — A2

10. Check for convergence:

Ei,m) < tol,

M < tol,

’(\m) ) (5.53)

Ey ' < tol, &

e < tol, £

If not satisfied, set new Picard iteration (m ++):

0 —00
vV, =V
_< _00
p =P
)\O _ )\<><>
and repeat starting from (2).
11. Otherwice, finish time step:
i7n_|_1 _ i700
_00
ﬁn-i-l = p
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5.2 Adding thermal and turbulent effects

The governing equations are eqs.(3.2), (3.4), (3.8) and (3.11). For the sake of
discussion, we can think of Spalart-Allmaras turbulence model, when N = 1 and
¢n = [, 1s turbulent viscosity. The vectors of unknowns are

5 A A
v v v*

U= T 3 V = T , Or W = T ) (554)
Ijt Ijt Ijt

and the governing equations can be written as

V-v=0 (5.55)

Paa—:+PV~(V®V):—VP—!—V-T(T,I/t,V)—i—pf(T,V) (5.56)
a T "
WT() + V- (pulT)v) = V- (kL) VT) +4" (T,v) (557
o

(g:) +V - (pnv) =V (o (T0) V) + T (0, Tov) - (5.59)

where u, v, = “—pt, ¢ and T are specific internal energy, turbulent kinematic vis-
cosity, diffusivity for turbulent viscosity, and source/damping term in Spalart-
Allmaras model, correspondingly.
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Now, we define the following operators:

Q(T,v)

W(v,,T,v)

P
/ pC, (T) T dQ2°
Qe
% pv(v-n)dl®
pé(v - m)dl*
7(T,v,,v) -ndl*

k(T,v,) (VT -n)dl*

Vp dQ©

£(T,v) dQ*

1"

(T, v) dQ°

1
7
1
ﬁ pC (T, ,) (Vv - n) dT*
/
/
/

e

T (v, T, v) dQ°
Qe

(5.59)
(5.60)

(5.61)
(5.62)
(5.63)
(5.64)
(5.65)
(5.66)
(5.67)
(5.68)

(5.69)

Next, we define new-iteration values U®° (or VQO) in the following incre-
mental form:

5 =p" 4 (5.70)
A=A+ (5.71)
v =v" 4V (5.72)
v = v =7+ %w“ (5.73)
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T =T7° 41 (5.74)

_ 00

5, ="+ (5.75)

and introduce the following linearization of source terms:

F° = F'4+F, (U°)v+f, (U°)T (5.76)
Q° = Q°+q, (UO) v+ Q, (UO) T (5.77)
W= Wi w, (U) Ve, (U)W, (U) ) 578)

Also, similar to Section 5.1,
v =v" — %vx (5.79)
A =0 At <p<> _ p") (5.80)

and

N =0 Aty (5.81)

Momentum. Plugging these into discrete form of eq.(5.56):

M (VQ +v —1vN — v") = At(1—0) <K (77, v7) — A(p,V"))V"—!—

t

< ! ! 1
+at K (T T ) (vo v - —VX)
p

-

g

~K (T ) VO + RV KT +Kv, =K VO LRV +I:<V)J+KT’+K1/;

At A <p,v<> vty x) (Vo N x) (5.82)
p p

~A(p VO VO AV —AlvN
FAHL — O)F" + At (F<> +F° <v*’ - %w’) + ijf) _
—ABp" — At,B(p” + AN — ")

Note, for the purpose of our discussion, exact forms of the linearization coeffi-

cients fl, K , K , K and K are not important, as we would never need to explicitely
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compute them.

After re-grouping and term collection, we got the following momentum correction
equation:

p

{(Aw(f(—fulﬁ‘v) — M) 1V+B] N —| a0 (R +£,) |17+

(5.83)

| [M = a0 (K= A+F,)||v — [A0K] v, = —res,

where

res, = M <V<> - V”) — At ((1 — K"V + 0K°V®) +
+AL ((1 — ) AT +0A°T ) —

—At ((1 —0)F" 4+ 0F° ) +

+A¢ <B]§" +0B(p° — p“))

(5.84)

The terms shown in boxes are the elements of the Jacobian matrix, which will
never be computed explicitely.

