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1 Executive Summary

This report describes the work carried out for completion of the Thermal Hydraulics Methods
(THM) Level 3 Milestone THM.CFD.P6.01 for the Consortium for Advanced Simulation of
Light Water Reactors (CASL). An initial multi-field flow capability has been implemented
in Hydra-TH as a preliminary step towards computing thermal-hydraulics problems with
phase change. The new algorithm is based on the existing single-field projection method
and integrates N volume fractions, N momentum, and N internal energy equations. The N
different-density fluids, at this time, are coupled via a single pressure and volume fractions
(i.e., no phase change). The user input, data and output delegate registration, the initializa-
tion procedure, and time marching have been extended to multiple transport objects and N
fields. A fully coupled, projection-precondtioned, fully implicit solution algorithm has also
been implemented for single-phase flows using the Picard iteration technique.

2 Introduction

The primary objectives of this milestone were to report on the implementation of the fol-
lowing capabilities in Hydra-TH:

1. Initial multi-field capability: computing N fluid fields coupled via volume fractions
and a single pressure using the modified projection algorithm for incompressible flows.

2. Fully implicit time marching using Picard iterations, providing stability and removing
any time-step size restrictions.

The milestone was comprised of the following tasks:

• Implementation of multiple momentum transport objects

• Extension of data and output delegate registration

• Extension of user input to N fields
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• Implementation of initialization procedure for velocity and pressure

• Implementation of volume-fraction transport classes

• Extension of momentum solve and time integration for N fields

• Demonstration of bubbly (i.e., N -field) flow

• L3 milestone report

• Stretch-goal: Implementation of a fully coupled, fully implicit, projection-preconditioned
Newton-Krylov solution algorithm, demonstrated on single-phase flows.

The above tasks are discussed in §3, while summary and an outline for future work are given
in §4.

3 Milestone Accomplishments

This section discusses the milestone tasks in some detail: §3.1 outlines the Hydra-TH multi-
field-flow strategy and explains how the current work fits in a series of developmental steps,
§3.2 and §3.3 give an overview of two options for computing multi-fluid flows. §3.4 discusses
some software implementation details, including the changes to the user input deck. Finally,
§3.5 describes proof-of-concept calculations.

3.1 Multi-Field Flow Solution Strategy in Hydra-TH

The implementation of the compute capability in Hydra-TH for thermal-hydraulics problems
with phase change is comprised of the following steps, in increasing order of complexity, see
also Fig. 1:

1. Semi-Implicit Algorithm. (“Option 1” in Fig. 1.) Based on the already implemented
projection algorithm for single-phase incompressible flows, this algorithm advances N
volume fractions, N momentum, and N energy equations coupled by volume fractions
and a single pressure. Phase change in this algorithm is not taken into account. The
equations are coupled through the volume fractions and the pressure only. This algo-
rithm is similar to the stability-enhancing two-step (SETS) and nearly-implicit algo-
rithms in existing reactor safety codes, such as RELAP5, TRAC, TRACE, CATHARE-
3D, and RELAP5-3D. The time-marching is semi-implicit but not unconditionally sta-
ble. This algorithm is completed in Hydra-TH, discussed briefly in §3.2, and will be
used as a base for the two algorithms below, augmented by interfacial mass, momen-
tum, and energy transfer models.

2. Fully-Implicit Picard Algorithm. (“Option 2” in Fig. 1.) Due to the very different
temporal and spatial scales of the various physical processes represented in multi-
phase flows, numerical computations with phase change models may require removing
the numerical time-step size limitation of the semi-implicit algorithm. A version of
the multi-field solver in conjunction with fully-implicit time marching with the Picard
iteration technique will be a second step towards a fully-functional multi-field capability
in Hydra-TH. Picard iterations for solving the nonlinear system of equations, resulting
from a fully-implicit time marching formulation will be combined with the existing
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Figure 1: Road-map and options for multi-fluid modeling in Hydra-TH.

solution algorithm, employing the projection method as a preconditioner. At this
time, the fully-implicit algorithm, discussed briefly in §3.3, has been implemented for
a single fluid.

3. Fully-Implicit Newton Algorithm. (“Option 3” in Fig. 1.) The final step for the multi-
field capability in Hydra-TH will result in a Newton-based iterative solution method
with fully-implicit time marching. The goal of the Newton technique is to reduce the
number of iterations compared to the Picard method.

