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EXECUTIVE SUMMARY 

VERA, the Virtual Environment for Reactor Applications, consists of integrating and interfacing software 
together with a suite of physics components adapted and/or refactored to execute and, in some cases, 
simulate relevant physical phenomena in a coupled manner. VERA also includes the software development 
environment and computational infrastructure needed for these components to be effectively used.  

Development of the Virtual Environment for Reactor Applications, VERA, is central to the CASL objective to 
“apply existing modeling and simulation capabilities and develop advanced capabilities to create a usable 
environment for predictive simulation of light water reactors.” This milestone marks snapshot 3.0 of VERA, 
and represents multiple improvements since the previous VERA snapshot. 

Since the beginning of FY12 the emphasis has been on development of VERA’s “core simulator” 
functionality, which has included numerous enhancements to the neutronics capability (both transport and 
cross section processing), development of a common input strategy, and improvements to the VERA 
infrastructure components to enable the next steps – coupling of thermal-hydraulic and fuel performance 
components. Initial coupling began in FY12 and is reflected in this snapshot, and will continue in FY13.  
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1. INTRODUCTION  

This report summarizes the capabilities represented by snapshot 2.3 of the CASL Virtual Environment for Reactor 
Applications, VERA, and represents significant improvements and additional capabilities since the initial major 
VERA snapshot, version 1.0, completed for a March 31, 2011 milestone. 

Figure 1 illustrates the general functionality needed in VERA. Figures 2, 3, and 4 illustrate the components of 
snapshots 1.0 (from March, 2011), 2.0 (from March, 2012), and 3.0 (the current snapshot), respectively. They 
include both “legacy” tools (which provide a baseline capability) and advanced modeling and simulation tools 
being developed and incorporated within the VERA environment. In addition to the colors, which roughly 
represent components of similar type, darkness is used to connote the degree of integration with the 
environment. Note for example the difference between the light orange of the Denovo box in Figure 2 and the 
dark orange in Figures 3 and 4. This is a simplified representation of a complex software system, and should not 
be interpreted to imply full coupling between components. However, VERA is evolving at a rapid pace, as 
evidenced by comparison between Figures 1, 2, 3, and 4. 

Much of the recent VERA development has focused on a collection of components within VERA that we have 
been referring to as the VERA “core simulator”. We recognize that although the term is commonly used in the 
nuclear industry, it can have multiple definitions. For CASL, this is neutronics, subchannel thermal-hydraulics, 
and fuel performance. For VERA, this is illustrated in Figure 5. We often refer to this functionality collectively as 
VERA-CS. Note that it is not a single product or executable, and that the specific components and functionality 
comprising VERA-CS can and will evolve over time. For example, at some point CFD capabilities may become 
part of VERA-CS. 

Section 2 provides a description of the software development environment and computational infrastructure 
that currently supports the development of VERA.  

Sections 3-8 describe the computer software and physics codes that comprise VERA. Sub-sections describe each 
of the major components, including some illustrative results on relevant problems when available. Important 
codes not yet incorporated into the official VERA build and test environment but obtained by CASL and currently 
available in the VRI repository are also described. 

Section 9 lists the staff members from various CASL institutions who contributed to the completion of this 
milestone. 

We note that many details of the work described in this summary report are also documented on the CASL VRI 
Kanban site: 

 https://casl-dev.ornl.gov/trac/casl_vri_kanban 

where a series of tickets can be found detailing the Epics, Stories and Tasks that were completed, reviewed, and 
closed as a part of this milestone. 

  

https://casl-dev.ornl.gov/trac/casl_vri_kanban
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Figure 1: Desired functionality of VERA. 

 

Figure 2: Key components of VERA 1.0 
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Figure 3: Key components of VERA 2.0 

  

Figure 4: Key components of VERA 3.0 
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Figure 5: Components that comprise the VERA Core Simulator (VERA-CS). 
 

Tables 1-6 give an overview of the activity, integration status, and approximate assessment of capability for each 
of the VERA components for this snapshot: 

• Activity – The approximate level of VRI activity devoted to this component / capability for this snapshot. 
Darker indicates more intense activity. Note that this does not indicate development activities occurring 
within other CASL Focus Areas (e.g. THM-funded development of Hydra-TH, RTM-funded development of 
MPACT, etc.). 

• Integration – Approximate assessment of the status of integration of this component into VERA as of this 
snapshot. Yellow indicates some level of integration has been completed (e.g. source code has been 
obtained, code has been ported to development platforms, etc.). Green indicates that the majority of the 
integration tasks have been completed (e.g. under nightly build/test). 

• Capability – Approximate assessment of capability provided through VERA, as measured against desired 
capability to be accessible through VERA. No indication of a component’s capability outside VERA is 
intended. Yellow indicates some level of capability (possibly significant). Green indicates that the capability 
provided is approaching the level required. 
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Table 1: VERA Infrastructure Components 

Component Description Activity Integration Capability 
LIME Coupling    
Common Input Usability    
DTK Solution transfer    
MOOSE Framework    
DAKOTA SA / UQ    

Table 2: VERA Core Simulator Components 

Component Description Activity Integration Capability 
SCALE / XSProc Cross sections    
Insilico Pin-homogenized neutronics    
COBRA-TF (CTF) Subchannel Thermal-Hydraulics (T-H)    
DAKOTA-CTF Subchannel T-H with SA / UQ    
Insilico-CTF Coupled neutronics and T-H    
MPACT Pin-resolved neutronics    

Table 3: Other VERA Components 

Component Description Activity Integration Capability 
RELAP5-3D Reactor System    
Drekar CFD    
Insilico-Drekar Coupled neutronics and CFD    
Hydra-TH CFD    

Table 4: VERA Physics Components Under Development 

Component Description Activity Integration Capability 
MAMBA CRUD     
FOX / PEREGRINE Fuel performance    

Table 5: VERA Baseline Components 

Component Description Activity Integration Capability 
ANC 9.5 Nodal neutronics    
VIPRE-W Subchannel Thermal-Hydraulics (T-H)    
DAKOTA-VIPRE-W Subchannel T-H with SA / UQ    
ANC9.5-VIPREW Coupled nodal neutronics and T-H    
ANC9.5-VIPREW-BOA Coupled nodal neutronics, T-H, and CRUD    

Table 6: Initial and Demonstration Capabilities 

Component Description Activity Integration Capability 
DeCART Pin-resolved neutronics    
Star-CCM+ Commercial CFD    
DeCART-Star-CCM+ Coupled neutronics and CFD    
Insilico-Star-CCM+ Coupled neutronics and CFD    
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2. SOFTWARE DEVELOPMENT TOOLS AND COMPUTATIONAL 
INFRASTRUCTURE 

The VERA suite of software is the set of CASL software designed to provide a set of capabilities for use by both 
internal (AMA) and external CASL customers. Thus there are significant software quality issues that must be 
considered with respect to VERA. As a result, the VRI Infrastructure Team (who maintains and supports the 
official VERA development environment) has defined a 'VERA Lean/Agile Development Model ‘ (see https://casl-
dev.ornl.gov/wiki/index.php/VRI_Development_Model) that includes the following key elements:  

• All current functionality of VERA is defined and protected by automated tests. These tests provide real-
time evidence for the correct functioning of VERA software. These tests are maintained with 100% 
success at all times. 

• The official VERA sources and tests are to be maintained in working order through a set of pre-push 
continuous integration (CI) tests, post-push CI tests (i.e. CTest/CDash [2] system), and Nightly testing. (All 
supported by the TriBITS system [1,2].)  

• New functionality is to be developed incrementally, while constantly maintaining existing functionality. 
Functionality is to be developed in small increments where constant refactoring is used to maintain the 
current functioning of the software.  

The software briefly described in this section is felt to either satisfy, or very nearly satisfy these requirements. 
Other physics components reside in the VRI repository and are being developed, but that do not yet meet the 
above criteria. 

The software development environment includes all of the components necessary to reliably build, test and run 
CASL software components. Challenges include: 

• The need to support difference classes of users with different needs, i.e., analysts running codes as well 
as developers building/testing codes. 

• The need to support multiple, distinct platforms. 
• The need to support the integration and maintenance of codes from multiple sources and multiple 

development teams. 

The VERA software development environment consists of the following: 

• A standardized set of compilers, tools and third-party libraries, driven by the requirements of the CASL 
software components. 

• Tools present on the CASL computational platforms for configuring the operating environment to 
use/develop particular CASL software components. 

• The Git revision control system [3] and software repository. 
• Build and test infrastructure and methodology, utilizing the TriBITS system [4,5] based on CMake 

[1]/CTest/CDash [2] using standard practices developed and employed for the Trilinos project. 

Each software component in VERA is accessible from the CASL-VRI git software repository to those who have the 
proper access permissions. This system provides 

https://casl-dev.ornl.gov/wiki/index.php/VRI_Development_Model
https://casl-dev.ornl.gov/wiki/index.php/VRI_Development_Model
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• automated revision control and tracking, 
• enforcement of IP protection, and  
• accessibility of the software for CASL staff. 

Table 7 lists the repositories currently associated with VERA. 

Table 7: List of CASL Git Repositories [7] 

Repository Name Repository Checkout Location 
VERA TPLs casl-dev:/git-root/casl_tpls.svn  
VERA casl-dev:/git-root/VERA VERA 
Trilinos (CASL devs) casl-dev:/git-root/Trilinos VERA/Trilinos   
... Trilinos devs software.sandia.gov:/space/git/Trilinos  
LIME (CASL devs) casl-dev:/git-root/LIMEExt VERA / LIMEExt   
... LIME devs software.sandia.gov:/space/git/LIMEExt  
Data Transfer Kit casl-dev:/git-root/DataTransferKit VERA / DataTransferKit   
VERA Input Support casl-dev:/git-root/VERAInExt VERA / VERAInEx   
VRI PSS drivers casl-dev:/git-root/casl_vripss VERA / PSSDriversExt   
Westinghouse codes casl-dev:/git-root/casl_rave VERA / CASLRAVE   
BOA casl-dev:/git-root/casl_boa VERA / CASLBOA   
DeCART (CASL devs) casl-dev:/git-root/casl_decart VERA / DeCARTExt   
... DeCART devs arc-05.engin.umich.edu:/git-root/DeCART/decart-v2.git  
MOOSE casl-dev:/git-root/casl_moose VERA / MOOSEExt 
Peregrine casl-dev:/git-root/casl_peregrine VERA / PeregrineExt 
MPACT (CASL devs) casl-dev:/git-root/casl_mpact VERA / MPACTExt 
... MPACT devs arc-05.engin.umich.edu:/git-root/MPACT/MPACT.git  
RELAP5-3D asl-dev:/git-root/casl_relap5 VERA / RELAP5Ext   
StarCCM casl-dev:/git-root/StarCCMClient VERA / StarCCMExt   
Scale (Hg repo) casl-dev:/git-root/casl_scale VERA / Scale   
Exnihilo (CASL devs) casl-dev:/git-root/Exnihilo VERA / Exnihilo 
... denovo devs angmar.ornl.gov:/data/git/Exnihilo.git  
Nemesis (CASL devs) casl-dev:/git-root/nemesis VERA / Nemesis   
... denovo devs angmar.ornl.gov:/data/git/nemesis.git  
MAMBA casl-dev:/git-root/casl_mamba VERA / MAMBAExt   
MAMBA-BDM casl-dev:/git-root/casl_mamba_bdm VERA / MAMBA-BDM 
COBRA-TF casl-dev:/git-root/casl_cobra VERA / COBRAExt   
Panzer (CASL devs) casl-dev:/git-root/Panzer VERA / Panzer 
... Panzer devs software.sandia.gov:/space/git/Panzer  
Hydra-TH casl-dev:/git-root/hydrath VERA / hydrath 
 

An important aspect of the VERA software development environment is the automated continuous-integration 
build and test system based on the TriBITS system. Whenever a software change is made, either to the code 
itself or to any other code that it depends on, the software is immediately tested for successful completion of a 
suite of code-specific test problems. A more rigorous set of tests are performed each night to ensure that 
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software capabilities have not been inadvertently compromised during the development process. Without such 
a system to continuously build and test integrated software, experience has shown that these capabilities can 
erode due to changes in interfaces and functionality, portability problems, build system changes, etc. Software 
that is continuously built and tested delivers fewer defects and allows daily local releases of software (which we 
believe is critical to meeting CASL goals). 