Pressure. To derive pressure correction (Lagrange multiplier) equation, we take
divergence of eq.(5.20). After collecting the terms, we derive pressure correction
equation, which is identical to eq.(5.29)”

1 /
V-V|N <[V ]v¥ = —res, (5.85)
P
where
1 (&3 %
res, =V - ;V)\ -V-v (5.86)
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Energy. Next, consider the following discrete form of energy conservation:

C(T<> + T’) (T<> + T') —CmT = At (1 - 6) (D" —An 4 Q”)T”Jr

L
~COT0 LT

+80( D (T° + 10, ) (T°+T) = A, (0.7 +v) (T°+T) )+ 5.87)

—
o OO | AL D, a0 O L A = 2 g
DYTY+DT'+Dv, NALTY + AL T'HAL VT —A L 2V

+At (QO + Qv — QLVN + QjT’)

As stated before, the exact forms of linearization coefficients 15, D, AT, AT and

A are not important.

Collecting the terms, we got the following temperature correction equation:

= /

(é—At@(D—AT+Q°T)) T + At@(AT—Qj> v+

(5.88)

~

+H Atf (Qj — AT> lv N — v, = —res,

p

where
res, = C°T® — O"T™ — At( (1—0)D"T" +0D°T° )+
tAL((1= o) T4 04T ) - (589)
—At( (1-0)Q" + 9Q°)

Turbulent viscosity. Finally, lets consider discrete turbulent viscosity equation:

M 40— o) = A= 0) (L (17, 07) — A7)t
+00( L (T°+T0, +0) (v +v) = A, (07 +V) (v +4) ) + (5.90)

-
~LOv) + LT+ L, RASVS+A, U +A, VY A, LN

<

FAHL = W+ At (W + WiV = WIIIX + WIT + W)
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which lead to the following turbulent viscosity correction equation:

*/

a0 (L+wy)| T+ aw (A, - W) v+

(5.91)

+H Atf (Wi> — &V> %V N+ (M — At (L—A, +W)) ) v, = —res,

where
res, =M (v) —v") = At (1 - 0) L™ +0L°v )+
+AH (1 —0) A +0A Y, ) — (5.92)
—At( (1—0) W+ ew°)

With this, linear iterations of a Newton-based algorithm are defined by the
following equation:

[ v.%v -V 0 0
[(ato (K~ A+7,)-M)1v+B| | [M-aw(K-A+F,) —at0 (K + 1)) —AtOR
A0 (QS —AL)Lv ato (Ap —Q3) G—aw(b-A,+Q) —AtoD
Ate(wf 7iu)%v Ato (fxu 7w§) —at0 (L+w,)) M-t (-4, +w,)

~
Jacobian, Jy,

TV ]
V*l res,
_ res,
T/ T€ST
res,

—_———
! rés
L Vt - v

Wl

Non-linear residuals res,, res_, res, and res, are supplied to PETSC-SNES
[BBE'04] for JENK implementation.
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5.2.1 Relevance to semi-implicit projection

In the case of energy and turbulence equations, Hydra-TH semi-implicit P2 pro-
jection algorithm is implemented as follows:

1. Solve energy equation.

2. Solve (predictor) velocity equations (no divergence-free constraint enforced).
3. Solve turbulent transport.

4. Solve PPE for Lagrange multiplier.

5. Enforce mass conservation by projecting velocity field into the divergence-
free subspace.

Based on this sequence, the counterpart of eq.(5.93) is

v . %v -V 0 0 [4] |
0 (M- ato (K - A+7,)] —ae0 (K + 1)) 0 2]
0 0 G-aw(b-A,+Q)) 0 1]
0 INT (Z,, - wff) —aw0 (L+wy) M-awe (LA, +w) | 3]

OS solution matrix

(5.94)
TV ]
V*l res,
res
— v
T res,
res,
—_———
! Tés
L Vt - v
Wl

where we show the sequence of the operator-splitting (fractional) steps, as the last
column of the OS solution matrix. In the residual computations, one should use
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vi=v",T° =1T", V: =/, p° = p*and A° = 0. The last (projection) step of

the algorithm is symbolically:

o1
vl =% 4 v - 2w
*

(v)
5.2.2 Picard Iterations
We can now formulate point-iteration algorithm as following.
Algorithm 3 Picard Iterations

1. Set initial guess for m = 0:

0 —n
Vv = Vv
/ — 0
_o _n
P =P
P =0
2= 0
Noo= 0
T = 7™
T = 0
1/;> = Vt"
vyoo= 0

2. Start m*™ iteration.

3. Solve for 7%

[CO - 9At<D<> —A;>] T7°° = [C” +(1-6) At(D” - A;)] T+

/ 5.95
+At< (1-6)Q" +0Q° — ¢ 5ATT°) 6-22)

4. Compute temperature correction as

T/:TOO _T<>
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10.

