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Multigroup Equations

We’ll consider solving the multigroup formulation of the
k-eigenvalue problem, which result from discretizing in energy,

Ω̂ · ∇ψg (Ω̂, ~r) + Σt,gψg (Ω̂, ~r) =
1

4π

G∑
g ′=1

Σg ′→g
s φg ′(~r)

+
χg

4πkeff

G∑
g ′=1

νΣf ,g ′φg ′(~r). (1)
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k-Eigenvalue Problem

Compute dominant eigenvalue for

LΨ =
1

4π

(
S +

1

keff
F
)

Φ.

Traditional methods are based on the power method.

Plagued by slow convergence when dominance ratio, ρ,

ρ = max
i

|ki |
|keff |

is close to 1.

Must converge scattering and fission source terms.
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Accelerating PI

PI converges slowly when

1 Scattering ratio is near 1
2 Dominance ratio is near 1

We’ll use Nonlinear Diffusion Acceleration to move a large
portion of the work to a “low-order” system of reduced
dimension.

This allows us to

1 Solve the k-eigenvalue problem for a sequence of LO problems.
2 Accelerate eigenvalue convergence using Newton’s method.
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Moment Based Acceleration

Consider the neutron transport equation

Ω̂ · ∇ψg (Ω̂, ~r) + Σt,gψg (Ω̂, ~r) =

1

4π

G∑
g ′=1

Σg ′→g
s φg ′(~r) +

χg

4πkeff

G∑
g ′=1

νΣf ,gφg ′(~r).

and its zeroth angular moment

∇ · ~Jg + Σt,gφg =
G∑

g ′=1

Σg ′→g
s φg ′ +

χg

keff

G∑
g ′=1

νΣf ,gφg ′ . (2)
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Nonlinear Diffusion Acceleration1

Consider Fick’s law augmented with a correction term, D̂,

~Jg = − 1

3Σt,g
∇φg + D̂HO

g φg . (3)

Substituting Equation 3 into 2 yields the NDA low-order (LO)
equation,

∇ ·
(
− 1

3Σt,g
∇φg + D̂HO

g φg

)
+ Σt,gφg

=
G∑

g ′=1

Σg ′→g
s φg ′ +

χg

keff

G∑
g ′=1

νΣf ,gφg ′ . (4)

Upon convergence, the NDA LO solution agrees with the HO
solution (transport equation solution).

1See Application of the Jacobian-Free Newton-Krylov Method to Nonlinear
Acceleration of Transport Source Iteration in Slab Geometry by Knoll, Park
and Smith

Jeffrey A. Willert Hybrid k-Eigenvalue Methods September 16, 2013 7 / 25

CASL-U-2013-0309-000



NDA-based Eigenvalue Methods2

1 Input some approximation to the scalar flux, Φm, and
eigenvalue km

eff .
2 Compute

Ψm+1 =
1

4π
L−1

(
S +

1

km
eff

F
)

Φm

ΦHO =

∫
dΩ̂ Ψm+1, JHO =

∫
dΩ̂ Ω̂ ·Ψm+1

3 Compute D̂g for each group.
4 Solve

(D − S) Φm+1 =
1

km+1
eff

FΦm+1

where D is given by

Dg = ∇ ·
[
− 1

3Σt,g
∇+ D̂g

]
+ Σt,g .

2See Nonlinear Acceleration of Transport Criticality Problems by Park,
Knoll, Newman.
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Solving the LO Eigenvalue Problem

Rewrite LO eigenvalue problem as:

F (Φ) = (D − S) Φ− 1

keff
FΦ

keff =
∑
g ′

∫
dV νΣf ,g ′φg ′

Solve F (Φ) = 0 with preconditioned Newton-Krylov method.

This yields NDA-NCA - Nonlinear Diffusion Acceleration with
Nonlinear Criticality Acceleration.
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Motivation for Hybrid Methods

While deterministic algorithms can be designed to converge in very
few iterations, there are some drawbacks:

Discretization error takes several forms

1 Multi-group cross-sections must be carefully computed in order
to not introduce errors.

2 Spatial discretization leads to truncation error which may
demand significant mesh refinement.

3 Sn approximation may yield “ray effects” or biasing along
discrete angles in our quadrature set.

Less potential for parallelism.

1 Sn transport sweeps can be parallelized to some degree, but
this becomes challenging.

2 Monte Carlo methods are often highly parallelizable.

Jeffrey A. Willert Hybrid k-Eigenvalue Methods September 16, 2013 10 / 25

CASL-U-2013-0309-000



Hybrid Methods

We’d like to build hybrid deterministic/stochastic methods.

Combine the advantages of both deterministic and stochastic
methods:

Accelerate convergence of expensive Monte Carlo simulations.

No angular discretization error.

Spatial discretization error can be adjusted to be far smaller
than MC error.