Additional online documentation is now available at the VRI Kanban Trac site [6]. This can be accessed through 
the following links that appear at the bottom of the main page. 

• CASL Repository Access Instructions 
• CASL VRI Software Development Environment 
• CASL Software Quality Assurance 
• VERA Software Release History 
• Quality Program Description 

The CASL computational platforms currently include: 

• Fissile four: Four 32-core, shared-memory machines (u233, u235, pu239, pu241). These provide CPU and 
memory resources to allow simultaneous development, testing and small-scale computation by multiple 
users. One machine (pu241) is reserved for nightly and continuous-integration testing of all CASL 
software components; the other three are for development of CASL software components. This machine 
is reserved exclusively for CASL users, with fine-grained access controls, allowing the development / 
deployment of proprietary codes. (u235 has been out for repair for several months) 

• Boris and Natasha: Two 64-core shared-memory machines recently added to enhance development and 
testing. 

• Fission: A 12,512-core Appro cluster at INL. Approximately 2000 cores have been allocated for CASL 
development and production use. Components of VERA have been ported to Fission and are being used 
by AMA staff. 

• Jaguar (deprecated): ~300,000-core Cray XT5 system at ORNL. Has now been upgraded to the Cray XK7 
system known as Titan. 

• Titan [8]: ~300,000-core Cray XK7 system with NVIDIA K20X-accelerated nodes. Titan is currently 
undergoing acceptance and stability testing and not yet available to users. 

• Frost (deprecated): This is a 1024-core cluster for running medium- to large-scale computations. 
Originally serving as the main CASL development platform, Frost exists now as a deployment target. 
Currently, there are restrictions as to what software can be run on Frost (and how), specifically 
proprietary codes such as those owned by Westinghouse. 

References for Section 2: 

1. http://www.cmake.org/ 
2. http://www.cdash.org/ 
3. git, the fast distributed version control system, http://git-scm.com/about 

http://www.cmake.org/
http://www.cdash.org/
http://git-scm.com/about
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4. Bartlett, Roscoe, Michael Heroux, and Jim Willenbring. TriBITS Lifecycle Model Version 1.0: A Lean/Agile 
Software Lifecycle Model for Research-based Computational Science and Engineering and Applied 
Mathematical Software. SAND2012-0561. Sandia National Laboratories. February 2012 

5. http://code.google.com/p/tribits/ 
6. https://casl-dev.ornl.gov/trac/casl_vri_kanban 
7. https://casl-dev.ornl.gov/trac/casl_vri_kanban/wiki/CaslRepoAccess 
8. http://www.olcf.ornl.gov/titan/ 

  

http://code.google.com/p/tribits/
https://casl-dev.ornl.gov/trac/casl_vri_kanban
https://casl-dev.ornl.gov/trac/casl_vri_kanban/wiki/CaslRepoAccess
http://www.olcf.ornl.gov/titan/
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3. VERA INFRASTRUCTURE COMPONENTS 

The VRI Physics Simulation Suite consists of integrating and interfacing software together with a suite of physics 
codes that have been adapted and/or refactored to run and, in some cases, be coupled together within the 
VERA environment. A summary description of each of these that are associated with this release is given in the 
subsections that follow. 

3.1 Lightweight Integrating Multiphysics Environment (LIME) 

LIME is a small software package for helping to create multiphysics simulation codes. The name is an acronym 
denoting “Lightweight Integrating Multiphysics Environment for coupling codes.” LIME is especially useful when 
separate computer codes already exist to solve different parts of a multiphysics problem. LIME provides high-
level software (written in C++), a well-defined but flexible approach, and interfaces to enable the assembly of 
multiple physics codes into a single coupled multiphysics simulation code.  

For CASL, LIME has been an important software tool for coupling physics components. For example, LIME is used 
to create the coupled multiphysics simulation capabilities of ANC9.5-VIPREW-BOA and of DeCART-Star-CCM+. In 
addition, many of the other VERA physics codes have been “wrapped” under LIME, a first step in preparation for  
coupling with other physics codes.  

Version 1.0 of LIME has been released under a BSD-type open source license, and both a users guide[1] and a 
theory manual [2] have been completed and are now available. Although LIME 1.0 contains the basic 
functionality required for many uses, it is not a fully mature tool, and improvements to LIME are being pursued 
as needed to address CASL requirements. Enhancements needed to achieve early milestones are being 
incorporated into updates to the current version of LIME (LIME 1.x). More significant changes addressing longer-
term improvements/enhancements identified as important to CASL are expected to be reflected in a 2.x version 
of LIME.  

Because every multiphysics code-coupling scenario is unique in some aspects, some amount of customized 
software must be written. In addition, depending on the design of the original physics codes, some degree of 
refactoring of the components being coupled may also be required. In other words, LIME is not “plug and play” 
in the way that this phrase is normally interpreted. However, the work required to write the customized 
software and to potentially re-factor the physics codes can be very small relative to the alternative of creating 
an entirely new multi-physics code from scratch. This is particularly relevant when decades of R&D have been 
invested in computer codes, which is true for many being used by industry today. 

Figure 6 illustrates the key software components needed for creating a new multi-physics application within 
VERA using LIME 1.0. For each physics code being coupled a customized “Model Evaluator” is written, and for 
each new multiphysics application a small but unique “Multi-physics Driver” is needed. In this figure physics 
codes A, B, or C, generically represent any three CASL codes that might be coupled together (for example ANC9, 
VIPRE-W and BOA), but the number of codes shown is simply illustrative. 
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Figure 6: Key components of a simple generic application created using LIME. 

LIME is built as an extension of Trilinos [3], and leverages several Trilinos packages and libraries, such as NOX [4]. 
To solve the coupled non-linear systems presented by coupled physics codes, LIME currently supports both 
fixed-point (Jacobi and Seidel) and Jacobian-Free Newton Krylov (JFNK) methods (with a predictor option for 
transients). When using JFNK, LIME attempts to leverage as many of the Trilinos/NOX options that the 
underlying physics codes can support. 

LIME is compatible with serial or parallel codes written in any standard language and can couple transient 
and/or steady-state problems. The range of physics codes being brought together within VERA span all of these 
variations. 

Hierarchical Solves: LIME provides the ability to structure a multiphysics problem as a collection of hierarchies. 
An example of such a problem is illustrated in Figure 7 and is representative of what might be needed when 
modeling a depletion transient in a reactor. Here we see that the Problem Manager directly sees only two 
physics-code Model Evaluators (labeled “Steady State Solve” and “DeCART-Deplete,” respectively). However, the 
Steady State Solve actually couples two different physics codes; one modeling fluid flow (denoted Star CCM+) 
and another Neutron Transport (denoted DeCART-Transport). 
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Figure 7: A Representative Hierarchical Multiphysics problem. 

Recent enhancements to LIME have been completed which enable this type of problem to be more easily set-up 
and solved. A simple test problem has been created and placed into the LIME testing suite and the approach for 
setting this type of problem up has been documented and added to an update working version of the users 
manual. 

Fixed Point Acceleration: Several methods exist to potentially improve convergence robustness and rate of 
convergence of standard fixed-point algorithms. They are generally known as mixing methods and are based on 
using previous iterates when computing the next solution update, e.g. for linear problems convergence akin to 
GMRES can be obtained. 

One such method, called Anderson Acceleration, has now been implemented for testing purposes in LIME 1.x 
and a simple example problem added to the LIME testing suite. This capability has not yet been exposed via a 
user interface or tested on large-scale nonlinear problems, but it does show much promise. The particular 
method used in LIME is taken from and documented in [5], and the LIME 1.x users manual is being updated to 
reflect this added capability. LIME's implementation is currently limited to serial execution (it will require a 
parallel QR algorithm to work in parallel) and produces the expected GMRES convergence behavior for a linear 
problem. Of note is that the linear problem in the unit test does not converge using a traditional (non-
accelerated) fixed-point method, thus illustrating one important advantage of this type of approach. 

References for Section 3.1:  

1. R. Schmidt, N. Belcourt, R. Hooper and R. Pawlowski, An Introduction to LIME 1.0 and its Use in Coupling 
Codes for Multiphysics Simulations, SAND2011-8524, Sandia National Laboratories, Albuquerque, New 
Mexico, November 2011. 

2. R. Pawlowski, R. A. Bartlett, N. Belcourt, R. Hooper, and R. Schmidt. A theory manual for multi-physics 
code coupling in LIME. Sandia Technical Report SAND2011-2195, Sandia National Laboratories, March 
2011. 

3. Sandia National Laboratories. “The Trilinos Project”. http://www.trilinos.sandia.gov. 
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4. Sandia National Laboratories. “NOX and LOCA, Object-Oriented Nonlinear Solver and Continuation 
Packages”. http://www.trilinos.sandia.gov/packages/nox. 

5. Peng Ni, Anderson Acceleration of Fixed-point Iteration with Application to Electronic Structure 
Computations, PhD Dissertation, Mathematical Sciences, Worcester Polytechnic Institute, Nov. 13, 2009. 

3.2 Common Input 

Figure 8 illustrates the overall design of the Common Input capability VRI has designed and implemented for 
VERA. Note that the definitive input file is in the XML format and can be generated in multiple ways (text, script, 
or GUI). 

 

Figure 8: A Representative Hierarchical Multiphysics problem. 

A sample input deck can be found in Appendix A. Extensive documentation of the text input capabilities, as well 
as that of the XML representation, can be found in Appendix B. That information is in general kept up-to-date on 
the CASLpedia web site. 