11.

12.

Solve for v*:

[M - 9At<KO - Aoﬂ v = [M (1 9)At<K" - Anﬂ vt
(5.96)
+At<(1 —O)F" +0 (F<> T - 521<>v<>) _Bj" - eat)

Compute velocity corrections as

Compute face-centered velocities v;.

(Need some work!!!) Solve for V:Q :

[]\/] — OAtL (L<> — A;)] 1/:><> = []\/f + (1 —0)At (L” — A:})] v+

(5.97)
+At((1 W+ 0 (W<> +WO (V) + Wij) )
Form the right-hand-side of the PPE eq.(5.45), solve for P
K\ =D (5.98)
Update the pressure
500 — g L2 (5.99)
DN '
Project the cell-centered velocities
v =% - -BX\° (5.100)
p
Compute face gradients and project the face-centered velocities
OO 1
vf = v = —((B)A°")f-n (5.101)

Pf
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13. Picard iteration velocity, turbulent viscosity and pressure corrections are

now:
vV o= v _%°
Vo= 1/:0—1/: (5.102)
\ 200 )0

which allows to compute errors as

& = Ly (V)
M =Ly (V)
gim) _ L, (T) (5.103)
& — L, (v)

14. Check for convergence:
Ei,m) < tol,
e < tol,
E}m) < tol,
&M < tol,
gl < tol, Y .
Eim) < tol, Eio)
5;’”; < tol, 5;°;

&M < tol, &Y

If not satisfied, set new Picard iteration (m ++):

0 —00
vV, =V
o 00
P o -0 o0
AT = A
7% — 7%
V<> — V<><>
t t
and repeat starting from (2).
15. Otherwice, finish time step:
Vn+1 _ VQO
1 _00
o= p
Tn+1 _ T<><>
Vn—i—l = o
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Chapter 6

Preconditioning

6.1 General strategy
Consider the following modification of eq.(5.31):

J PPV = —rés, (V'
&,_/\V/ ﬁ\;<_l (6.1)
“HP

<

where [P symbolically represents the preconditioning matrix (or process), and P~
is its inverse. Thus, the solution procedure is splitted into two processes:

1. Solving for
I,V =b (6.2)
(this is what actually crunched by GMRES), and
2. Preconditioning:

V =PV’ (6.3)

While one refers to the matrix/process [P, operationally the algorithm only re-
quires the action of P~! on a vector. The main requirement is that P designed prop-
erly, to enable clustering eigenvalues of the J,, making the solution of eq.(6.2) to
converge faster.

37
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For effective preconditioning of the fully-implicit projection algorithm, we can
use semi-implicit algorithm described in Chapter 4. The strategy with involving
a legacy (e.g., operator-splitting) algorithm for preconditioning is commonly re-
ferred to as Physics-(Process)-based preconditioning (PBP) [KK04, KR0OO, KCMMO03,
KMK96, KMCRO05], to be contrasted to the Matrix-(Math)-based preconditioning
(MBP) algorithms. The later include different flavors of SOR, SSOR, ILU, MILU,
ILUT, ILUTP, ILUS, ILUC, etc. preconditioners, see [SS86] for review. In these
cases, the preconditioning matrix [P is required, as a suitable approximation for J,, .

In the following section, we will describe details of our implementation of the
semi-implicit projection as PBP, emphasizing all differences relative to the using
this algorithm as a solver (in an operator-splitting OS mode).

6.2 Semi-Implicit Projection as Physics-Based Pre-
conditioning
At the input of the preconditioning step, we have current Newton iteration values

of v*, p° and \°, and current update values v, 5 and \”. In the OS splitting mode,
these are:

vi=v" p=p", A’ =0, ¥"=0, p"=0 and \' =0

The task of the preconditioning is to convert these into VO, po, )\O, v, p and N,

where
v v+ v
po= 0+ (6.4)
2 DY

In the OS mode, ®° = ®""", where ® = v, pand \.

