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Abstract

In the present work we propose a constitutive model for instantaneous
plasticity in Zircoloy-4. A dislocation density based constitutive framework
is employed for modeling the plastic deformation in Zircoloy-4. The effect
of irradiation on the flow stress and hardening is captured by accounting for
vacancy and interstitial loops created by irradiation. We show the effect of
plastic strain and iradiatiom dose on yield stress.

Keywords: Creep, irradiation creep and plasticity, viscoplastic

1 Introduction

Abnormal conditions in an operating nuclear reactor can be caused by temperature
fluctuations which in turn is induced by loss of coolant accident (LOCA) or reactivity
initiated accident (RIA). Irradiation creates vacancy and interstitial loops in the
cladding material. These irradiation products interact with mobile dislocations and
cause increased strain hardening and embrittlement.

Effect of irradiation on flow stress and strain hardening has been extensively
reported and discussed in the literature e.g. [1, 2, 3, 4, 5]. Yield strength increases
and uniform elongation decreases with increasing irradiation dose. These effects on
material properties can cause phenomena such as ballooning and burst in the fuel
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tubes due to non-uniform deformation connected to irradiation [7] and can turn into
accidents (cf. Figure 1). Irradiation inhibits twinning at room temperature and
above, therefore the mechanical behavior of irradiated Zircoloy is not affected by
twinning [6]. Accidents caused by LOCA condition or RIA condition may cause a
dynamic expansion of fuel pellets. This results into a multiaxial strain controlled
high rate of deformation caused by high thermal loading (1000◦C/s−1). Accident
conditions e.g. low temperature in early stage transient, metal-water reaction and
accumulated irradiation in a high burn-up clad may lead to a brittle failure or burst.
At later stage when clad is at high temperatures (above 800◦C) for longer periods
of time, internal pressure may increase due to fission gas release, after pellet-gap
re-openning and may lead to clad failure called ballooning via pressure contolled
loading [3].

Figure 1: Burst in a Zirlo tube sample due to embrittlement caused by irradiation
[7]
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2 Constitutive model

The dislocation density based constitutive framework employed in this work is ex-
tention of the work of Beyerlein and Tomé [8] developed within viscoplastic self-
consistent (VPSC) framework [9]. We consider 3 prismatic, 3 basal and 12 pyramidal
〈c+ a〉 slip systems. Shear rate on each slip system is given by:

γ̇ = γ̇0

N∑
1

(
mS : σ

τSc (ε̇p, T )

)n

(1)

where γ̇0 is a reference shear rate, mS is the Schmid tensor, n is the inverse
of strain rate sensitivity, τSc (ε̇p, T ) is the critical resolved shear stress (CRSS) on
slip system S, N is the total number of slip systems and σ is Cauchy stress. The
dislocation density evolves due to multiplication and annihilation as:

∂ρS

∂γS
= k1

√
ρf − k2ρf (2)

ρS is the mobile dislocation density on slip system S, ρf is the total dislocation
density on forest slip systems. k1 and k2 are coefficients of dislocation multiplication
and annihilation respectively. The mobile dislocations interact with forest disloca-
tions causing the evolution of CRSS given by:

τSc = αfµbS
√
ρf (3)

where αf is a proportionality coefficient, µ is the shear modulus and bS is the
Burgers vector. Mobile dislocations interact with vacancy and interstitial loops caus-
ing additional strain hardening due to irradiation. In such case, the increased CRSS
on a slip system S is given by [10, 11]:

τSirr = τSc +∆τSirr = αfµbS
√
ρf + αlµbS

√
NSrS (4)

αl is the proportionality coefficient for irradiation hardening, NS is the number
density of irradiation loops, rS is the average size of the irradiation loops. 2πNSrS

represents dislocation density of irradiation loops.
The material parameters for the constitutive model are fitted against the ex-

perimental data of uniaxial tensile stress-strain reported by Le Saux et al. [3] for
non-irradated material condition. We consider a polycrystal containing 1944 crys-
tallites. The initial crystallographic texture of the polycrystal is shown in Figure 2a
and corresponds to a cladding tube. The fitted curves along with the data reported
by Le Saux et al. [3] are shown in Figure 2b.
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Figure 2: (a) Initial crystallographic texture represented by 1944 grains. (b) Fitting
of the dislocation based VPSC model against the data given in the work of Le Saux
et al. [3].

3 Methodology

For determining irradiation hardening, we need distribuion of irradiation loop density
in the polycrystal. In an undergoing CASL research work, VPSC has been coupled
[12] with the single crystal irradiation growth model developed at Oak Ridge National
Laboratory [13, 14]. The coupled VPSC-GROWTH model predicts the irradiation
loop density as a function of dose (Φ). For the present work irradiation growth sim-
ulation was performed for accumulated dose of 10 dpa and irradiation loop densities
in each slip system for various doses were recorded. The variation of irradiation
loop densities as a function of accumulated dose is shown in Figure 3a. We perform
simulations of uniaxial tensile deformation of polycrystals for analyzing the effect of
irradiation.

4 Results and discussion

Figure 3b shows the yield stress at 280◦C and 0.01 s−1 as a function of accumulated
irradiation dose. As expected the yield stress increases with increasing irradiation
dose. There is a very sharp change in the yield stress from no irradiation to 0.1
dpa. Figure 4a and Figure 4b show the flow stress at 280◦C for 0.01 s−1 and 5 s−1

respectively as a function of plastic strain and irradiation dose. The overall effect of
irradiation is an increase in CRSS of crystalllites which is reflected in the increased

4

CASL-U-2013-0321-000 
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flow stress of the polycrystal. It is worth mentioning that for simulating the stress-
strain response of irradiated Zircoloy-4, no additional material parameter adustment
is performed. Comparison with the experimental data reported by of Le Saux et al.
[3] shows that this preliminary model predicts the correct order of magnitude for
yield stress of irradiated Zircoloy-4 (cf. Figure 3b).
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Figure 3: (a) Dislocation density due to irradiation as a function of accumulated
dose. (b) Yield stress at 280◦C and 0.01 s−1 as a function of irradiation dose. Le
Saux et al. [3] report the experimental results scattered between the dark circles
marked at 10 dpa.
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Figure 4: Evolution of flow stress as a function of plastic strain and irradiation dose
at (a) 280◦C and 0.01 s−1 (b) 280◦C and 5 s−1
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5 Conclusions

We present a proof of principle for incorporation of the effect of irradiation dose
on the flow stress for Zircoloy-4. The dislocation density framework of VPSC is
able to model the stress-strain response of non-irradiated Zircoloy-4. The effect of
irradiation on flow stress is captured by modifying CRSS using a dislocation based
strain-hardening equation that accounts for the interaction of mobile network disloca-
tions with the irradiation loops. The densities of irradiation loops are determined by
microstructure based irradiation growth formulation via coupled VPSC-GROWTH
model. The irradiation hardening model presented in this work is able to capture
strain-rate sensitivity, temperature sensitivity and irradiation hardening in Zircoloy-
4. Given the loading conditions, burn-up and transient time during a reactor opera-
tion, the model will be able to predict the stress state in Zircoloy-4 cladding. A large
scale engineering simulation of such kind can be performed by using MOOSE-VPSC
[15] interface. The MOOSE-VPSC interface couples the massively parellel Mul-
tiphysics Object Oriented Simulation Environment (MOOSE) developed at Idaho
National Laboratory (INL) with VPSC.
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