As of VERA Snapshot 3.0, three components are using the common VERA input capability: 

• Insilico 
• COBRA-TF 
• MPACT (initial capability) 

3.3 Data Transfer Kit (DTK) 

In order to make available an infrastructure for data transfer operations between CASL physics codes as an 
alternative to custom schemes developed for each combination of physics, work has been done over the last 
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two periods of development to provide a set of tools for parallel data transfer. This software, designated as the 
DataTransferKit (DTK), provides a set of interfaces and tools that application developers can use to aid in the 
parallel transfer of data between physics codes. To date, much of the development has been focused on the 
design of these interfaces that provide the link to each physics code participating in coupling as well integrating 
this software into the VERA development environment. 

As documented in the VERA 2.0 snapshot report, significant enhancements to DTK were implemented in 
response to recommendations documented in appendix C of the report for CASL milestone L3.VRI.PSS.P4.02 [1]. 
This included redesign of some DTK internals as well as implementation of the rendezvous algorithm for 
improved capability and enhanced error handling [2]. 

References for Section 3.3:  

1. Level 3 Milestone Deliverable Report VRI.PSS.P4.02 
2. Data Transfer Kit Error Handling Policy, Revision 0 (Attached to TRAC ticket #2542) 

3.4 MOOSE 

A snapshot of the Multiphysics Object-Oriented Simulation Environment (MOOSE) resides in the CASL repository 
and has been ported to the CASL development platforms. MOOSE is required for integration of the FOX and 
PEREGRINE fuel performance capabilities, which will be integrated into VERA in support of a PoR-7 milestone. 

3.5 DAKOTA  

DAKOTA provides a flexible interface between analysis codes and iterative systems analysis methods and 
contains a host of specialized algorithms and tools for optimization, uncertainty quantification, and 
sensitivity/variance analysis. In CASL, DAKOTA primarily supports the goals and objectives of the Validation and 
Uncertainty Quantification (VUQ) focus area, though it is used by foundational and integrating focus areas as 
well. VERA integration and deployment of DAKOTA makes its capabilities readily available to all CASL partners 
and focus areas. Extensive documentation and help mechanisms for DAKOTA are available at the DAKOTA 
website http://dakota.sandia.gov/. 

DAKOTA was integrated into VERA as part of the first major snapshot (VERA 1.0) and no significant changes with 
respect to its functionality in VERA have been implemented since that time. A number of studies have been 
conducted with DAKOTA and VERA simulation tools, notably  

1. with VIPRE-W in a March 2011 L2 Milestone VUQ.P2.03 (a.k.a. VUQ.Y1.03) 
2. with VIPRE-W and BOA in a December 2011 L1 Milestone CASL.P4.01, and  
3. by CASL industry partners for both calibration and uncertainty quantification.  

These all demonstrate filesystem-based “black-box” coupling of DAKOTA and simulation tools, one important 
means of integration in VERA. 

Another important VRI focus area task has more tightly incorporated DAKOTA into VERA, developing interfaces 
between DAKOTA and LIME-based multi-physics applications. The current interface is based on TriKota, a 
Trilinos package that adapts DAKOTA’s parameter/response API to a Trilinos ModelEvaluator. Thus DAKOTA and 

http://dakota.sandia.gov/


CASL L2 Milestone VRI.P6.04 – VERA 3.0 

CASL-U-2014-0006-000 16  

LIME can be compiled together and run to exercise sensitivity analysis, uncertainty quantification, optimization, 
or calibration of LIME-coupled multi-physics problems. This is illustrated in Figure 9. 

 

Figure 9: Using TriKota to Bridge DAKOTA and LIME. 
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4. VERA CORE SIMULATOR COMPONENTS 

4.1 SCALE/XSProc 

The XSProc module is based on techniques in the SCALE code system [1] for the generation of problem-
dependent multigroup cross-section data and has been incorporated into VERA for use in neutronics 
calculations. XSProc performs resonance self-shielding with full range Bondarenko factors using either the 
narrow resonance approximation or the intermediate resonance approximation. For uniform fuel lattices, 
Dancoff factors are automatically generated from the user-input geometry and material descriptions. XSProc 
also allows user-input Dancoff factors to treat non-uniform lattice effects. The fine energy-group structure of the 
resonance self-shielding calculation can optionally be collapsed to a coarse group structure through a one-
dimensional (1D) transport calculation internal to XSProc.  

The SCALE 6.1 238-group ENDF/B-VII.0 neutron cross-section data library is available for production calculations, 
and an 8-group library is available strictly for testing purposes. Both libraries contain data for 417 nuclides and 
19 thermal-scattering moderators. Thermal scatting data for most nuclides are available at five temperatures, 
where other nuclides provide data for as many as 10 temperatures. Full-range Bondarenko factors are provided 
for resonance self-shielding calculations. 

The XSProc module provides the following capabilities: 

• Temperature interpolation, 
• Problem-dependent resonance self-shielding, 
• Macroscopic mixing of multigroup cross-section data, 
• Energy collapse of cross-section data, 
• Serialize/deserialize unit cells and cross-section data, 
• Dancoff factor calculation, and 
• User input Dancoff factors. 

The analytical methods of XSProc are based on methods implemented in SCALE 6.1, which have been 
substantially refactored for use in VERA. 

• Bondarenko calculations for resonance self-shielding:  BONAMI is a module of the SCALE system (SCALE 
User Manual Section F1), which is used to perform Bondarenko calculations for resonance self-shielding. 
Cross sections and Bondarenko factor data are input from cross-section data library and an updated 
cross-section data library is generated. A wide variety of options are provided for different lattices and 
cell geometries through the use of Dancoff approximations. A novel interpolation scheme is used which 
avoids many of the problems of the widely employed Lagrangian schemes. Where cross-sections are 
requested at temperature other than those available on the cross-section data library, linear 
interpolation is performed.  

• Material processing: The techniques of the SCALE Material Information Processor (SCALE User Manual 
Section M7) are included in XSProc to convert user input material data into atom number densities 
needed for cross-section processing; convert user-input of fuel lattices, region-wise, and infinite medium 
into a form suitable for cross-section processing; calculate Dancoff factors for uniform lattices; allow 
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user-input Dancoff factors for non-uniform lattices; and generate an appropriate spatial mesh for 1D 
transport calculations. 

• One-dimensional transport for flux-weighted cross-section data:  The XSDRNPM transport solver (SCALE 
User Manual Section F3) provides flux-weighting of cross-section data and generates group collapsed 
and cell-homogenized data for subsequent multi-dimensional transport calculations. XSDRNPM is a 
discrete-ordinates code that solves the 1D Boltzmann equation in slab, cylindrical, or spherical 
coordinates. A variety of calculation types are available, including fixed source, eigenvalue, or “search” 
calculations.  

• Generation of macroscopic cross-section data:  The Bondarenko method provides resonance self-
shielded for microscopic cross-section data, but macroscopic cross-section data is needed for transport 
calculations. XSProc provides macroscopic mixing of cross-section data using updated techniques that 
are similar to those of the ICE module of SCALE (SCALE User Manual Section F8). 

References for Section 4.1:  

1. SCALE: A Comprehensive Modeling and Simulation Suite for Nuclear Safety Analysis and Design, 
ORNL/TM-2005/39, Version 6.1, Oak Ridge National Laboratory, Oak Ridge, Tennessee, June 2011. 
Available from Radiation Safety Information Computational Center at Oak Ridge National Laboratory as 
CCC-785. 

4.2 Insilico (Denovo) 

 

Figure 10: Visualization of reactor core power from a Denovo calculation. 
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A new neutronics package has been developed for the VERA Core Simulator (VERA-CS) [1]. This 2/3D core 
simulator uses SCALE/XSProc (Section 4.1) to generate cross-sections and Denovo to perform the transport 
calculations. The entire package is now referred to as Exnihilo. The Exnihilo code package is a set of components 
(sub-packages) that enables the construction of parallel deterministic and Monte Carlo transport applications. 
Exnihilo is based on a package architecture model such that each package provides well-defined capabilities, as 
shown in Figure 11. 

Exnihilo currently contains five packages. These are 

• Nemesis:  testing, infrastructure, Design-by-Contract, and parallel communication (MPI) resources 
• Transcore:  database, quadrature, field, and other general components that are useful for building 

multiphysics applications involving transport 
• Denovo:  deterministic transport solvers and front-ends for fixed-source and eigenvalue problem 

for regular-grid SN and SPN and 2D MOC on combinatorial geometries. 
• Shift:  Monte Carlo and hybrid Monte Carlo fixed-source and eigenvalue solvers. 
• Insilico:  Neutronics front-end that couples Denovo and/or Shift with cross-section processing, 

depletion, and TH (thermo-hydraulics) feedback. 

Exnihilo is built using a continuous-integration model that emphasizes test-driven design and software 
verification. It uses the TriBITS (Trilinos) CMAKE-based build system and Git for configuration management. 
More details can be found by examining the Doxygen-produced documentation (Appendix D). 

Denovo is a three-dimensional radiation transport code under development at Oak Ridge National Laboratory. It 
uses the well-established SN discretization and solves the transport equation on Cartesian grids using the Koch-
Baker-Alcouffe wavefront parallel algorithm. Denovo uses a multi-level parallel decomposition over space-angle 
and energy, and reasonable scaling has been demonstrated using 200,000 processors on the Jaguar XT5 at OLCF. 

Denovo uses the Trilinos library to implement state-of-the-art numerical solvers, including Krylov multigroup 
solvers and Arnoldi eigenvalue solvers, in addition to the standard fixed-point iteration methods such as DSA-
accelerated source iteration for within-group iterations in a Gauss-Seidel multigroup outer iteration and power 
iteration for eigenvalue problems. 

Pin-homogenized quarter core simulations have been performed with Denovo, and show excellent results, with 
9 pcm difference from a large Denovo reference calculation in 23.7 minutes on 9600 cores.  
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A more detailed description of development in Denovo is documented in [2].

 

Figure 11: Exnihilo package architecture and dependencies. 

In order to support Benchmark Problem 5, which requires simulating a full-core pressurized-water reactor with 
control rods, burnable poisons, detectors and other components, a refactoring of the metadata system in 
Exnihilo was required.  In Figure 12, we have a schematic of the original metadata system in Exnihilo.  User input 
(in the form of an XML file) was fed into the Metadata Builder.  The Metadata Builder would then create 
assembly metadata, where each assembly was a collection of arrays of pincells.  After the metadata builder was 
finished, the metadata would pass to the Assembly Builder.  The Assembly Builder would construct spacer grids 
by squeezing additional arrays into the array stack for each assembly. 

Initially, this methodology worked fine.  However, once control rods assemblies, control rod banks, burnable 
poison inserts, detectors, axial boundaries for output edits, and other constructs were considered, it was 
discovered that this methodology was too complex.  The reason is because the Metadata Builder was tasked 
with constructing the core metadata before the entire core has been defined.  It was then up to the Assembly 
Builder to “fix up” the metadata before passing it to the automatic meshing system (not shown) and Insilico. 
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Figure 12: Old Exnihilo metadata design. 

