Power uprates
and plant life extension CASL-U-2014-0013-000

LNASL

Consortium for Advanced Simulation of LWRs

Engineering design

and analysis Evaluation of the Multiphysics
Object-Oriented Software
Environment (MOOSE)

Framework
Richard C. Martineau, Ph.D.
SICROLG Idaho National Laboratory
high performance
computing

Independent Reviewers

Forrest Brown, Los Alamos National Laboratory

Bill Gropp, University of lllinois

Olle Heinonen, Argonne National Laboratory

Barry Smith (chair), Argonne National Laboratory
Michael Zika, Lawrence Livermore National Laboratory

Fundamental science
December 18, 2013

Plant operational data

e 6%99SW;0ﬂ%'(;‘?w%ﬂ*&w@aﬁ-’ﬁ‘iﬁéﬁ-ﬂé&‘iﬂﬁﬁ Ll AL L L L L Ll Ll Ll @&*95&&38&&38‘&0“%&%-’93“-
ITXILIT11 21T

Report of the MOOSE Review Committee

Convened to evaluate the Multiphysics Object-Oriented Software Environment

December 16-18, 2013

Forrest Brown, Los Alamos National Laboratory
Bill Gropp, University of Illinois
Olle Heinonen, Argonne National Laboratory
Barry Smith (chair), Argonne National Laboratory

Michael Zika, Lawrence Livermore National Laboratory

CASL-U-2014-0013-000

Executive Summary

This panel was asked by Kemal O. Pasamehmetoglu, associate laboratory director of
Idaho National Laboratories, to provide a “deep dive” technical review of the Multiphysics
Object-Oriented Software Environment (MOOSE) software package. He asked us to
“assess the qualities and characteristics of MOOSE and, in particular, to determine its
suitability as a robust and scalable platform for multiphysics simulation necessary to meet
the DOE computational science goals.” In addition he requested an “assessment of
MOOQOSE'’s algorithmic capabilities for running well-resolved, fully coupled multiphysics
simulations at scale on modern high-performance hardware” and “an assessment of the
limitations associated with the MOOSE framework.” The complete charge letter is given
as an appendix to this document.

To perform the analysis, we put together a team of mathematicians, computer scientists,
and scientists with expertise in some of the areas in which MOOSE may be applied. The
panel met with the MOOSE developers, at Argonne National Laboratory, for a two and
one-half day review (December 16-18, 2013) which included presentations, discussions,
and the installation of the software.

Findings

MOOQOSE has two major features:

e A mature, well-designed and well-implemented framework for solving multiphysics
partial differential equations using finite-element-like methods with a Jacobian-free
Newton solver

e A newer system for loosely coupled systems of subsystems each of which may
consist of loosely coupled subsystems or may be a strongly coupled system.
Although this feature is not yet mature, it appears to have high potential and has
been demonstrated at scale on nontrivial coupled multiphysics simulations.

A great deal of effort has been put into the usability, testing, and documentation of the
software --- and it shows. The MOOSE framework is well suited for a variety of DOE
applications, is of high quality, and has been demonstrated to scale well up to 12,000
cores on nontrivial simulations.

CASL-U-2014-0013-000

Recommendations

The panel has five recommendations.
e Increase and diversify the MOOSE user base, which could include
o developing an online community of users,
o curating Elk with physics and material models, and
o determining appropriate application areas for focus in the near term (we
suggest materials science simulations as an area ripe for additional effort).
e Leverage the unique strength of solving loosely coupled systems of fully coupled
subsystems by investigating other applications beyond nuclear reactors for which
MOOOSE can be applied.
e Increase usability by
o providing a full users manual with technical background (possibly even a
book) with index and online searchability, and
o developing a plan for production support with regular releases.
e Develop collaborations to examine issues related to
o the applied mathematical analysis of coupling schemes,
o techniques for varying the timestep between different physics or scales within
the same fully coupled simulation, and
o enhancements in MOOSE to achieve vectorization and GPU utilization.
e Make the MOOSE/ELK infrastructure open source and freely available to the
community.

CASL-U-2014-0013-000

Introduction --- General Observations

The Multiphysics Object-Oriented Software Environment (MOOSE) software package has
been under development for about five years and is now being used in a variety of
important nuclear energy-related applications. It is thus important to take a step back,
evaluate its current form, and make any adjustments necessary to ensure its continued high
quality and forward momentum.