3.2 Overview of the Semi-Implicit Multi-Field Projection
Algorithm

A brief description of the governing equations of the semi-implicit algorithm, “Option 1” in
Fig. 1, is now given. More details on the projection-preconditioned semi-, and fully-implicit
solution techniques may be found in [9, 10, 11] and on the multi-field flow solution strategy
in Hydra-TH in [8].

The semi-implicit projection method is based on Gresho’s second-order “P2” method
[6, 7], and is closely related to [2]. A discontinuous-Galerkin/finite-volume (DG/FV) formu-
lation ensures local, i.e., cell-wise, conservation. The velocity, temperature (internal energy
or enthalpy), and turbulence variables (e.g., k, ǫ, ω, etc. if a turbulence model is used)
are cell-centered, while the pressure is centered at nodes of the computational mesh. The
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node-centered pressure precludes checker-board modes, which avoids the use of troublesome
pressure-stabilization techniques, e.g., Rhie-Chow filtering. This hybrid DG/FV – Galerkin
FEM method forms the basis for the Hydra-TH incompressible solution algorithms.

The semi-implicit projection algorithm for multi-phase flows is based on the single-phase
algorithm. The basic governing equations are [4, 12, 3]

∂αk

∂t
+∇ · (αkvk) = 0 (1)

αkρk

(
∂vk

∂t
+ vk · ∇vk

)

= −αk∇p +∇ · (αkτ k) (2)

αkρkCpk

(
∂T k

∂t
+ vk · ∇T k

)

= −∇ · qk + q′′′k (3)

∇ · (αkρkvk) = 0 (4)

for k = 1, . . . , N ensemble-averaged fields, denoted by the overbar. In Eqs. (1–4) αk, ρk,
vk, τ k, T k, qk, q

′′′

k denote the ensemble-averaged volume fraction, density, velocity, shear
stress, temperature, diffusional heat flux, and volumetric heat source of field k, respectively,
while p is the ensemble-averaged (single) pressure, and Cpk is the specific heat at constant
pressure of field k. Eqs. (1–4) contain no inter-field mass, momentum, and energy transfer,
and the fluid densities of the fields, ρk are constants, though they can be different for each
field. Keeping the densities constant is intentional for testing and verification.

A projection algorithm can be derived for Eqs. (1–4) that is analogous to the single-
field case, see [5] or [11] for an example. The resulting algorithm advances Eqs. (1–3) using
semi-implicit time marching, similar to the single-field case, but enforces the divergence-free
constraint in Eq. (4) by solving the following Poisson equation for the time-increment of the
pressure

∇2
(
pn+1 − pn

)
= ∇ ·

∑

k

(αkρkvk)
∗ /∆t (5)

where the superscripts n, n + 1, and ∗ denote time levels n, n + 1, and the intermediate
non-divergence-free state following the momentum update, respectively. Compared to the
single-field algorithm, which enforces a divergence-free (single-field) velocity, Eq. (5) advances
the pressure while enforcing a divergence-free mixture-momentum, ∇ ·

∑

k (αkρkvk)
n+1 = 0,

satisfying Eq. (4). The velocity field for each field, k, is then projected using

vn+1 = v∗ −
∆t

αn+1
k ρn+1

k

(
αn+1
k ∇pn+1 − αn

k∇pn
)

(6)

Note that Eq. (6) yields a divergence-free mixture-momentum, Eq. (4), but the individual
field-velocities, vk are, in general, not divergence-free. This is a consequence of using a single
pressure instead of multiple ones.

3.3 Overview of the Fully-Implicit Picard Algorithm

The semi-implicit projection method, discussed in [5] for single and in §3.2 for multiple
fluids, has been extended to a fully implicit algorithm using Picard iterations, employing
the projection method as a preconditioner. At this time, the Picard algorithm has been
implemented and being exercised for a single fluid. A high-level overview of this Picard
algorithm is now given; more details can be found in [9, 10, 11]. The governing equations
are described first, followed by the algorithm.
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Incompressible single-phase flows are computed by solving the conservation equations of
mass, momentum, and energy. The conservation of linear momentum is

ρ

{
∂v

∂t
+ v · ∇v

}

= ∇ · σ + f (7)

where v = (vx, vy, vz) is the velocity, σ is the stress tensor, ρ is the mass density, and f is the
body force. The body force contribution f typically accounts for buoyancy forces. The stress
may be written in terms of the fluid pressure and the deviatoric stress tensor as σ = −pI+τ ,
where p is the pressure, I is the identity tensor, and τ is the deviatoric stress. A constitutive
equation relates the deviatoric stress and the strain as τ = 2µS. The strain-rate tensor is
written in terms of the velocity gradients as S = (∇v + (∇v)T )/2. In the incompressible
limit, the velocity field is solenoidal,