We define Helmholtz decomposition as

1
V= ¥4V 4V </\<> i /\’) (6.5)
H,—/ p
Divergence-free part Vv
g part, N4
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Non-incremental Form

1. The first step would be to solve for non-solenoidal (“predictor”) velocity
field, vV, using one of the following options.

Option-A:

[M — A0 (K — A(p,v) +F,)] 99" =

= [M + At(1 —0) (K — A(p,v))]¥" — | AtOK (%v (p° +p" — ﬁ“)

)
HAtIA(p, V) (AZQP v (po +p - ﬁ")) +
)

FAL(1 — O)F" + Atd (F<> _F, (A“P <]§Q ) +7°

—AtBp" — (At@pB(pQ +p" = p") — TPV (PQ +p" — p"))

In the OS mode, ¥v"* = ¥* and eq.(6.6) reduces to eq.(4.14).
Option-B:

Equation (6.6) is of advection-diffusion type, which is not well ameanable
to multigrid algorithm, and solved in Hydra by ILU-based solver. Another
viable option would be to convert it into the parabolic equation, by taking
out advection operator on the left-hand-side (leaving it to GMRES to deal
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with). Thus, the parabolic equation would be:

(M — At (K +F )59 = [M + At(1 — 0) (K A(p, V)] 7"
At0
—AtdA(p,v) (V JrV”) — At@K( - ) +
p
At0
HawA(p.v) ( 9 (5 40 - ) |
6.7)
FALL = O)F" + At6 (F<> (A“P ( ) )
_ At [F S

AtD
_ABp" — (AtﬁpB(ﬁo—i—p”—ﬁ“)— L ( 4 — " ))

2. The second step would be to form and solve PPE. Taking divergence of
eq.(6.5) leads to the following PPE:

1
V--VA =V.-v9* (6.8)
J/_/ D
K,2Y

which reduces to eq.(4.15) in the OS mode.

3. Pressure is computed from the new Lagrange multiplier as:

[ A — (6.9)

Vo o=vr - 1BA (6.10)

vV = v -V
po=p -p (6.11)
No= AT =\°
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and these are the values which are returned to PETSC-SNES. As mentioned
above, in the OS mode, this step is absent, as o° = ",

Incremental Form One can re-write eq.(6.5) as:

v =5 v 6.12)

where

v =+ %V <>\O n X) 6.13)

1. Solve for non-solenoidal velocity increment v* .

Option-A:
(M — At (K — A(p,v) + F )] v¥ = — [M — At (K — A(p, V) + A
M+ A1 — 6) (K — A(p,v))] 7" — | AtOK (Awp v ( ) +
HAA(p,v) (Az‘) ) n
(6.14)
FAHL — O)F" + Atd <FQ—FV< O ( )+ v’ )
At [F, 2V £, | -

At
—AtBp" — (AtepB(p<> +p" =) — TV (p +p" - p"))
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Option-B:

[M — At (K +F,)]v" = —[M — Ath (K +F,)] v+

N

—AthA(p,v) (vo - v”) —|AtOK ( \Y, (po +p" = p”)

p

v
Jsmio (e o)

)
NY. [Fv ;

FAHL — O)F" + At0 <F<> —F, <MP (po ") +¥

At
—AtBp" — (AtepB(p<> +p" =) — TPV (po +p" - p"))

2. Solve incremental PPE:

v ilvnovov v v (6.16)
p P

3. Convert to pressure correction as

)\/

p = 6.17
P=x3 0 (6.17)
4. Return to PETSC-SNES a preconditioned solution as
P (or \)
v=v' =17 (37 4 ) (6:15)
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Chapter 7

Numerical Examples

7.1 Vortex shedding behind a cylinder

As the first numerical test, we use vortex shedding flow behind a cylindrical ob-
sticle. The Reynolds number was set to Re = 100. Simulations were performed
on the fixed mesh, with 10,080 linear HEX elements (20,612 nodes), Figure 7.1.
We started with an initial solution adjusted to form well-posed initial guess by our
start-up procedure, and run the solution until the well-established Karman vortex
street established at dimensionless time ¢* = Z—Z = 500, where d is the diame-
ter of the cylinder, while v is kinematic viscosity of the fluid. By changing time
step, we observe time convergence, comparing the results of semi-implicit and
fully-implicit projection algorithms, with different pressure forms and parameter
6. The parameter ¢ for advection and viscous operator was set to %, in all sim-
ulations. For Picard-based fully-implicit projection, we always start with initial
CFL=1, increasing time step with factor At,,,; = 1.1At,, until the desired value
is reached. For solutions with CFL> 50, the advection and viscous diffusion of
the irrotational part of velocity field (see eq.(5.39)) are ignored =; = 0.