 

  

Figure 13: New Exnihilo metadata design. 
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The new metadata system, illustrated in Figure 13, adds a model component.  Rather than using the input to 
generate metadata directly, the input is used to construct a complete model of the reactor core.  Once the 
model has been completely defined, it is passed to the Core Builder, where the complete metadata 
infrastructure can be constructed.  It is now easy to add multiple control rod banks, inserts, detectors, and 
arbitrary axial planes, since these are all specified before the metadata is constructed. The new metadata has 
the additional benefit of eliminating duplicate pincells and arrays across assemblies, which can reduce the 
memory footprint and computational expense when generating cross section data. 

Additionally, the metadata is built from the top-down rather than bottom-up, as in the old system.  This allows 
the Core Builder to recognize when arrays (or even individual pincells) are shared across assemblies.  As a result, 
it is guaranteed that the minimum set of pincells (or arrays, in the case of ESSM), are passed to the cross section 
builder, thus minimizing the computational cost of the cross section calculations and the memory footprint of 
the cross section database. 

In summary, the steps performed by VERA/Insilico are: 

1. Process a reactor engineering specification converted into XML format  
2. Convert input specification into arguments for XSProc 
3. Generate a geometric representation of the reactor needed by XSProc 
4. Build and partition a Denovo discrete mesh representation of the reactor geometry 
5. Broadcast XSProc geometry to each processor domain 
6. Run XSProc to generate macroscopic cross sections 
7. Map the cross sections to Denovo computational mesh cells 
8. Run Denovo SN to calculate scalar fluxes 
9. Integrate scalar fluxes with fission reaction rate data to calculate axial power distributions in each pin cell 
10. Do parallel output 

An example of the automated meshing is shown in Figure 14. These steps have been integrated into the Insilico 
neutronics package that is included in VERA. 

The mesh is automatically mapped to the physical pin-cells that have cross sections generated by XSProc. All 
parallel communication is handled using the Denovo parallel framework. 

Denovo/XSProc contains over 350 individual unit tests to verify the software implementation. The package has 
been run on AMA Test Problems 1-4, but some of these results are being repeated subsequent to the 
refactoring described earlier. In addition, testing of Problem 5 (Zero Power Physics Tests) will begin once Titan is 
available following its upgrade from Jaguar. Results will be reported by AMA staff.  

The entire package is parallel; problem 3 was performed on TITANDev on 1024 cores. Automated problem 
specification and meshing required less than 1s of wall-clock time. Detailed results on AMA Test Problems 1-3 
are given in a separate report. 

VERA-CS is tested nightly on Linux-x86_64 platforms. We have also verified the software on MacOSX (10.6, 64-
bit) and the Cray XK6. Denovo builds using GNU, Intel, or PGI compiler suites. However, XSProc requires Intel or 
GNU (>= 4.6.1). Executables have also been built for the INL Fission platform for AMA use. 

References for Section 2.5:  
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1. “VERA Technical Requirements by Component” (CASL-2011-0074-000-CI) 
2. Evans, T.M., Davidson, G.G., and Jarrell, J.J., “Denovo-3_0_0,” RNSD-TN-11-003. 

 

   

Figure 14: 17x17assembly automatically meshed using the Denovo neutronics package. 

4.3 COBRA-TF  

COBRA-TF is a thermal-hydraulic simulation code based on sub-channel approximations commonly used for Light 
Water Reactor (LWR) core analysis. It uses a two-fluid, three-field (i.e. liquid film, liquid drops, and vapor) 
modeling approach. Both sub-channel and 3D Cartesian forms of nine conservation equations are available for 
LWR modeling. The code was originally developed by Pacific Northwest Laboratory in 1980 and has been used 
and modified by several institutions over the last few decades.  

CASL has obtained a public domain version of COBRA-TF held by the Reactor Dynamics and Fuel Management 
Group (RDFMG) at the Pennsylvania State University (PSU), and has placed it in the repository of VERA 2.0. This 
version of the COBRA [1, 2, 3] – here denoted CTF – includes a variety of improvements made at PSU. CTF is 
capable of capturing two-phase flow transient behavior and includes a robust combination of LWR modeling 
tools.  

In CTF, the conservation equations for each of the three fields and for heat transfer from and within the solid 
structure in contact with the fluid are solved using a semi-implicit, finite-difference numerical technique on an 
Eulerian mesh, where time intervals are assumed to be long enough to smooth out the random fluctuations in 
the multiphase flow, but short enough to preserve any gross flow unsteadiness. The fluid volume is partitioned 
into a number of computational cells. The equations are solved using a staggered difference scheme. The phase 
velocities are obtained at the cell faces, while the state variables - such as pressure, density, enthalpy, and void 
fraction - are obtained at the cell center. The momentum equations are solved on staggered cells that are 
centered on the scalar mesh face. 



CASL L2 Milestone VRI.P6.04 – VERA 3.0 

CASL-U-2014-0006-000 24  

CTF is developed for use with either 3D Cartesian or sub-channel coordinates and features flexible noding for 
both the thermal-hydraulic and the heat-transfer solution. This flexibility allows a fully 3D treatment in 
geometries amenable to description in a Cartesian coordinate system and the use of the sub-channel 
approximation for faster calculations when the flow is principally in one direction. 

The code is able to handle both hot wall and normal flow regimes maps and it is capable of calculating reverse 
flow, counter flow, and cross-flow situations.  

Improvements to COBRA associated with Penn State CTF version include the following: 

• The source code has been transitioned to the FORTRAN 90 standard.  
• Attention has been given to improving code error checking and the input deck has been converted from 

fixed to free format.  
• Krylov solver numerical techniques have been implemented to enhance computational efficiency.  
• Improvements have been made to the turbulent mixing and direct heating models and code quality 

assurance testing has been performed using an extensive LWR validation and verification matrix.  
• Code documentation (including mathematical modeling, programming, and user manuals) have been 

generated.  
• The two-fluid formulation, generally used in thermal-hydraulic codes, separates the conservation 

equations of mass, energy, and momentum to vapor and liquid. CTF extends this treatment to three 
fields: vapor, continuous liquid and entrained liquid droplets, which results in a set of nine time-averaged 
conservation equations.  

• New physical models have been implemented, including 
o a point kinetics model; 
o a second order implicit boron tracking algorithm [4]; 
o a horizontal flow regime; 

In addition to numerous additional performance improvements, VERA is now able to generate single-assembly 
CTF input decks from the common input described in Section 3.2. Multiple-assembly input is under 
development. 

References for Section 4.3:  

1. M. Avramova, D. Cuervo, K. Ivanov, “Improvements and Applications of COBRA-TF for Stand-Alone and 
Coupled LWR Safety Analyses”, Proc. of PHYSOR-2006 Conference, Vancouver, Canada (2006).  

2. M. Avramova, K. Ivanov, L. Hochreiter, "Analysis of Steady State and Transient Void Distribution 
Predictions for Phase I of the OECD/NRC BFBT Benchmark using CTF/NEM," NURETH-12 Conference, 
Pittsburgh, Pennsylvania, U.S.A. September 30-October 4 (2007). 

3. D. Cuervo, M. Avramova, K. Ivanov, R. Miro, "Evaluation and Enhancement of COBRA-TF Efficiency for 
LWR Calculations," Annals of Nuclear Energy, Volume 33, pp. 837-847 (2006). 

4. O.E. Ozdemir, M. Avramova, K. Sato, "Boron Tracking Model Implementation in COBRA-TF: Analytical and 
Sensitivity Analysis", 2010 ANS Winter Meeting, Las Vegas, Nevada, USA, November 2010, Vol. 103, pp. 
1008-1009. 
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4.4 DAKOTA-COBRA-TF 

The integration of DAKOTA described in Section 3.5 was initially used to perform sensitivity analysis using the 
Westinghouse subchannel thermal-hydraulic code VIPRE-W, as described in Section 7.3. This infrastructure was 
leveraged to provide an equivalent capability using the non-proprietary COBRA-TF subchannel thermal-hydraulic 
code. 

4.5 Insilico-COBRA-TF [NEED DETAIL] 

The Denovo-based neutronics capability Insilico is being coupled with CTF in support of AMA problem 6, Hot 
Full-Power Beginning of Life Assembly. Initial documentation of this capability is within the completion memo 
for L3:VRI.PSS.P5.02, “Improved COBRA-TF Integration”, with more complete documentation forthcoming. 

4.6 MPACT [NEEDS UPDATING FOR 2D/1D] 

MPACT utilizes the Method of Characteristics (MOC) solution methodology for both 2D and 3D geometries.  The 
Method of Characteristics is a solution to the transport equation in which rays are drawn across the global 
geometry in discrete angles and the transport equation is integrated along those rays.  For extensive detail on 
the development of MPACT and its capabilities, see the report delivered for RTM L3 milestone RTM.PRT.P6.01 
[1]. 

MPACT has been in the process of being integrated into VERA throughout its development, and progress has 
been tracked through several PoR-5 milestones (L3:VRI.VERA.P5.08, “Initial MPACT Integration”, 
L3:VRI.PSS.P5.09, “Improved MPACT Integration”). The current status of the integration of MPACT into VERA is 
that a repository has been mirrored from the main repository hosted at University of Michigan, LIME drivers 
have been created to call MPACT subroutines, and MPACT has been placed under continuous and nightly testing 
in VERA.  The next step in the integration is to have MPACT read the VERA common input instead of the 
standard MPACT input. 

The VERA common input processor has two main steps.  The first is the standard ASCII input is converted by a 
PERL script to an XML file.  The XML file is then processed by each code to set up the input for the problem.  The 
first step in the process of integrating MPACT is to add a block to the input with MPACT specific data and modify 
the PERL script to read it.  These modifications were made to the VERAIn repository and unit tested.   

The next step in the process is to take the new XML file generated by VERAIn and move it into MPACT data 
structures.  The method chosen to do this is to use the Teuchos code in the Trilinos package.  Teuchos has the 
ability to read an XML list and populate its ParameterList data structure.  Since Teuchos is written in C++, 
wrappers were created to provide both C and Fortran access functionality to read and write to the 
ParameterList.  This interface was developed by Roscoe Bartlett of the CASL VRI team with assistance from 
MPACT developers.  The new interface code is named ForTeuchos and is available on the CASL repos in the 
TeuchosWrappersExt repository. 