The MOOSE development effort began with a goal of simultaneously solving all
components of a multiphysics calculations, using a Jacobian-free Newton-Krylov (JFNK)
scheme. The availability of such a general-purpose, easy-to-use tool --- designed to
directly solve fully-coupled multiphysics calculations without operator splitting, time-step
sequencing of parts of the calculations, and dealing with varied time-step controls ---
represents a significant advance in capabilities. The fully coupled JFNK solution scheme
often provides more accurate solutions of tightly coupled multiphysics calculations than do
traditional approaches. More recently capabilities were added to MOOSE to also support
loosely coupled calculations. Such calculations are often better suited to the analysis of
slowly changing systems, where steady-state or quasi-static calculations are appropriate
for much of the physics. The full range of MOOSE solution techniques --- fully coupled,
loosely coupled, or combinations thereof --- provides a rich set of tools for covering the
range of solution methods that are needed for nuclear reactor analysis and many other
applications.

MOOSE leverages two large-scale mathematical software libraries: PETSc and libMesh.
These two libraries are MPI-based object-oriented libraries, PETSc in C, and libMesh in
C++. The MOOSE framework uses PETSc for advanced, scalable linear and nonlinear
solver algorithms and uses libMesh to enable mesh support of two- and three-dimensional
finite element meshes, including mesh adaptivity. As alternatives, MOOSE can use HYPRE
for scalable linear solver algorithms and Trilinos for algebraic solvers. Both PETSc and
libMesh are software libraries that require programming, --- that is, the writing of source
code to complete an application, whereas MOOSE is a framework from which many
applications can be completed without writing additional source code beyond
straightforward kernel functions.

For efficient utilization of multicore computing systems, MOOSE incorporates the MPI + X

programming model by providing its own abstraction of tasks which are assigned to
threads. To achieve this, MOOSE provides a uniform wrapper APl around OpenMP,

CASL-U-2014-0013-000

Pthreads, and Intel Thread Building Blocks (TBB). This is a nice design decision
preventing MOOSE from being too closely locked into a single thread management model.

The combination of powerful and scalable libraries (PETSc and libMesh) in a framework
that is easily expanded or reconfigured gives MOOSE the potential to enable or drive
transformative changes in materials science and modeling. The MOOSE design allows for
implementation of turnkey systems for analysts with rigorously controlled and validated
physics models. Moreover, as a research tool, it enables scientists to try out new models
and numerical methods. It also supports incremental development of multiphysics
applications by adding slightly more “physics” one small step at time, with testing and
validation taking place before the next piece of “physics” is added. At the same time
MOOQOSE has the ability to control and configure the underlying solver to a considerable
extent (e.g., via PETSc options, a custom DM implementation). This affords a sufficiently
knowledgeable user an opportunity to achieve high runtime performance by fine-tuning the
solver. Thus, MOOSE provides an easy approach to fast implementation of new complex
multiphysics simulations as well as powerful production-grade applications.

The MOOSE team has put significant effort into ease of distribution and has simplified the
ability to bring the framework up on new platforms. This is a strength of the framework and
helps establish a foundation for broader collaboration. The MOOSE team has done
excellent work in developing a software installation package for MOOSE and its supporting
software packages. The MOOSE Wiki instructions for installing the software are clear and
easy to follow. Two of the review panel members independently followed the instructions,
downloading and installing MOOSE and all peripheral supporting software packages
during the review. The process was remarkably easy (one panel member said it was the
only installation in his memory that did not have problems), and the MOOSE package was
immediately usable, including full interactive graphics support.

The MOOSE framework employs a continuous integration model. The team members have
put in place many excellent software quality practices and have set team expectations for
high-quality software. Their development environment includes (and depends on) software
configuration management and a wiki-based issue-tracking system. Testing is integral to
their software quality approach. Each commit is tested across multiple platforms with
multiple user applications, including standardized expectations for line coverage.The team
also collects metrics that reflect their software quality expectations. Currently MOOSE and
its applications are all stored in a single repository. This approach has several advantages.
Tests are run on all applications on every commit; and when any interface changes are
made, it is trivial to change all applications that use that interface. Thus, all applications are

CASL-U-2014-0013-000

always up to date and tested with the latest changes to the framework. Overall, their
software quality approach supports responsive distribution of a high-quality product.