The results of the time convergence study are shown in Figures 7.2-7.10.

We start with the semi-implicit algorithm, shown in Figure 7.2, showing ve-
locity magnitude fields for CFL numbers ranging from 0.44 to 60, when used with
pressure-gradient form and ¢, = 1. It is apparent that the accuracy of the algo-
rithm starts to deteriorate at CFL~ 10. When the maximum CFL exceeds 40-50,
the method becomes unstable. Switching from the pressure-gradient form to the

43
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44 CHAPTER 7. EXAMPLES

Fig. 7.1 : Computational mesh for vortex shedding test: 20,612 nodes and 10,080
HEXS elements.

pressure-curvature form (Figure 7.3) shows only marginal improvement in accu-
racy, and no improvement in robustness.

Time convergence for fully-implicit algorithm is shown in Figures 7.4-7.6.
First, one can note a significant improvement in the accuracy of the solution, as
the eddies in the wake are decently resolved for CFL~ 40. Moreover — the method
is unconditionally stable for any CFL numbers (provided that non-linear iterations
do converge'). It can be seen that with fully-implicit projection, we can run sim-
ulations with maximum CFL number in the excess of 500. Obviously, for these
very large time steps, the vortex shedding becomes under-resolved, which is why
the Karman vortex street associated with the Hopf bifurcation is not visible in Fig.
7.4 under C'F'L > 400.

In Figure 7.7, we show direct comparison of the results with the fully-implicit

IFor high CFL numbers (> 50), we found it necessary to turn off the advection and
diffusion of the irrotational part of the velocity field, =; = 0, as this correction appears
on the r.h.s. of the momentum equation and introduces a stiffness in the Picard-based
non-linear iteration loop. Without this correction term, the Picard-based algorithm con-
verges within 10-15 non-linear iterations (to get down to the relative error below the given
tolerance level of 10~%), regardless of the maximum CFL number in the flow.
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CFL=0.44

Fig. 7.2 : Convergence of velocity field for semi-implicit projection algorithm with
PW pressure form and 6, = 1.
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Fig. 7.3 : Convergence of velocity field for semi-implicit projection algorithm with
P® pressure form and 6, = 1.

(Picard-based) and the semi-implicit P2 projection algorithms. The improvement
in the accuracy and robustness is evident.

It is important to note that the accuracy of the semi-implicit method can be
improved by using the “predictor-corrector” (PC) strategy — within our Picard al-
gorithm — we just applied two iterations. We show the comparison in Figure 7.8.
The improvement in the vortex resolution is evident. However, this simple strat-
egy does not improve the robustness, as the method becomes unstable at CFL
numbers exceeding 40.

We shall note also, that even though the maximum CFL number is high —
the actual CFL number in the transient wake region is lower, as the mesh sizes
are larger in the wake zone, Figure 7.1. We demostrate this in Figures 7.9 and
7.10, showing the CFL number distribution in the domain and in the wake zone.
The reason why we can get very decent eddy resolution with these high CFL
numbers is that, in general, the dynamic time scale of the resolved eddies is higher
than what is given by CFL=1. We can argue that one can get very decent vortex
shedding resolution with CFL~ 10, when high-order time discretization is used.
This gives a significant boost in performance, especially accounting for the fact
that at this range of CFL numbers, the Picard non-linear iteration loop converges
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Fig. 7.4 : Convergence of velocity field for fully-implicit projection algorithm with
P pressure form and 6, = 1.

Fig. 7.5 : Convergence of velocity field for fully-implicit projection algorithm with
PW pressure form and 6, = 1.
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Fig. 7.6 : Convergence of velocity field for fully-implicit projection algorithm with
P pressure form and 6, = 1.
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CFL=120

Fig. 7.7 : Comparison of semi-implicit (SI, 6, = 1, P1) and fully-implicit pro-
jection (FL, 0, = %, PM), on the example of vortex shedding behind a cylinder.
Velocity field for Re = 100.
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Semi-Implicit

Fig. 7.8 : Comparison of the predictor-corrector (PC) and semi-implicit (SI) pro-
jection algorithms, both with 8, = 1, PW). Velocity field for Re = 100.
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Fig. 7.9 : A snapshot of CFL distribution for for simulation with fully-implicit
projection (6, = 1, PW), for the case with maximum CFL~ 30.
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Fig. 7.10 : A snapshot of CFL distribution for for simulation with fully-implicit
projection (6, = 1, PW), for the case with maximum CFL~ 60.
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within only 3-4 iterations.
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Fig. 7.11 : Steady-state solution. Ra = 10%, Pr = 0.71. Temperature field (color
map and solid isolines) and contours of vorticity (dashed isolines).