MPACT uses the ForTeuchos library calls to populate an internal parameter list data structure in MPACT.  From 
this list, the core geometry and solution variables are pulled out of the parameter list.  The standard MPACT 
input file is a text file and is read and processed in two steps, a scan and a read.  A similar approach was taken 
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with the XML file and its processor.  In the scan step for the XML file, everything from the XML file is read via 
ForTeuchos subroutines and functions.  The necessary data types are converted into Fortran intrinsic data types.  
The values are then added to the MPACT parameter list, and they are set to global variables where necessary.  
The material and geometric objects are counted so data objects can be properly allocated.  After the file is 
scanned, there is no need to re-read it since the data is effectively stored.  The read step involves processing and 
initialization of data objects.  The cross section library is found and initialized first.  Next, materials are processed 
from the xml format to the MPACT format.  This process includes changing material names to cross section 
library specific isotope identifiers (ZZAAA formatting typically) and converting weight fractions to number 
densities.  Geometry objects are then initialized, converting parameter list information to the necessary 
geometry object inputs.  The order of initialization is pins, modules, lattices, assemblies, and lastly the core.  Two 
current processing assumptions are a default pin mesh is assumed for all pins and ray tracing modules are 
equivalent to lattices.  

The XML and standard MPACT input were able to generate the same results when run for AMA benchmark 2 
cases a through d.  The geometry for these cases is a 17 by 17 assembly with a 21.5 cm assembly pitch.  There 
are 25 guide tube pins that are filled with moderator, and the rest of the pins are 3.1% enriched UO2 fuel at a 
density of 10.257 g/cc.  The moderator density is 0.743 g/cc in case A, 0.661 g/cc for cases B through D.  The fuel 
temperatures for cases A through D are 565 K, 600 K, 900 K, and 1200 K respectively. All other material 
temperatures are 565 K in case A, and 600 K in cases B through D.   In the two input types, the pin meshes were 
the same and the material number densities were equivalent to 5 decimal places.  The number densities were 
ensured to be similar since MPACT outputs the material data once it is processed for both XML and standard 
inputs.  The assembly gap was modeled consistently, using rectangular pins instead of off-center pin cells.  The 
ray spacing, angular quadrature set, and number of azimuthal and polar angles were consistent between the 
two input types as well.  As seen in Table 8, the comparison between the two cases shows very good agreement 
to convergence criteria. 

Table 8: Comparison of AMA Benchmark 2 using VERA Common Input 

 

The initial integration of the VERA Common Input has been a success.  MPACT is able to read a standard lattice 
and reproduce results that are consistent with the standard MPACT input.  The next steps in this integration are 
adding the ability to model multiple assemblies and allow for the placement of inserts, control rods, and 
detectors.  As the 3D capability becomes available in MPACT, the input processor will also need to be extended 
to handle axial dimension. 

References for Section 4.6:  

Case XML Standard Δk
2A 1.1792851 1.1792857 -0.0000006
2B 1.1801643 1.1801648 -0.0000005
2C 1.1700916 1.1700921 -0.0000005
2D 1.1616291 1.1616295 -0.0000004

Eigenvalue



  CASL L2 Milestone VRI.P6.04 – VERA 3.0 

CASL-U-2014-0006-000 27  

1. B. Collins, B. Kochunas, A. Godfrey, T. Downar, Demonstration of Advanced Pin-Resolved Method of 
Characteristics (MOC) Capabilities for Neutron Transport, CASL L3 Milestone Report, RTM.PRT.P6.01, 
12/21/2012. 
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5. OTHER VERA COMPONENTS 

5.1 RELAP5-3D  

RELAP5-3D is used for best-estimate transient simulation of light water reactor coolant systems during 
postulated accidents. It models the coupled behavior of the reactor coolant system and the core for loss-of-
coolant accidents and operational transients such as loss of offsite power, loss of feedwater, and loss of flow. 
Control system and secondary system components are included to permit modeling of plant controls, turbines, 
condensers, and secondary feedwater systems. The anticipated use for RELAP5-3D in VERA is to model the 
reactor primary system outside the pressure vessel and the secondary systems. 

In VERA 1.0, the RELAP5-3D model evaluator (needed for wrapping within LIME) was designed to run a stand-
alone simulation straight through from start time to end time as specified in the RELAP5-3D input file. This mode 
of operation did not allow LIME to control when a time step was taken or what the time step size would be; the 
RELAP5 input model controlled those parameters. Because of these limitations, RELAP5-3D was not yet able to 
operate in a coupled fashion with other codes. 

The RELAP5-3D internal time step loop iterates on the basis of attempted advancements. For each attempted 
advancement, several checks on solution acceptability are performed, testing for conditions such as excessive 
mass error, material or thermodynamic fluid properties out of range, phase appearance/disappearance, large 
pressure changes in a volume when non-condensable appear, etc. When the attempted advancement is 
determined to be unacceptable, the advancement is repeated with the same time step size or with reduced time 
step size, depending on the nature of the failure. 

In VERA 2.0, the RELAP5-3D model evaluator has been modified to couple more tightly to the LIME problem 
manager. It contains changes to the RELAP5-3D advancement logic to properly account for time step size 
reductions, increases, and time step repeats and return control to LIME only when the advancement has been 
successful. Additionally, RELAP5-3D can accept the time step size requested by LIME instead of using the internal 
time step size control logic. These developments are the key changes needed so that in the future it could be 
used in a coupled capability. The CASL version of RELAP5-3D is currently fully integrated as a standalone 
application within VERA and has the same capabilities as version 3.0.0 of the code developed at INL and 
available to members of the International RELAP5 Users Group. 

5.2 Drekar   

Drekar is a large-scale parallel, fully-implicit stabilized finite element code for low-Mach turbulent CFD 
developed at Sandia National Laboratories [1]. The code has the capability to include fully coupled 
heterogeneous multiphysics formulations such as fluid flow, conjugate heat transfer and chemistry. It provides 
an advanced fully-implicit T-H capability for VERA and has been used for high resolution T-H simulations of the 
3x3 rod geometry for the CASL GTRF challenge problem.  

Recent Drekar development activities include the following: 

• Drekar is completely integrated into the VERA build, continuous integration, and nightly test system. 
Drekar can be run stand-alone through the LIME/VRIPSS drivers.  
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• Input for the Drekar code is handled through a Teuchos parameter list [2]. This parameter list is typically 
generated by a specialized XML parser. The previous XML/parameter list implementation required some 
overly verbose and possibly error prone structures to exist in the Drekar input file. A number of tasks  
were completed to improve the capabilities of the Teuchos parameter list and significantly simplify the 
Drekar input XML file. An order preserving parameter list was implemented. Better error reporting for 
mismatched XML entries was added. Error checking for accidentally duplicating a sublist in XML was 
added. The XML input file is now more robust and clear. 

• A multiphysics conjugate heat transfer capability was implemented and demonstrated in Drekar under 
the L3 milestone VRI.PSS.P4.02 [3]. As part of this milestone, a number of issues were found and 
documented in Appendix 3 of the milestone report related to the data transfer toolkit.  

• In terms of physics, the most recent release of Drekar includes models for laminar constant density 
incompressible flow (Navier-Stokes), turbulent constant density LES (WALE and VREMIN models), and 
turbulent URANS (SARANS, k-epsilon is optional). This release does not include any adjoint capabilities, or 
the uncertainty quantification capabilities. Initial verification and validation of the various models was 
undertaken as part of the Drekar release under milestone L2 THM.P4.02 [4] and is documented in the 
theory manual [5].  

References for Section 5.2:  

1. T. M. Smith, J. N. Shadid, R. P. Pawlowski, E. C. Cyr, and P. D. Weber, Reactor Core Sub-Assembly 
Simulations Using a Stabilized Finite Element Method, in The 14th International Topical Meeting on 
Nuclear Reactor Thermalhydraulics, NURETH-14, 2011. 

2. http://trilinos.sandia.gov/packages/teuchos/ 
3. R. Pawlowski, Level 3 Milestone Deliverable - VRI.PSS.P4.02, Feb. 9, 2012 
4. J. Shadid, R. Pawlowski and T. Smith, L2 THM.P4.02 milestone report, (in preparation) 
5. R. Pawlowski, Drekar Theory Manual. (in preparation) 

5.3 Insilico-Drekar [UPDATE] 

Coupling of the Denovo-based Insilico neutronics capability and the Drekar CFD capability has been under way 
throughout PoR-5. Although Drekar has been de-emphasized within CASL in favor of Hydra-TH, it was decided 
that this capability would be completed as a demonstration of initial advanced coupling. The intention is for the 
infrastructure can be leveraged for a future Insilico-Hydra-TH capability. 

Details on the Insilico-Drekar capability can be found in documentation of the delayed PoR-5 L3 milestone 
VRI.PSS.P5.07, “DataTransferKit-based neutronics-TH coupling” [1]. 

References for Section 5.3:  

1. https://casl-dev.ornl.gov/trac/casl_milestones/ticket/649 

5.4 Hydra-TH [UPDATE?] 

Hydra-TH refers to the hybrid finite-element/finite-volume incompressible/low-Mach Navier-Stokes flow solver 
in the Hydra toolkit that is being used for CASL thermal-hydraulics applications [1]. Hydra-TH is built as one of a 

http://trilinos.sandia.gov/packages/teuchos/
https://casl-dev.ornl.gov/trac/casl_milestones/ticket/649
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number of virtual physics using the Hydra multiphysics toolkit. The Hydra toolkit is written in C++ and provides a 
rich suite of components that permits rapid application development, supports multiple discretization 
techniques, provides I/O interfaces to permit reading/writing multiple file formats for meshes, plot data, time-
history, surface-based and restart output. 

The Hydra-TH theory manual [2] presents a detailed theoretical background. All transport variables are cell-
centered and treated with a conservative discretization that includes a high-resolution monotonicity-preserving 
advection algorithm. The spatial discretization is formally derived using a discontinous-Galerkin framework that, 
in the limit, reduces to a locally-conservative finite-volume method. The high-resolution advection algorithm is 
designed to permit both implicit and explicit advection with the explicit advection targeted primarily at volume-
tracking with interface reconstruction. The time-integration methods include backward-Euler and the neutrally-
dissipative trapezoidal method. The coding for an optional BDF2 time-integrator has also been provided, but is 
not currently used in Hydra-TH. The implicit advective treatment delivers un- conditional stability for the scalar 
transport equations, and conditional stability for the momentum transport equations. A sharp stability estimate 
for the momentum equations is not tractable, but operational experience shows that the algorithm is stable for 
20 ≤ CFL ≤ 40. For steady-state problems, backward-Euler provides additional damping that, in conjunction with 
20 ≤ CFL ≤ 40, provides a computationally efficient solution method. For URANS and LES computations, the 
trapezoid rule is neutrally dissipative, and delivers optimal performance for the more moderate CFL 
requirements for transient flow. 

The solution algorithm used in Hydra-TH is based on a second-order incremental projection algorithm. 
Projection methods are the most computationally efficient solution method available for solving the time-
dependent Navier-Stokes equations. 