The MOOSE team members have given a good deal of thought to how to extend this
approached to a distributed development environment with independent development
teams for different applications.The plan is to host the MOOSE framework on github and
have application developers also host their application codes at github. The test harness
would then still be able to test the application codes whenever updates to the framework
are made. In addition, updates to the MOOSE API would result in pull requests being
generated to the application development teams. The teams would then be able to
examine the changes (and modify them if needed) before incorporating these changes into
their repositories. If successful, this model will be a valuable contribution to the open
source development community, demonstrating scaling of continuous integration
techniques across several development teams.

The MOOSE team members have focused, as was appropriate for DOE
engineering-oriented simulations, on medium sized scalability in their application runs, up
to about 12,000 cores. At this scale they demonstrate very good performance for both
weak and strong scaling. Nothing is inherent in their approach to prevent additional scaling
as needed, though it will require modifications to their work flow, specifically with regard to
mesh generation. The choices of MPI + X for utilizing multicore processing nodes are very
appropriate and well done.

In order to provide some perspective on the significance of the MOOSE development
effort, it is useful to consider the nearly 60-year history of nuclear reactor design
calculations. The principal focus of reactor core design has been the calculation of core
power distributions and the associated heat transfer/fluid flow calculations that govern
overall reactor behavior. Sophisticated methods were developed first to perform 2D
calculations, with synthesis methods to construct 3D power distributions, and beginning in
the 1990s to perform explicit 3D calculations. These calculations were run on the largest
computing systems. During this 60-year history, the principal focus for reactor design was
the core power and temperature distributions; calculational methods for reactor shielding,
mechanical analysis, and materials analysis were fragmented and lagged far behind. The
MOOSE effort (basic MOOSE framework plus applications such as Bison and Marmot)
successfully integrates a variety of computational materials models with neutronics and
heat-transfer/fluid flow. MOOSE provides the enabling technology to bring together a
number of materials calculational methods into a single, fully coupled calculational
package. This new capability is a significant advance in the state of the art in reactor core
design. Since many of the practical, operational problems with existing nuclear reactor

CASL-U-2014-0013-000

systems are related to materials issues (crud, rod fretting), the ability to include materials
calculations in the core design process should have significant benefits to the nuclear
industry and future reactor designs.

Future Directions and Recommendations

The MOOSE developers have made some high-quality technical design decisions and
provided a high-quality implementation with good testing and quality control. The MOOSE
framework would benefit from having a clearly enunciated strategy to achieve broad uptake
and, as a result, applications-driven funding opportunities. The team may need to make
choices about appropriate “limiting” of scope. The MOOSE team may also benefit from
the interactive process of developing a vision statement and a mission statement.

The main focus of our recommendations is how MOOSE can be made sustainable for the
future, from both a usage perspective and a funding perspective. This process requires

several enhancements, both to MOOSE and to the strategy related to MOOSE's future.

Increase and diversify the MOOSE user base

Without doubt, the versatility and flexibility of MOOSE make a powerful tool for many
different communities, ranging from engineering and analysis to basic physics and
materials science. The MOOSE team are doing a commendable job in disseminating
information to potential user communities through the tutorials that the team gives several
times per year at different locations. We encourage growing the user communities,
supported by making the code open source and by establishing and maintaining a github
for the community. Also, a good strategy would be to select and nurture a specific user
community where MOOSE is currently not well established but where MOOSE can have a
transformative impact. The MOOSE team could establish direct personal contacts and
collaborations with select individuals in that community.

We suggest making ELK a curated repository for physics models and material models. As
a potential future use of the MOOSE framework, domain scientists are likely to want to
“plug and play” models developed by others (for example, to test new transient scenarios
or to perform side-by-side comparisons with a new model). We suggest setting standards
for implementations such as style of implementation and naming conventions. The
computer science and software standards being applied to MOOSE are appropriate and
are evidence of a high degree of careful, forward-looking thought. Comparable high
standards, but with a different organizing principle, may be necessary for ELK. With proper
support and management, ELK could be viewed by the user community as the de facto

7

CASL-U-2014-0013-000

place for contributing and collecting models, a repository of the community work to be
shared. In order to accomplish this, ELK needs a curator, likely a computational physicist.