Potential for continuous treatment of energy in HO problem.

Angular flux avoided entirely.

Less expensive particle histories.
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Monte Carlo “Transport Sweep”

In each of the algorithms discussed, we need to be able to apply
L−1 to a source vector.

We can do this with Monte Carlo:

1 Build source term S =
(
S + 1

kF
)

Φ(n).

2 Sample source term, S , for initial particle locations and/or
particle weights.

3 Sample direction of travel and distance from known PDFs for
each particle.

4 Tally new scalar flux, Φ(n+1), and new current, ~J(n+1).

We’ll call this action a Monte Carlo Transport Sweep and represent
this action as Φ(n+1) = GMC (Φ(n)).
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NDA-NCA(MC)

The first step in NDA-NCA is to compute a new approximation to
D̂ and build a LO eigenvalue problem.

To approximate D̂ we

1 Execute a transport sweep to compute ΨHO , given Φ(n).

2 Compute 0th and 1st moments of ΨHO , ΦHO and JHO ,
respectively.

3 Compute D̂g = D̂g (φHO
g , JHO

g ) for each group.

We can do this with Monte Carlo instead.

1 Build source term given Φ(n).

2 Simulate particle flights and directly tally ΦHO , JHO .

3 Compute D̂g = D̂g (φHO
g , JHO

g ) for each group.
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NDA-NCA(MC)

The next step is to solve the LO eigenvalue problem

(D − S) Φm+1 =
1

km+1
eff

FΦm+1.

Important notes:

1 This problem is no harder to solve when the deterministic
transport sweep has been replaced by a Monte Carlo transport
sweep!

While D contains a potentially noisy D̂ term, D̂ is constant
throughout the LO eigenvalue solve!

2 There is no MC simulation in the LO eigenvalue solve.
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2-D Test: LRA-BWR Problem3
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3See Argonne Code Center: Benchmark Problem Book, ANL-7416, suppl. 2,
Argonne National Laboratory (1977)
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2-D Test: LRA-BWR Problem
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2-D Test: LRA-BWR Convergence
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2-D Test: Scalability
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2-D Test: LRA-BWR Problem

Solution error (compared to converged hybrid solution) less
than 1 pcm was obtained using a total of roughly 6.4× 1010

particles.

The low-order problem appears to insert some degree of
discretization error.

On a given spatial mesh, the hybrid algorithm provides more
accurate solutions than a purely deterministic
implementation.4

4see Hybrid Deterministic/Monte Carlo Methods for Solving the Neutron
Transport Equation and k-Eigenvalue Problem, by Willert (Ph.D. Thesis)
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Classic Monte Carlo

As a comparison, we’ll solve the same problem using a classic
Monte Carlo solution:

1 Approximate fission source

2 Sample fission source for particle locations

3 Simulate particle histories - steaming, scattering, absorption,
fission

4 Store fission sites for next batch
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Classic Monte Carlo - Eigenvalue Convergence
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Remarks

1 For both hybrid methods and purely stochastic methods,
convergence can be difficult to measure.

NDA-NCA(MC) computes 5 digits of the eigenvalue after
6.4× 1010 particle flights.
MC computes 5 digits (maybe) of the eigenvalue after
1.5× 1011 particle flights.

2 Each MC particle undergoes roughly 25 interactions before
leaving the domain, being absorbed or undergoing a fission
event. NDA-NCA(MC) particles undergo exactly 1 interaction.
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Method Comparison

MC particles are only
born in fissionable
regions.

NDA-NCA(MC) particles
must resolve flux and
current everywhere in the
domain.

Only 65% of cells contain
fissionable material.
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NDA-NCA(MC) Considerations

1 NDA-NCA(MC) particles do less work than standard MC
particles, but they must be distributed everywhere in the
domain.

2 How can we alleviate this issue? Potential solutions:

Geometric hybrid - use deterministic solutions outside
fissionable region.
Source biasing - concentrate particles in fissionable region.
However, we still need good statistics in reflector region.

3 NDA-NCA(MC) would allow for a residual Monte Carlo
formulation:

Given some approximation ψ0 to the true solution, solve

L(δψ) =
1

4π

(
S +

1

k
F
)
φ− Lψ0

with Monte Carlo, and recover ψ = ψ0 + δψ.
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Summary

We have built a hybrid algorithm, NDA-NCA(MC) for
computing the dominant eigenvalue, keff .

We have demonstrated that for a high dominance ratio 2-D
test problem, the expense of the two algorithms is
comparable, with a slight edge going to NDA-NCA(MC).

Current/future work:

Modify the NDA-NCA(MC) algorithm to use particle histories
more efficiently.

Low-order spatial truncation error has been studied in 1-D.
We should attempt to study/quantify this error in multiple
dimensions.
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