In order to address fluid-structure problems, Hydra-TH uses an arbitrary Lagrangian-Eulerian (ALE) formulation 
and provides a mesh-deformation interface that can support multiple different mesh smoothing algorithms. 
Details on the ALE formulation may be found in the Hydra-TH theory manual. The added-mass terms are 
computed for the structural coupling and can be exported for any structural solver. For explicit coupling, Hydra- 
TH provides a pressure-stabilized algorithm based on Nitche’s variational method that circumvents the stability 
limitations associated with highly flexible structures and near unity fluid/solid density ratios. For conjugate heat 
transfer, there are multiple alternatives available in Hydra-TH that include explicit coupling with third-party heat 
conduction solver, internal coupling using the existing heat conduction solver supported by the Hydra toolkit 
and the multiphysics manager, or direct integration (with continuous meshing). The calculation of exported 
fields for both fluid-structure interaction and conjugate heat transfer are implemented for explicit coupling 
methods, and can be easily extended for use in tightly-coupled solution strategy. It is anticipated that driving 
CASL applications will determine the most suitable FSI/CHT solution strategy. 

References for Section 5.3:  

1. M. A. Christon, R. Lowrie, N. Barnett, J. Bakosi and M. Francois, Hydra-TH L3 Milestone (THM.CFD.P3.02), 
CASL L3 Milestone Report, September 30, 2011. 

2. M. A. Christon, Hydra-TH Theory Manual, Tech. Rep. LA-UR 11- 05387, Los Alamos National Laboratory, 
September 2011. 
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3. Wang, G.; Byers, W.A.; Karoutas, Z.E.; Young, M.Y.; Jacko, R.J. [WEC]; Hochreiter, L.E. [Penn. State Univ.], 
“Single Rod Heat Transfer Tests to Study the Effects of Crud Deposition,” 14th Intl. conf. on nuclear 
engineering (ICONE 14), 17-20 Jul 2006. 

4. G. Wang, W. A. Byers, M. Y. Young, and Z. E. Karoutas, “Westinghouse Advanced Loop Tester (WALT) 
Update,” ASME Conf. Proc. 2008, 469 (2008), DOI:10.1115/ICONE16-48480. 
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6. VERA PHYSICS COMPONENTS UNDER DEVELOPMENT 

The following three physics codes have been checked into the CASL VRI repository but have not yet been 
incorporated into the official VERA build and test environment. Each of these codes is expected to play 
important roles in future releases of VERA and are expected to be fully incorporated in the near future. 

6.1 MAMBA 2.0 [UPDATE, MOVE] 

MAMBA v2.0 is a 3D Fortran computer code developed to model CRUD formation and growth for CASL. In 
MAMBA a general time-dependent 3D heat transport equation is solved to obtain the temperature distribution 
throughout the crud layer on a single pin (or on selected regions of a single pin). The heat transport solution also 
includes the localized heat sinks due to regions of sub-cooled nucleate boiling (SNB) which may be occurring 
inside the crud deposit. The rod heat flux at the cladding surface and coolant temperature (or flux) at the crud 
surface represent the external boundary conditions. These can be supplied by the user using MAMBA supplied 
default models or through external coupling to DeCART and Star–CCM+ (via file transfers) or advanced thermal 
hydraulics and neutronics codes in the future.  

The local crud thermal conductivity varies in both space and time due to the changes in porosity. The change in 
porosity is due to the internal deposition of nickel ferrite (NiFe2O4) within the pores of the crud which slowly 
fills them. The local porosity can also change more quickly due to the precipitation of lithium-tetraborate 
(Li2B4O7). This is the primary mechanism for boron deposition inside the crud.  

The deposition of nickel ferrite and lithium-tetraborate within the crud are both enhanced by localized SNB 
which generates significant Darcy flow within the porous crud layer. Both the Darcy flow and diffusion within the 
crud layer are modeled and these mass transport mechanisms lead to significant increases in the local 
concentrations of the various soluble species (Ni, Fe, Li and boric acid) inside the crud.  

Advanced chemistry/thermodynamic models have also been incorporated into MAMBA v2.0 for treating the 
coolant chemistry (Li, B, H2, Ni, Fe, B(OH)3, and several ionic species) and for accurately determining the 
precipitation parameters. These models are based on the NNL/BOA developed mechanisms and equilibrium 
constant correlations. The advanced chemistry/thermodynamic models are applied at both the crud/coolant 
interface as well as each internal volume element inside the crud at each time step. The precipitation parameter 
determines when a given volume element begins to rapidly fill with lithium-tetraborate.  

Currently, the recommended values from the Westinghouse WALT Loop study [1, 2] are used for the various 
crud properties:  porosity, thermal conductivity, chimney density, and chimney radius. An adaptive 3D mesh is 
used which “grows” the 2D crud surface as mass deposits onto the surface elements. The surface particulate 
deposition rate is governed by two rate parameters: one for non-boiling regions and one for boiling regions. The 
boiling deposition rate is multiplied by the local mass evaporation (steaming) flux leaving the crud surface via 
the chimneys. Thus, local SNB within the crud layer leads to enhanced particulate deposition and crud growth at 
the surface above. 
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6.2 PEREGRINE 

A snapshot of the PEREGRINE source code was transmitted and checked into the CASL repositories prior to the 
VERA 2.0 snapshot. However, integration effort has focused initially on MOOSE, since it is a required 
infrastructure component. There is a PoR-7 milestone for integration of PEREGRINE, with the next step being 
integration of FOX, the non-proprietary LWR fuel performance capability. 

References for Section 6:  

1. Wang, G.; Byers, W.A.; Karoutas, Z.E.; Young, M.Y.; Jacko, R.J. [WEC]; Hochreiter, L.E. [Penn. State Univ.], 
“Single Rod Heat Transfer Tests to Study the Effects of Crud Deposition,” 14th Intl. conf. on nuclear 
engineering (ICONE 14), 17-20 Jul 2006. 

2. G. Wang, W. A. Byers, M. Y. Young, and Z. E. Karoutas, “Westinghouse Advanced Loop Tester (WALT) 
Update,” ASME Conf. Proc. 2008, 469 (2008), DOI:10.1115/ICONE16-48480. 
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7. VERA BASELINE COMPONENTS 

7.1 ANC9.5 

ANC9 [1] is a Westinghouse developed multi-dimensional nodal diffusion code for nuclear core design 
calculations. It predicts core reactivity, assembly power, rod power, detector thimble flux, and other relevant 
core characteristics. Version 9.5 contains several important updates and capabilities required for use in the 
improved ANC-VIPRE-BOA coupling strategy for CASL. 

7.2 VIPRE-W 

VIPRE-W [2] is a Westinghouse version of the VIPRE-01 code. VIPRE-01 is a thermal-hydraulic sub-channel code 
based on the COBRA codes developed by Pacific Northwest National Laboratories under sponsorship of the 
Electric Power Research Institute (EPRI). VIPRE-W contains enhancements for PWR applications, including the 
mass evaporation and grid spacer heat transfer models required for CIPS risk assessment. 

7.3 DAKOTA-VIPRE-W 

The integration of DAKOTA described in Section 3.5 has been used to perform sensitivity studies on the 
Westinghouse subchannel analysis capability, VIPRE-W, as shown in Figure 14a. Results of these studies appear 
in documentation of CASL L3 Milestone VUQ.P2.03. 

 

Figure 14a: Data transfer for DAKOTA-VIPRE-W. 

 

Subsequent to these initial studies, DAKOTA is being integrated more fully into VERA in order to perform 
sensitivity analysis and uncertainty quantification studies. 

7.4 ANC9.5-VIPREW (ANCLVIPRE) 

Prior to CASL, Westinghouse had developed a loose coupling of ANC and VIPRE-W known as ANCKVIPRE. This 
capability was loosely-coupled to RETRAN to create RAVE. 

As a first step in development of the coupled capability described in Section 7.5, ANCKVIPRE was re-factored as a 
LIME-based coupled capability known as ANCLVIPRE. Further details can be found in Section 7.5. 
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7.5 ANC9.5-VIPREW-BOA 

BOA [3] is the Boron-induced Offset Anomaly Risk Assessment Tool. This is a proprietary code developed and 
maintained by EPRI. The tool is used to assess the risk of axial offset anomaly (AOA) by simulating boron-
deposition in the sub-cooled nucleate boiling region of high-duty fuel.  

 

Figure 15: LIME-based Code-Coupling Diagram for ANC9.5-VIPREW-BOA. 

 

A revised ANC-VIPREW-BOA multiphysics simulation capability has been developed and tested for CASL. This 
uses a time-consistent coupling strategy (based on a 2nd order Crank-Nicolson time integration scheme) and 
significantly improves this CASL baseline simulation capability for time-dependent depletion calculations. As 
noted above, developing this capability required the adoption and use of a newer version (9.5) of ANC. Details of 
the time-consistent coupling approach are described in [4], but some key aspects are provided here.  

Figure 15 shows a LIME-based coupling diagram for ANC9.5-VIPREW-BOA. The coupling strategy originally 
employed (in VERA 1.1) did not involve a full tight coupling of all three codes, but had an explicit time-lagged 
coupling to the BOA code. 

7.1.1 Multiphysics Coupling Diagram 

Figure 16 illustrates the coupling dependencies between the different physical processes modeled in ANC9.5-
VIPREW-BOA from a data-flow perspective. The different colored objects represent the four major physical 
processes being modeled by the physics codes. In this diagram it is important to distinguish between the time 
dependent physics (represented by ovals), and the steady state physics (represented by rectangles). Note that to 
compute the instantaneous depletion rate a depletion model/code (colored blue) needs the neutron flux values 
to be externally provided. Also note that to compute the boron precipitation rate the boron code (colored 
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green) needs the current thermal hydraulic state to be externally provided. However, neither of these rate-of-
change quantities is used until advancing the system to a new time state. 

 

Figure 16: A physics-focused coupling diagram showing data dependencies and data exchange paths. 

For the depletion problems being modeled by ANC9.5-VIPREW-BOA, a reactor can be usefully modeled as if it 
exists in a series of pseudo-stationary states during which the neutron production and loss terms are balanced. 
In the context of the physics codes, each of these reactor states are characterized by the current values and 
distribution of “state variables” such as the radioisotopes “I”, the boron mass “B”, the neutron flux f, the 
neutron cross sections S, local power Q, temperatures T, coolant densities ρ, and coolant velocities V (or, 
equivalently, mass flow rates). 

To advance in time ANC9.5-VIPREW-BOA now uses a method which preserves the coupling dependencies noted 
above in a time-consistent fashion. By time-consistent we mean that the information passed between codes 
(including the coupling dependencies) are all associated with the same time-state (e.g., one set is not time 
lagged from another). 

7.1.2 Time advancement of the coupled multiphysics system 

Figure 17 illustrates data flow between the different physics models for two time steps, “n” and “n+1”, and will 
be referenced here to help explain the time-advancement approach implemented. 
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Figure 17: Data-flow diagram for a time-consistent multi-physics time advancement scheme based on 
a predictor-corrector method. 

 

The goal of each integration step is to advance the system state from time step “n” to “n+1”, where all 
quantities of interest are initially known at time step n. This involves the time-advancement of two time-
dependent physics: (1) the depletion of radioisotopes (treated within the ANC9.5 code), and (2) the deposition 
of boron in the form of CRUD (modeled by the BOA code). A two-step predictor-corrector approach to the time 
advancement of these equations is first described.  