∇ · v = 0 (8)

which acts as a constraint on the momentum equation (7). Conservation of energy is ex-
pressed in terms of temperature 1, T , as

ρCp

{
∂T

∂t
+ v · ∇T

}

= −∇ · q + q
′′′

(9)

where Cp is the specific heat at constant pressure, q is the diffusional heat flux, and q
′′′

represents volumetric heat sources and sinks, e.g., due to chemical reactions. Fourier’s law
relates the heat flux to the temperature gradient and thermal conductivity as q = −κ∇T ,
where κ is the thermal conductivity. Naturally, the numerical solution of the constrained
system of partial differential equations, Eqs. (7–9), require appropriate boundary and initial
conditions; see [5, 11] for details.

For simplicity, only the momentum and pressure updates are discussed in the following,
but the transport equations for the internal energy and turbulence variables are also imple-
mented. The governing equations are Eqs. (7) and (8), and the vectors of unknowns are
either

U =

[
p

v

]

or W =

[
λ

v⋆

]

(10)

The fully-implicit algorithm seeks the solution at tn+1 iteratively, by updating U
♦♦

or W
♦♦

as

λ
♦♦

= λ
♦

+ λ′

p
♦♦

= p
♦

+ p′

v
♦♦

= v
♦

+ v′

v⋆⋄⋄ = v⋆⋄ + v⋆′ = v
♦♦

+ 1/ρ∇λ
♦♦

(11)

where λ is the Lagrange multiplier, λ = ∆t(pn+1 − pn). We linearize the body force as

F
♦♦

= F
♦

+ F
v

(

U
♦
)

v′ + f
p

(

U
♦
)

p′ (12)

where specific forms of the linearization matrix F
v
and vector f

p
are problem-dependent.

1The energy equation can be solved also in terms of specific internal energy u or specific enthalpy h based
on user-defined input.
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Fully-Implicit Picard Algorithm. Using Eq. (11) in the discretized momentum equation
(7) yields

M
v∗

⋄⋄

− vn

∆t
= (1− θ)

(
Kv

n

− A(ρ,v
n

)v
n

+ F
n)

−Bpn+

+θ

{[

K − A(ρ,v
♦

)
]

v∗
⋄⋄

+ F
♦

−
[

K − A(ρ,v
♦

)
](1

ρ
∇λ

♦

)

︸ ︷︷ ︸

Ξt

}

− θ

{[

K − A(ρ,v
n+1

)
](1

ρ
∇λ′

)

+
1

θ
p
∆t

f
p
λ′ + F

v
v′

}

︸ ︷︷ ︸

δJ
v

(13)

which, using m′ = −θ (Ξt + δJ
v
) , is written as

[

M − θ∆t
(

K − A
(
ρ,v

♦)
)]

v∗
⋄⋄

= [M + (1− θ)∆t (K − A (ρ,vn))]vn+

+∆t
[

(1− θ)Fn + θF
♦

−Bpn − θ δÃv
♦

+m′

] (14)

where θ is the implicitness parameter and δÃv
♦

denotes the linearization for the quadratic
advection terms, whose details are omitted for brevity. (Note that the overbar here indicates
the finite-volume cell-averages; accordingly the pressure is not an average in the single-field
algorithm as it is obtained from a finite-element procedure.) Now the Helmholtz decompo-
sition is

v∗
⋄⋄

= v
♦

+ v′

︸ ︷︷ ︸

v♦♦

+
1

ρ
∇

(

λ
♦

+ λ′

)

(15)

which yields the Poisson equation

∇ ·
1

ρ
∇λ

♦♦

= ∇ · v∗
⋄⋄

(16)

The fixed-point iteration algorithm is based on Eqs. (14–16):

Algorithm 1 Picard Iteration

1. Set initial guess for m = 0:

v
♦

= vn v′ = 0

p
♦

= pn p′ = 0

λ
♦

= 0 λ′ = 0

2. Start the mth iteration.

3. Solve for v∗
⋄⋄

, Eq.(14), with δJ
v
= 0.