7.2 Natural Convection in a Square Cavity with Os-
cillatory Temperature Boundary Conditions

In the next test, we consider natural convection in a square cavity, with Dirichlet
(no-slip, temperature-specified) boundary conditions at the left and right wall,
and adiabatic no-slip horizontal walls. Steady-state solutions for this problem are
well-documented by de Vahl Davis in [dJ83, de 83]. Steady-state temperature and
vorticity field solutions are shown in Figure 7.11.

We modified this test to make it transient as follows. Temperature at the right
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Left wall temperature

0 10 20 30 40 50 60 70 80

time

Fig. 7.12 : On the formulation of the oscillating-temperature natural convection
test.
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wall is fixed, T}, = 0. The temperature at the left boundary is varied in time as

T(t) = % (sin (wiw - g) + 1) (7.1)

T

where w,, is the period of oscillations, Fig.7.12. Simulations are started with mo-
tionless fluid at T},;; = 0. At the peak of left-wall temperature, Ra = 10*. Prandtl
number is set to Pr = 0.71. Grid resolution is set to Ah = 3—§0, providing fine-
enough resolution, allowing to focus on time discretization errors. For all simula-
tions presented, we set § = % for advection, diffusion and body-force operators.
The parameter 6, was varied from % to 1, as well as pressure forms (PO, P and
P®). Computational results are summarized in Figures 7.13-7.19.

Figures 7.13 and 7.14 depict time history of temperature and vorticity fields,
for two solution algorithms — semi-implicit, and fully-implicit, with fixed time
step of At = 1. This corresponds to maximum CFL=87, Fo,=863 and Fo,=1215,
were Courant and Fourier (viscous and thermal) numbers are defined as

lv|, .. At
CFL = —2& —
Ah
and N
FO,/ == %
Foo = e
respectively.

Figure 7.15 is a comparison of semi-implicit and fully-implicit projection for
vorticity field at ¢ = 10. It can be clearly seen that the fully-implicit algorithm
is superior to the semi-implicit, showing highly-accurate solutions for very large
time steps/(CFL and Fourier numbers). Moreover, when CFL and Fo numbers
are high, the semi-implicit algorithm results in so-called “projection boundary
layers”, clearly seen by plotting isolines of the vorticity field. These artifacts are
the results of ignoring advection/diffusion of irrotational part of velocity field, =,
(see €q.(5.39)), in the semi-implicit algorithm. While not affecting directly the
convergence rate of the algorithm (see Figures 7.16-7.19), they are significant and
visible near domain boundaries. In the fully-implicit algorithm, these terms are
accounted for during non-linear iteration loop. We performed fully-implicit simu-
lations were these terms are ignored, and as one can see from Figure 7.15 (second
row) — the “projection boundary layers” are present.
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Fig. 7.13 : Dynamics of temperature (color-map and thick solid isolines) and vor-

ticity magnitude (thin dashed isolines), using the semi-implicit projection (pres-
1

sure gradient form, J=ON 0, = 3), with time step At = 1.
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Fig. 7.14 : Dynamics of temperature (color-map and thick solid isolines) and
vorticity magnitude (thin dashed isolines), using the fully-implicit (Picard-based,

pressure curvature form, P®?) 6, = %) projection, with time step At = 1.
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7.2. NATURAL CONVECTION TEST 59