A strength of the MOOSE framework is its support of exploration and rapid development,
particularly of materials models and their behavior in increasingly sophisticated scenarios.
This strength suggests an opportunity to play a key role in the growing community of
computational physics support in materials science research.

Modern materials science modeling is inherently multiscale, involving length scales from
atomic to macroscopic ones, and time scales from femtoseconds to seconds. In addition,
drivers for accelerated materials discovery for a wide range of application focus on novel
functionalities that arise through strong coupling of many order parameters and degrees of
freedom. Much progress has been made in areas such as first-principle modeling (for
example, density functional theory methods or quantum chemistry methods) and force-field
molecular dynamics modeling that cover atomistic processes. However, as emphasized by
the recent BESAC report From Quanta to the Continuum: Opportunities for Mesoscale
Science , there is a need --- and an opportunity --- to develop mesoscale materials codes,
and this is an area where MOOSE can make a huge impact. Some of the necessary
infrastructure is there, such as unstructured irregular meshes (with dynamical refinement),
the inherent design of MOOSE that allows for multiphysics strong coupling, and the
materials science pieces in the ELK library.

In order to position itself as a premier tool in mesoscale materials modeling, some issues
need to be addressed. First, since many mesoscale materials systems involve strong
coupling between thermomechanical degrees of freedom and free or bound charges, an
efficient solver is needed for the Poisson equation with correct boundary conditions at
infinity. Modern ways to address this within a finite-element framework usually employ a
boundary matrix method. The current difficulty in implementing this in MOOSE is that the
boundary matrix is dense; hence, there need to be some separate hooks to an efficient
(perhaps a GPU-accelerated) routine for calculating the contribution to the electrostatic
potential from the boundary matrix. Second, many mesoscale methods need as input
coupling constants and parameters that can, in many cases, be obtained from lower-scale
modeling, such as first-principle or molecular dynamics models. While the MultiApp
capabilities within MOOSE have huge potentials for coupling different MOOSE
applications, it would be extremely valuable to have an interface that allows for analogous
concurrent multi-scale simulations that couple MOOSE applications with, for example,
density functional or molecular dynamics simulations.

Leverage unique strength of loosely-coupled system of fully-coupled subsystems

CASL-U-2014-0013-000

The MultiApp and loosely coupled capability is a powerful complement to the fully coupled
time integration approach. This is a novel capability that may open promising research
directions and provide more highly integrated tools for analysis and design. The MultiApp
approach is ideal for coupling several systems, each of which may require PDE
simulations with millions, or even billions, of degrees of freedom. The MOOSE team has
already begun to demonstrate this capability with full reactor simulations, including
thermohydralics, neutronics, and materials modeling. Another such example of system
simulations is that of batteries, which have several materials science subsystems each of
which needs cutting-edge, large-scale PDE simulations. Other systems include buildings
and their energy use, which account for 39% of all U.S. energy consumption. We urge the
MOOQOSE developers to consider possible areas to which they could apply their technology
of loosely coupled systems of systems for future funding opportunities.

We also have two technical suggestions for the team: that they reconsider the requirement
of a “master” application in modelling systems of subsystems and that they may need to
refactor the data transfer design as increasingly sophisticated modeling becomes desired.
For example, they may need to provide a method for registering data transfer between
applications (without requiring the transfer through the master application).

Increase usability

The MOOSE framework contains many features that enhance usability for new and
advanced developers in multiple scientific domains. As MOOSE grows a wider user
community, we have recommendations for consideration to increase usability and help
meet anticipated demands on the MOOSE framework.

The MOOSE team has done a commendable job in developing for MOOSE, a
sophisticated graphical user interface, Peacock. Peacock is a versatile, well-organized,
convenient, and powerful tool to accelerate code development under MOOSE. A few
modifications however could be made to Peacock to improve it. First, while the MOOSE
installation process has been carefully designed to be portable across virtually any
computer platform or network, the installation process of Peacock is not quite as
streamlined. For example, dependences on huge libraries could be awkward to install on
some arbitrary platform. It would be desirable to have a Peacock installation process that
is largely self-contained and streamlined, as is the MOOSE installation. Second, it would
be nice if Peacock had an more advanced interface to the kernels. For example, Peacock
could have some way of visualizing the organization of kernels, and perhaps also have
some interface to edit kernels.