An explicit predictor step for the depletion physics modeled in ANC1 will be represented here as 

                                                           

1 Since isotope depletion is chain behavior, ANC must effectively model transmutation equations of form 

  

 

dN i

dt
= −(σ iφ + λ i )N i + Yi
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  (3) 

where I denotes a vector of radioisotopes, is the rate of change of I with respect to time, and f denotes 
the neutron fluxes. This is a significant simplification of some more complex equations, but is adequate for the 
purposes of describing the coupling issues in the time-advancement problem. 

A predictor step for the crud deposition modeled in BOA can be represented as  

  (4) 

where B denotes the boron mass distribution and “

 

(V ,T,ρ)” denotes the thermal hydraulic state of the system 
computed in VIPRE-W. Two things must be noted here. First, because BOA integrates the boron deposition 
models in time using a set of smaller time steps, we represent that here as an integral from time t to t+∆t. 
Second, BOA requires, as input, the thermal hydraulic state of the system both at time t and at t+∆t. For the 

predictor step we keep the thermal hydraulic state constant, i.e., we input the same  values both at 
time t and at time t+∆t. 

Before the corrector step for the depletion physics can be solved, values for  (the neutron fluxes based on 

) must be computed. As indicated by Figure 2, this is done by solving the steady-state coupled (Thermal 

Hydraulics)<->(Neutronics) problem based not only on  but also on . The solution of this coupled 

problem yields values for , to be used in the depletion physics in the corrector step: 

  (5) 

It also yields values for , which are needed by the boron deposition physics in its corrector step: 

   (6) 

When both the depletion and boron predictor equations are solved, one final step is required. This final step is 

to solve the steady-state coupled (Thermal Hydraulics)<->(Neutronics) problem based on  and  so that 
all quantities of interest are now known at time step n+1. 

                                                                                                                                                                                                         

for a whole chain instead of computing “rate-of-change” for each individual isotope. In the modeling approach 
used by ANC, important parts of the problem are “precalculated” by another code (PHEONIX) and results 
tabulated for use by ANC. Additional details are also omitted here.  
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Figure 18: Data flow between the physics codes ANC-VIPRE-BOA for both the explicit predictor-
corrector and the implicit Crank-Nicolson time-advancement methods. 

Figure 18 is an alternate way of looking at the data flow between the physics codes that follows a sequence of 
steps as data is passed and solutions obtained during the coupled time integration process. It also helps to 
illustrate how introducing a simple iteration loop into the standard predictor-corrector algorithm leads to a 
“Crank-Nicolson” solution. A Crank-Nicolson time integration method is an implicit approach which can be 
represented here if the “starred” values in equations (5) and (6) are replaced by the actual “end-of-state” 
values, i.e.  

  (7) 

   (8) 

These equations can solved by performing a fixed point iteration over the loop shown in Figure X4 until a 
convergence metric is satisfied, such as the BOA PPP file converging. 

 

In +1 = In +
∆t
2

∂I
∂t

(In ,φn ) +
∂I
∂t

(In +1,φn +1)
 
  

 
  

 

Bn +1 = Bn +
∂B
∂t

B,(V ,T,ρ)n ,(V ,T,ρ)n +1( ) 
 
 

 
 
 

tn

tn +∆t∫ dt



CASL L2 Milestone VRI.P6.04 – VERA 3.0 

CASL-U-2014-0006-000 40  

7.1.3 Comparison of selected results for a Watts Bar Cycle 1 calculation 

The revised ANC-VIPREW-BOA multiphysics simulation capability with improved coupling was used to model 
Watts Bar Unit 1 Cycles 1-3. The previous loosely coupled simulation [5] showed oscillations in the boron 
deposited in the CRUD as shown in Figure 19. This also affected the core axial offset predictions as shown in 
Figure 20. Since the BOA results from one time step were not provided to the neutronic/T-H model until the 
next time step, the resulting heat flux and sub-cooled boiling distributions calculated by the neutronic and T-H 
models were inconsistent with the boron deposition calculated by the CRUD/chemistry model at the same time 
step. Boron deposited in one time step would result in suppression of the neutron flux in the upper spans of the 
core in the next time step. That would reduce sub-cooled boiling in those regions, and reduce boron deposition 
in the following time step. The reduced boron deposition would then increase heat flux and sub-cooled boiling 
in the upper spans of the core in the next step. This would in turn increase boron deposition in the following 
step. 

With the improved coupling, the oscillations in the model were greatly reduced when normal large depletion 
steps (1000-2000 MWD/MTU) were taken in the neutronics model. Some oscillations were still present as shown 
in Figure 19 and 20. This is because the CRUD/chemistry model was still depleted with finer time steps than the 
neutronic model. A neutronic burnup step of 2000 MWD/MTU, which is typically used for the last 2/3rds of the 
cycle depletion, represents a time depletion of about 52 days. The CRUD/chemistry model would use about 12 
time steps over that same period, but with fixed inputs for the heat flux and T-H conditions that did not reflect 
the variation in boron deposition during those steps. This can be seen in Figure 19. The boron drops at about 
310 and 360 days, which correspond to the ANC time steps. It then varies in between the 310 and 360 days 
steps, which represent the BOA calculations alone without direct feedback to ANC and VIPRE-W. 

To further reduce the small oscillations now present with the improved coupling, more consistent time steps for 
the neutronic depletion and the CRUD/chemistry CRUD and boron deposition were used. Neutronic depletion 
steps of 250 MWD/MTU, or about 6.5 days were used for the fine time step calculations. As can be seen in 
Figure 19, the oscillations in boron deposition are now quite small. For these calculations, BOA is still using 
about 3 steps for each ANC neutronic step. The resulting small oscillations in boron deposition are not large 
enough to significantly affect the axial power distribution. Figure 20, shows much smoother behavior in axial 
offset late in the cycle for the models with improved coupling. The fine time steps appear to eliminate any 
indications of oscillations in the axial power distribution. The improved coupling has greatly reduced or 
eliminated the previous oscillations in axial power distribution and represents an improvement in the multi-
physics modeling capability. 

Note that there are two reasons CASL is expending resources on baseline proprietary software that is never 
intended for broad release as part of VERA.  

1. Insight gained through coupling of these physics components will inform how the advanced physics 
components should be coupled.  

2. Baseline capability can be exercised to complete sensitivity analysis and uncertainty quantification, 
informing resource allocation decisions regarding advanced physics components. 

References for Section 7.5: ANC9.5-VIPREW-BOA 
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Figure 19: Comparison of boron mass predicted during Watts Bar Cycle 1. 
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Figure 20: Comparison of Axial Offset predicted for Watts Bar Cycle 1. 

8. VERA INITIAL AND DEMONSTRATION CAPABILITIES 

8.1 DeCART 

DeCART (Deterministic Core Analysis based on Ray Tracing) [1] is a whole core neutron transport code capable 
of direct sub-pin level flux calculation at power generating conditions of a LWR. It requires neither a priori 
homogenization nor group condensation as needed in conventional reactor physics calculations. DeCART solves 
the three-dimensional neutron transport problem employing a 2D-1D method in which the planar solution is 
performed using the Method of Characteristics (MOC) transport solutions and the axial solution is performed 
using the Nodal Expansion Method (NEM) diffusion kernel. The DeCART code has various computational 
capabilities to solve not only the steady state eigenvalue problems but also the transient fixed source problems. 
The steady state calculation can be performed in various modes which may consist of a criticality search, branch 
restart, and/or depletion. The depletion calculation is performed using the predictor/corrector method and has 
been well validated for a wide range of PWR and BWR applications. More details can be found in [2, 3]. 

DeCART is being deprecated in favor of the new pin-resolved neutronics capability provided by MPACT (Section 
4.4). 

8.2 Star-CCM+  

Star-CCM+ is a commercial finite-volume-based computational fluid dynamics code and modeling package from 
CD-Adapco [4]. CASL has licenses to use Star-CCM+ and has placed the code into the repository for access by 
authorized users. The official version of Star-CCM+ in VERA 2.0 has been upgraded from 4.06 to 6.04, which 
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includes several updates to Star-CCM+, including two-phase flow models. Details about the capabilities, 
numerical methods, and use of Star-CCM+ are available from CD-Adapco and not presented here.  

The primary use of Star-CCM+ in VERA has been for coupling with DeCART, as described above in Section 8.3. 
Using the flexibility accommodated by LIME, a socket based server-client interface is used to control the Star-
CCM+ solution for the coupled simulation for these simulations. In addition, a few stand-alone calculations have 
also being explored for potential insight and application in the future. 

8.3 DeCART-Star-CCM+ 

The DeCART–Star-CCM+ coupled multiphysics capability has been significantly improved since the release of 
VERA 1.0. However, most of these improved capabilities were incorporated into the VERA 1.1 [5] or VERA 1.2 [6] 
interim releases. These changes have included the development of a LIME-based multiphysics driver, many 
improvements to the model evaluators for both codes and, work on developing parallel file I/O for data 
transfers that has resulted in major execution time improvements. A summary of this DeCART-Star-CCM+ 
capability as it exists in VERA is provided here.  

The VERA Release 1.0 report [7] outlines the development of the socket based server-client interface which is 
used to control the Star-CCM+ solution. The data transfers between DeCART and Star-CCM+ are handled using 
serial file I/O. The report also outlines the future of the data transfer. An intermediate step is to implement user 
coding inside Star-CCM+ to perform the file I/O in parallel. DeCART has the ability to read and write multiple files 
based on the domain decomposition used in Star-CCM+. The user coding is created to emulate the same 
functionality as the tables used in the previous version only in parallel. 

The user coding used by Star-CCM+ consists of routines written either in Fortran or C/C++. This code is then 
compiled into a dynamically linked library. At run time, Star-CCM+ is capable of loading this library and calling its 
member functions. The only additional step that must be taken when building the user code library is to write a 
simple library registration function so that Star-CCM+ knows what routines are available. The user coded 
routines can be used by Star-CCM+ in some places directly (e.g. like the definition of the energy source) or as 
scalar or vector field functions. The field functions differ in that they can be utilized almost anywhere within 
STAR-CCM+ (e.g. they can be plotted or define nearly any user definable property). In addition to the user 
coding routines and field functions made available by the library, the "reports" feature in STAR-CCM+ is used to 
assist in controlling the execution of user coded routines. This ability is especially important for the initialization. 

Along with the addition of user coding the java interface is also updated to automate the set up and calling of 
the user coding. Backwards compatibility for using the original table methods is also maintained if Star-CCM+ is 
running in serial. These updates are included in ‘LimeClientME_v2.java’ inside the StarCCMClient repository. 

In addition to adding the user coding to perform the parallel file I/O, the functionality to call Star-CCM+ in 
parallel is also needed. The feature to run Star-CCM+ in parallel does not require any modifications to Star-CCM+ 
but instead the driver is modified to accept the command line options. The ‘staropt’ command line option was 
added to the driver to pass additional options for all of the parallel commands to Star-CCM+.  