Fig. 7.15 : Time convergence for vorticity field, comparing semi-implicit (pressure
gradient form, P, 9, = %) and fully-implicit algorithms (pressure curvature
forms, P®, 6, = 2), for time ¢ = 10.
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Fig. 7.16 : Time convergence of L,-norm of errors for kinetic energy.
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Fig. 7.17 : Time convergence of Lo-norm of errors for pressure.
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Fig. 7.18 : Time convergence of L,-norm of errors for Lagrange multiplier.
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Fig. 7.19 : Time convergence of Lo-norm of errors for temperature.
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Finally, we show the measured convergence rates for velocity, pressure, La-
grange multiplier and temperature, in Figures 7.16-7.19. All semi-implicit method
solutions are showing asymptotically the 15°-order convergence, due to operator
splitting errors on the solution slopes when computing advection operator (being
“frozen” at ¢,,). In the fully-implicit algorithm, we removed these errors, result-
ing in clear the 2"¢-order convergence for velocity and temperature fields, Figures
7.16 and 7.19. Pressure however is always only 1%-order accurate, Figure 7.17,
regardless of the used pressure form. Under the same 0,, the pressure curvature
form P(? is generally more accurate than the pressure gradient form P!, Impor-
tantly to note here, that the Lagrange multiplier evolves with high-order accuracy
in time, clearly exhibiting the 2"? (for pressure gradient form, P")) and the 3*¢
(for pressure curvature form, P®)) order convergence rates, Figure 7.18. This
is the key to have the 2"¢ convergence for velocity field. As one can see — in the
case of “pressure form” (the original Chorin’s projection algorithm), the Lagrange
multiplier is only 1% order accurate, resulting in the 15" order accurate velocity and
temperature.

It is interesting to note that just applying two Picard iterations in a “predictor-
corrector” (PC) manner — is sufficient to get the 2" order convergence for veloc-
ity and temperature, Figures 7.16 and 7.19. This does remove/(reduce) operator
splitting errors in treatment of advection operator. It will not however ensure un-
conditionally stable solution. Also, “projection boundary layers” are not removed,
see Figure 7.20.
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Chapter 8

Concluding Remarks

HE main technical contribution of the present report is the formulation of the

fully-implicit projection algorithm for implementation in Hydra-TH code. We
discussed definition of non-linear residual vector, as well as the strategy for ef-
ficient preconditioning of linear (GMRES) solver, utilizing the variation of the
currently-available in Hydra-TH semi-implicit projection algorithm. While fo-
cusing here on single-phase flow formulation, the basic ideas of the fully-implicit
projection should be straightforwardly extandable to multi-fluid flows. These ex-
tensions will be presented in future.
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Appendix A

Cartesian Vector Calculus

T T
Given two Cartesian vectors a = {az, a,, az} and b = {bz, b,, bz} , the dot
product is defined as

a-b=a,b, +a,b, +ab, =ab, (A.1)

The dyadic product is denoted as [Ari]

a,b, a,b, a,b,
ab=a®b=|ab, ab, ab | =ayb, (A.2)
a,b, ab, ab,
Spatial derivatives are denoted as
T
o 0 0 T
{8x’0y’02} 10.,9,,0.} ! (A

Thus, the gradient of an arbitrary scalar ¢ is defined as

oo [0 20 0
oz’ oy’ 0z

and, accordingly, dot product of a vector and a gradient of a scalar is

} = {0,0,0,0,0.0} =0 (A4)

_ 0o Op Oy
a-Vyp=a, o +a, By +a, 5 (A.5)

Laplacian of an arbitrary scalar is defined as

V-Vo=Vp=Ap= 5 o (A.6)
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APPENDIX A. CARTESIAN VECTOR CALCULUS

Divergence of a vector is defined as

V -

a

da,

ox

Gradient of an arbitrary vector is a tensor, defined as

and its transpose:

da,,
ox

da,

ox

Oa,,
oz

da,
ox

da,
9y

da,
0z

8ay
ox

8ay
9y

day
0z

da,
0z

da,

0z

Oa,,
0z

day
oz

day
0y

day
0z

Scalar product of a vector and divergence of a vector is a vector:

a-Vb =

-Vb
Y ) be
a, - Vb,

x

;

\

b,

a, ox

ob,

—_Y
a, 5, +a

b,

a, ox

+a

+a

0b,,
y Oy

ab,

y Oy

b,
y Oy

+a,
+a

z

+a,

Divergence of a dyadic product of two vectors is defined as

V-(ab)=V:.(a®b)=
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2 (a.b,) +

9
0y

ob, )

1.

0z

v,
0z

0b,
0z )

T (a,b,) + £ (a,b,) + £ (a,b.)
o (a,b.) + 35 (a,b,) + 3% (a,0.)

(a.b,) + & (a.b,)

(A7)

(A.8)
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(A.10)
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