CASL-U-2014-0013-000

Currently, the documentation for the MOOSE framework is contained in two forms: (1) the
reference manual, available through the wiki and (2) the training presentation, available in
through the training workshop. We recommend writing a users manual to complement
these documents. Such a manual should contain the technical background of the
algorithms and their uses (not just a description of the API) and include a comprehensive,
searchable index. This may take the form of a book, technical report, or manual covering
the capabilities in MOOSE and ELK (either combined or separately) as the team
members find appropriate.

The MOOSE framework is developed by using a continuous integration approach.
Consequently, every commit is viewed as being appropriate and available for release and
distribution. We understand that this approach has met the requirements to release a
version of the BISON application. As more applications are developed that establish
production release practices, we anticipate the need for production release support of both
MOOSE and ELK. The demands of production releases will require extensions to existing
practice and may require regression testing of user problems at scale, detailed
performance testing, and generation of release notes. The MOOSE team members have
been diligent in developing software quality practices. We recommend that the team
anticipate the needs of production release support and steadily put in place the needed
practices.

Generation of sophisticated meshes (e.g., a body-fitted 3D mesh of a fuel pellet) for
simulations in MOOSE is performed outside MOOSE by using a separate toolkit. The
process typically requires that the problem setup phase be performed on a big-memory
machine. Requiring this resource imposes two impediments: access to such a machine
may not be commonplace, and mesh generation becomes inherently unscalable. We
recognize that this approach is state of the art practice for many engineering analyses. As
scalability becomes an increasingly important goal, however, the MOOSE team may need
to consider scalable approaches to problem setup and mesh generation.

The MOOSE framework does not appear to have software support for expressing units or
a standard that establishes expected practices. The application developer is expected to
keep units internally consistent. Again, we recognize that this is state of the art practice in
many areas of the computational sciences. Unlike many other areas, MOOSE creates the
potential to compose simulations of systems built on subsystem models (that were
developed by disparate research and development teams). We recommend establishing
standards (or some other novel technical approach) to help ensure consistency as the

10

CASL-U-2014-0013-000

MOOSE community moves toward composing existing models of systems built of
subsystems.

Currently the MOOSE installation uses non-name spaced environmental variables to affect
the operation of MOOSE. This approach can have unintended consequences in new
computer development environments. As an alternative, we suggest using a standardized
“‘name space” for such variables (e.g., MOOSE_JOBS).

Develop collaborations to examine specific technical issues

The MOOSE team should seek out collaborations where MOOSE could be used to design
and analyze experiments. The ultimate validation of a computer code system is direct
comparison of computed and experimental results. Active involvement with experimenters
provides unique and valuable opportunities for validating the MOOSE methodology.

An important consideration in any multiphysics package is the mathematical foundations
underlying the transfer of information between components. MOOSE implements
reasonable choices, but a more comprehensive theoretical analysis and framework would
increase the confidence in the accuracy and robustness of the solutions. An increased user
base and the use of MOOSE in new application areas are likely to necessitate further
review and improvements. We encourage the MOOSE developers to seek out
collaborations with applied mathematicians and numerical analysts in order to put the
transfer functions on a firmer theoretical foundation. MOOSE’s demonstrated ability to
handle complex multiphysics problems should be attractive to practical-minded numerical
analysts.

MOOSE has a well-thought-out approach to using threads to make effective use of
multicore processors. We recommend that the developers consider two other important
architectural directions. First is the use of vectorization in current processors; this involves
usually very short (2 or 4 element) vectors, which may require special care, such as
attention to alignment or to organizing processing in appropriate units to enable either
compilers or other tools to generate vectorized code. Second, and potentially more
important, is to develop a strategy for taking advantage of GPU-style processing, including
streaming processing. This will be important in the long term, and having a good strategy
now will ensure that MOOSE is well positioned for future processors. In addition, the
developers should consider whether investing in the current GPUs (including dealing with
the additional overheads of memory copies and immature programming systems) will be
important enough for targeted user communities to justify the development cost. Even the

11

CASL-U-2014-0013-000

current software systems, such as OpenACC, may offer enough benefit at relatively low
development cost to justify the effort.