4. Compute face-centered velocities, v⋆
f
.
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5. Compute the right-hand-side of Eq. (16) and solve for λ
♦♦

,

Kpλ
♦♦

= D
♦♦

(17)

6. Update the pressure

p
♦♦

= pn +
1

θp∆t
λ

♦♦

(18)

7. Project the cell-centered velocities

v
♦♦

= v∗ −
1

ρ
Bλ

♦♦

(19)

8. Compute face gradients and project the face-centered velocities

vf = v∗f −
1

ρf
((B)λ

♦♦

)f · n (20)

9. Compute velocity and pressure corrections,

v′ = v
♦♦

− v
♦

λ′ = λ
♦♦

− λ
♦ (21)

and compute errors

E
(m)
v = L2 (v

′)

E
(m)
λ = L2 (λ

′)
(22)

10. Check convergence: If any of

E
(m)
v < tola

E
(m)
λ < tola

E
(m)
v < tolr E

(0)
v

E
(m)
λ < tolr E

(0)
λ

(23)

are not satisfied, start a new Picard iteration: increment m, v
♦

= v
♦♦

, p
♦

= p
♦♦

,
λ

♦

= λ
♦♦

, and repeat from Step 2, otherwise, finish the time step:

vn+1 = v
♦♦

pn+1 = p
♦♦ (24)

3.4 Some Implementation Details for Multi-Field Flow

This section delves into some details on the software implementation for multiple fluids.
Fig. 2 depicts the current physics class inheritance tree in Hydra. The Hydra-TH subset

consists of CCINSFlow (Cell-Centered Incompressible Navier-Stokes Flow) and its descen-
dants. The three different stages (options) of multi-field functionality, discussed in §3.1, are
planned to be implemented in classes CCSemiImplicit, CCPicard, and CCNewton, respectively,
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Figure 2: Physics objects inheritance tree in Hydra.

however, the design may undergo changes. At this time, the distinction between the func-
tionalities of CCMultiField and CCSemiImplicit are somewhat blurred and for simplicity, all
functionality is currently being put in the base CCMultiField. The evolving class design may
also necessitate renaming the above classes.

The multi-field solver exercises significant code re-use by instantiating multiple volume
fraction, momentum, and energy transport objects, containing single-field functionality.
Data and output delegate registration has been extended to multiple fields, several of which
the user can request. The statistics output requires no changes for multi-field flows, only new
output delegates and some specialized accumulators will need to be added for statistics in
the future. Examples are pressure-kth-volume-fraction covariance 〈p′α′

k〉 or the kth-volume-
fraction-velocity covariance 〈α′

kv
′

k〉, where the comma denotes the fluctuation about the
mean, e.g. p′ = p − 〈p〉. The initialization procedure, yielding velocity and pressure fields
that are mathematically and physically consistent with incompressible flows [1, 5], has been
extended to multi-field flows.

The user input has also been extended to handle multiple fields. The design goals of the
input deck’s extension to multi-field flows were:

• User-friendly

• Clean

• Least intrusion to current

• Backward compatible

• Phase ID appears once per quantity (little burden on user)

• No significant change to existing (single-field) physics keywords parser

• No interface change to any analysis-keyword call-back functions

Listing (1) shows an example of the user input deck differences between the single-field
incompressible solver (CCINSFlow) and its multi-field counterpart (CCMultiField). The
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keyword cc multifield is used to activate the (current and future) multi-field solver(s).
The plotvar - end block still identifies the user-requested output variables, but the parser
now accepts field ID augmented by an underscore for those variables where multiple fields
are computed. Typos and wrong field IDs trigger warnings. The initial - end block
is still used to specify initial conditions, which now takes an optional field ID or field ID
range. In the absence of a field ID, the specifications apply to all fields, in the example
in Listing (1), for all 4 fields. New keywords, such as volfrac, i.e., volume fraction, have
also been introduced. Specifying boundary conditions is similar to the existing single-field
syntax, but now also take optional field IDs or field ID ranges. The individual bound-
ary and initial condition specifications have not changed. These relatively minor changes
in syntax ensures backward compatibility with existing (single-field) input decks and al-
low for an easy porting of single-field problems to multi-phase descriptions. Statistics out-
put (no example shown) will also be similar to the existing plotstatvar - end block and
will take statistics with field ID, e.g. 〈pressure’,volfrac2’〉 denoting the pressure-2nd-
field-volume-fraction covariance. Run-time statistics for multi-field flows is a subject of
future work. Various designs were entertained for the multi-field input deck syntax de-
scribed above; more details may be found in the design slides in the Hydra repository at
<$HYDRA SOURCE>/doc/design/multiphase design.odp.

3.5 Proof-of-Concept Calculations

This section gives proof-of-concept examples utilizing the new functionality discussed above.