The final addition to the coupled code system is to allow both codes to be run in parallel using parallel file I/O 
for data transfers. In order to do this, the driver code is modified to send the MPI communication environment 
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to both DeCART and Star-CCM+. Since Star-CCM+ controls its own parallel communication as a separate 
executing process, all of the calls in the Star-CCM+ model evaluator must only be called by the master process. 

In order to test the user coding and assess the improvements running the coupled code system in parallel a 3 by 
3 pin cell problem, shown in Figure 21, is run. 

 

Figure 21: Star-CCM+ (Left) and DeCART (Right) mesh for demonstration problem. 

The 3 by 3 problem is described in detail in reference [8]. The same case is run with 16 processors for both 
DeCART and Star-CCM+ on ‘u233.ornl.gov’. The eigenvalue, peak pin power, and average fuel temperature are 
compared for the serial and parallel cases. Table 9 shows the comparison of the key solution values and the run 
times. The comparison of the solution shows very good agreement and the increase in speed shows significant 
gains. Continuing work should continue to improve the scaling of the coupled codes. 

Table 9: Comparison of DeCART-Star-CCM+ serial and parallel solution and run times. 

     DeCART Star-CCM 

 k-effective Peak Pin 
Power 

Average Fuel 
Temperature 

Total Run 
Time 

Computation 
(s) 

File I/O 
(s) Total Time (s) 

VERA 
1.0 

1.271750 1.6805 408.10 600.570 37.31 339.920 223.340 

VERA 
2.0 

1.271775 1.6850 408.08 98.665 1.35 37.103 60.212 

 

8.4 Insilico-Star-CCM+ 

Following the refinement of DeCART-Star-CCM+ coupling described in Section 8.3, the framework developed 
was used to demonstrate coupling of the Denovo-based neutronics capability now known as Insilico and Star-
CCM+. This demonstration was successful, but has not been developed further, and is not under continuous or 
nightly testing to ensure correctness. If this capability were to be needed further, it could certainly be used, but 
would require development. 
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Appendx A. VERA Input Format (ASCII) 

An example VERA input deck, in this case for AMA Benchmark Problem 6, Hot Full-Power Beginning of Life 
Assembly, is shown below. 

[CASEID] 
  title 'CASL Problem 6a' 
!================================================================================ 
!  Sample input for Problem 6 (Single-assembly with T/H feedback) 
! 
!  Draft 1 - 9/28/2012 - starting with Problem 3 input deck 
!     * changing power to 100% 
!     * turn on T/H feedback 
!     * remove "tfuel" and "modden" because these will be set by T/H feedback 
! 
!  Draft 2 - 10/13/2012 
!     * added "mat" card in front of material cards 
! 
!  Update 11/19/2012 
!     * added explicit lattice models for: 
!         * lower_nozzle_gap_height 
!         * lower_pincap_height 
!         * upper_nozzle_gap_height 
!         * upper_pincap_height 
!         * upper_plenum_height 
! 
!  To-Do: 
!     * add percent of theoretical density to pellets 
!     * add grid spacer loss coefficients 
 
!  To process: 
!     ./react2xml.pl --xml --xslt Sample_p6.inp Sample_p6.xml 
! 
!================================================================================ 
 
[STATE] 
  power  100.0         ! % 
  tinlet 620.33        ! F - 600K 
  boron  1300          ! ppmB 
  pressure 2250        ! psia 
 
! tfuel  600.0         ! K - 600K  Not used with T/H feedback! 
! modden 0.743         ! g/cc      Not used with T/H feedback! 
   
  feedback on 
 
[CORE] 
  size 1                ! 1x1 single-assembly 
  rated 17.67   0.5     ! MW, Mlbs/hr  *** flow is wrong, need to fix! 
  apitch 21.5 
  height 406.328 
 
  core_shape 
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    1 
   
  assm_map 
    A1 
 
  lower_plate ss 5.0 0.5   ! mat, thickness, vol frac 
  upper_plate ss 7.6 0.5   ! mat, thickness, vol frac 
 
  bc_rad reflecting 
 
!  Old material format 
! 
!  he he 0.000176 
!  inc inc 8.19 
!  ss ss 8.0 
!  zirc zirc 6.56  
!  aic aic 10.20 
!  pyrex pyrex 2.23 
!  b4c b4c 6.56 
 
  mat he     0.000176 
  mat inc    8.19 
  mat ss     8.0 
  mat zirc   6.56  
  mat aic   10.20 
  mat pyrex  2.23 
  mat b4c    6.56 
   
[ASSEMBLY] 
  title "Westinghouse 17x17" 
  npin 17  
  ppitch 1.260 
   
!  uo2 U31 10.257 / 3.1 
  fuel U31 10.257 95.0 / 3.1 
 
!=== material label, key_name, density (lib_name defaults to key_name) 
  mat he   0.000176 
  mat inc  8.19 
  mat ss   8.0 
  mat zirc 6.56  
   
  cell 1     0.4096 0.418 0.475 / U31 he zirc 
  cell 100          0.561 0.602 / mod    zirc       ! guide tube 
  cell 200          0.561 0.602 / mod    zirc       ! instrument tube 
  cell 7            0.418 0.475 / mod    mod        ! empty location 
  cell 8            0.418 0.475 /     he zirc       ! plenum 
  cell 9                  0.475 /        zirc       ! pincap 
   
  lattice FUEL1 
     200 
       1 1 
       1 1 1 
     100 1 1 100 
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       1 1 1   1 1 
       1 1 1   1 1 100 
     100 1 1 100 1   1 1 
       1 1 1   1 1   1 1 1 
       1 1 1   1 1   1 1 1 1 
 
  lattice LGAP1 
     200 
       7 7 
       7 7 7 
     100 7 7 100 
       7 7 7   7 7 
       7 7 7   7 7 100 
     100 7 7 100 7   7 7 
       7 7 7   7 7   7 7 7 
       7 7 7   7 7   7 7 7 7 
 
  lattice PLEN1 
     200 
       8 8 
       8 8 8 
     100 8 8 100 
       8 8 8   8 8 
       8 8 8   8 8 100 
     100 8 8 100 8   8 8 
       8 8 8   8 8   8 8 8 
       8 8 8   8 8   8 8 8 8 
 
  lattice PCAP1 
     200 
       9 9 
       9 9 9 
     100 9 9 100 
       9 9 9   9 9 
       9 9 9   9 9 100 
     100 9 9 100 9   9 9 
       9 9 9   9 9   9 9 9 
       9 9 9   9 9   9 9 9 9 
 
  axial A1    6.050 
      LGAP1  10.281 
      PCAP1  11.951 
      FUEL1 377.711 
      PLEN1 393.711 
      PCAP1 395.381 
      LGAP1 397.501 
 
  grid END inc  1017 3.866 
  grid MID zirc 875  3.810 
 
  grid_axial 
      END  13.884 
      MID  75.2 
      MID 127.4 
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      MID 179.6 
      MID 231.8 
      MID 284.0 
      MID 336.2 
      END 388.2 
 
  lower_nozzle  ss 6.05  6250.0  ! mat, height, mass (g) 
  upper_nozzle  ss 8.827 6250.0  ! mat, height, mass (g) 
 
 !! dancoff                   ! assembly_dancoff_map 
 !!   0.000 
 !!   0.287 0.315                             
 !!   0.287 0.315 0.315                         
 !!   0.000 0.287 0.286 0.000                         
 !!   0.287 0.316 0.316 0.284 0.299                 
 !!   0.288 0.317 0.316 0.287 0.267 0.000 
 !!   0.000 0.286 0.286 0.000 0.270 0.286 0.321         
 !!   0.287 0.319 0.319 0.286 0.315 0.335 0.333 0.337     
 !!   0.323 0.322 0.321 0.322 0.320 0.322 0.323 0.322 0.310 
 
[EDITS] 
 
!  3in intervals in active fuel 
  axial_edit_bounds  
          11.951 
          15.817  
          24.028  
          32.239  
          40.45  
          48.662  
          56.873  
          65.084  
          73.295  
          77.105  
          85.17  
          93.235  
          101.3  
          109.365  
          117.43  
          125.495  
          129.305  
          137.37  
          145.435  
          153.5  
          161.565  
          169.63  
          177.695  
          181.505  
          189.57  
          197.635  
          205.7  
          213.765  
          221.83  
          229.895  
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          233.705  
          241.77  
          249.835  
          257.9  
          265.965  
          274.03  
          282.095  
          285.905  
          293.97  
          302.035  
          310.1  
          318.165  
          326.23  
          334.295  
          338.105  
          346.0262  
          353.9474  
          361.8686  
          369.7898  
          377.711 
 
[DENOVO] 
    eq_set        ld 
    eigen_solver  arnoldi 
    tolerance     1e-06 
    Pn_order      1 
    dimension     3 
    mesh          4 
!    eigenvalue_db: 
        k_tolerance  0.0001 
        L2_tolerance 0.001 
        energy_dep_ev  false 
    mat_library   test_comp.sh5 
    max_delta_z   2.54 
    num_blocks_i  40 
    num_blocks_j  40 
    num_z_blocks  64 
    num_groups    23 
    num_sets      6 
!    quadrature_db: 
        azimuthals_octant  4 
        polars_octant      4 
        quad_type          qr 
!    silo_db: 
        silo_output  vera 
!    upscatter_db: 
        upscatter_tolerance  1e-05 
    xs_library     "v7-238ir" 
   new_grp_bounds  
       8.2085e+05  
       1.1109e+05  
       5.5308e+03  
       1.8644e+02  
       3.7612e+01  
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       3.5379e+01 
       2.7697e+01  
       2.1684e+01  
       2.0397e+01  
       1.5968e+01  
       7.1500e+00 
       6.7000e+00 
       6.3000e+00  
       1.0970e+00  
       1.0450e+00  
       9.5000e-01  
       3.5000e-01  
       2.0600e-01 
       1.0700e-01  
       5.8000e-02  
       2.5000e-02  
       1.0000e-02  
       1.0000e-05 
 
[COBRATF] 
  nfuel   3 
  irfc    1 
  epso    0.001 
  oitmax  3 
  iitmax  40 
  gridloss END 0.9070 
  gridloss MID 0.9065 
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Appendx B. VERA Input Format (Parameters) 

The following pages are extracted from the CASL “wiki”, CASLpedia, which uses the same software 
(MediaWiki, http://www.mediawiki.org/) as the well-known Internet Encyclopedia, Wikipedia 
(http://en.wikipedia.org/). 

Note that the formatting of the content for a PDF document is significantly less attractive since it is meant to be 
viewed on-line (in a web browser). 

  

http://www.mediawiki.org/
http://en.wikipedia.org/
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Appendx C. DataTransferKit Reference 

The following pages constitute documentation of the DataTransferKit component. 
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Appendx D. Insilico Reference 

The following pages constitute documentation of the Insilico neutronics component. 
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