Open Source the Software

It is imperative that MOOSE be released as open source software with a generous license
to ensure its widespread usage. The MOOSE framework and many of the basic kernels
and models are fundamental research support tools that do not fall under the auspices of
the U.S. export control laws and regulations. While some of the applications developed by
using MOOSE may be export controlled (and should be handled accordingly), the MOOSE
framework itself should be treated in the same manner as most compilers and operating
system software; that is, freely available without restriction. Distributing the MOOSE
framework as open source software enables its use by students, collaborators, and other
researchers, providing significant leverage of the government’s investment, potentially
improving and expanding the product at little to no expense. The benefits of open source
distribution overwhelm any small licensing fees possible from corporate distribution.

The open source distribution of MOOSE would provide a number of benéefits:

e Access by a broad user community provides an easier route for collaboration on
science research.

e A wider user community generates and drives innovations, a wider range of
requests, and new thinking about products in ways that do not arise otherwise.

e Patches and code enhancements are added by external users.

e \Wider adoption leads to more funding opportunities.

Drawbacks from open source distribution could include the following:

e Need for increased user support, to assist new and lower quality users.

e Need for a change in development model (the build, test, automerge systems, would
become more “complicated”).

e Possibility that with a diversity of users the MOOSE team may not get proper credit
for its work (other possibilities could include misuse, unfair comparisons and the
quality of contributions may also be variable).

The drawbacks are largely those common to any successful project and can be readily
dealt with. The advantages of open source distribution provide significant technical
benefits, foster an open scientific approach, and potentially leverage the DOE research
investment to provide a large payback.

12

CASL-U-2014-0013-000

Acknowledgments: We thank Angie Herman and Dmitry Karpeyev for managing the
logistics for the review.

CASL-U-2014-0013-000

13

—
ldaho National Laboratary m

September 3, 2013 CCN 231298

Dr. Barry Smith

Senior Computational Mathematician
Mathematics and Computer Science Division
Argonne National Laboratory

9700 South Cass Avenue

Argonne, IL 60439

SUBJECT: Evaluation of the Multiphysics Object-Oriented Software Environment (MOOSE)
Framework

Dear Dr. Smith:

I am writing to ask that you consider serving as the lead of a review panel that I propose to
convene to evaluate the merits of the MOOSE software framework. MOOSE -- the Multiphysics
Object-Oriented Software Environment -- is a computational development and runtime
framework developed at Idaho National Laboratory and described here
http://www.inl.gov/research/moose-introduction.

MOOSE itself and numerous MOOSE-based applications are used in the DOE complex, in the
academia, and in the industry to develop numerical simulations of various physical models. The
purpose of this review is to assess the qualities and characteristics of MOOSE and, in particular,
to determine its suitability as a robust and scalable platform for multiphysics simulation
necessary to meet the DOE computational science goals. Specifically, I am looking for an
assessment of MOOSE’s algorithmic capabilities for running well-resolved, fully-coupled
multiphysics simulations at scale on modern high-performance hardware. In addition, I am
interested in your team’s assessment of the limitations associated with the MOOSE framework
for scientific and engineering applications.

Based on your reputation as a recognized leader in the area of computational science and applied
mathematics, as well as the architect of some of the most widely-used scientific software
libraries, I am convinced that you are a most qualified chair person to lead this review.

Within the confines of DOE’s and Argonne’s policy, Idaho National Laboratory will gladly cover
transportation costs, local expenses, and an honorarium for you and up to five other reviewers. [
leave the total number of reviewers and the composition of the review panel, as well as the
precise agenda, up to your professional judgment. I request that at the conclusion of the review
the panel issue a report containing conclusions as to the appropriateness of MOOSE as a basis for
high-performance computational science applications.

gox 1625 + 2525 North Fremont Ave. « Idaho Falls, Idaho 83415 « 208-526-0111 « www.inl.gov

CASL-U-2014-001§'—80
Battelle Energy Alliance, LLC

http://www.inl.gov/research/moose-introduction

September 3, 2013
CCN 231298
Page 2

I propose that the review be held at Argonne National Laboratory and suggest October 1 - 3,
2013, as the tentative review dates. I sincerely hope that we can find a suitable arrangement that
fits your schedule and look forward to your reply.

()
i \ /."
M\”"

Kemal O. Pasamehmetoglu, Associate Laboratory Director
Nuclear Science and Technology

Sincerely,

KOP:CH

CASL-U-2014-0013-000

	MOOSEReview
	CCN 231298 Smith MOOSE Evaluation