Multi-field flow example. Fig. 3 shows a snapshot of a simple exercise calculation
using the multi-field algorithm, Option 1, discussed in §3.2. Two fields with volume fractions,
α1, α2, are simulated in a vortex street of a circular cylinder using the semi-implicit projection
algorithm in which the fields are coupled only via the single pressure. Initially α1 = 0, α2 = 1,
and a mass of α1 = 0.1 is injected at the cylinder wall into the carrier fluid. It is interesting
to note that the extreme cases of αk = 0 and 1, i.e. phase appearance and disappearance,
are properly handled by the algorithm, without requiring any special treatment, required in
most commercial multi-phase flow algorithms.

Fully implicit algorithm example. The fully implicit Picard algorithm, Option 2,
discussed in §3.3, is free of operator-splitting errors and time-centering ensures that both
velocity and pressure are second-order accurate in time Fig. 6. The method is unconditionally
stable for arbitrarily large CFL numbers. This is demonstrated in Figs. 4 and 5, where
instantaneous velocity fields of Re = 100 vortex streets are compared as computed by the
semi-implicit and the fully implicit algorithms. The figures show that increasing the CFL
number from 0.88 to 56 drives the semi-implicit algorithm unstable, while the fully implicit
method remains stable, even as the Hopf bifurcation is stepped over by ever larger time
steps, see Fig. 5. Naturally, the fully implicit algorithm is intended for rapid convergence to
steady state and not for time-accurate transients.

The Picard algorithm may be suitable for a number of problems. However, it may take
a large number of iterations for complex geometries and high Reynolds numbers, especially
with stiff source terms, prevalent in multi-phase flow models. To further reduce the number
of iterations required, a Newton-based algorithm will also be implemented in the future,
discussed in §3.1.
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cc_navierstokes

plotvar

elem div

elem procid

elem vel

node temp

end

initial

temperature 100.0

end

velocity

velx sideset 1 -1 0.0

vely sideset 1 -1 0.1

velz sideset 1 -1 0.1

end

end

cc_multifield

nfields 4

plotvar

elem div

elem procid

elem vel_1

elem vel_2

node temp_1

node temp_2

end

initial 1

volfrac 0.1

temperature 100.0

end

initial 2

volfrac 0.9

temperature 100.0

end

volfrac 2:4

sideset 1 -1 0.1

end

velocity 1-2

velx sideset 1 -1 0.0

vely sideset 1 -1 0.1

velz sideset 1 -1 0.1

end

end

Listing 1: Comparative examples of single-, and multi-field input decks.
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(a) Pressure.

(b) Volume fraction 1. The color legend is scaled to the ex-
tremes, while the contour lines divide the range 0.001-0.01 into
10 equal portions.

(c) Volume fraction 2. The color legend is scaled to the extremes,
while the contour lines divide the range 0.99-1.0 into 10 equal
portions.

Figure 3: Proof-of-concept demonstration of the “Option 1” (see Fig. 1) multi-field solver
in Hydra-TH using vortex shedding with two fields of equal densities. The volume fraction
initial conditions are α1 = 0 and α2 = 1. An influx of α1 = 0.1 is prescribed at the cylinder
surface and advected downstream, from left to right.
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Figure 4: Vortex shedding behind a circular cylinder at Re = 100, computed by the semi-,
and fully implicit projection algorithms, discussed in §3.2 and §3.3, respectively.
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Figure 5: Vortex shedding behind a circular cylinder, at Re = 100, computed by the fully
implicit projection algorithm, discussed in §3.3, using large time steps.
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Figure 6: Convergence of L1-norm errors of domain-average kinetic energy and temperature
for natural convection in a square cavity with oscillatory temperature boundary conditions
computed by the semi-implicit projection method and the fully implicit Picard algorithm.
See [11] for more details.

4 Summary and Future Work

Some initial steps have been taken to prepare Hydra-TH for computing multi-phase thermal-
hydraulics problems. Progress has been made on two fronts: deriving and implementing (1)
a semi-implicit projection algorithm for N coupled fluids, and (2) a fully implicit projection-
based Picard technique for a single fluid. Several software design and implementation issues
have been explored and resolved. Work will continue on both fronts, ultimately resulting in
several options for computing multi-phase flows, including a fully implicit Newton-Krylov
algorithm with various options for inter-phase mass, momentum, and energy transfer, doc-
umented in L3:THM.CFD.P7.01, Demonstration of Multiphase Flow with Hydra-TH.
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