
<Document Name>

Protected under CASL Multi-Party NDA No. 793IP

L3:VUQ.V&V.P8.02:
Validation and

Uncertainty
Quantification (VUQ)

Strategy,
Revision 1

William J. Rider and Vincent
Mousseau

Sandia National Laboratory

31 March 2014

CASL-U-2014-0042-001

Consortium for Advanced Simulation of LWRs
ii

REVISION LOG
Revision Date Affected Pages Revision Description

1 3/31/2014 All Original Report

Document pages that are:

Export Controlled _______None___

IP/Proprietary/NDA Controlled ____None___________________________________

Sensitive Controlled ___None___

Requested Distribution:

To: CASL Senior Leadership Team

Copy: N/A

 Consortium for Advanced Simulation of LWRs
3

L3:VUQ.V&V.P8.02: VUQ Strategy
Vincent Mousseau, Bill Rider, Brian Williams, Brian Adams, Ralph Smith, Russell Hooper,
Noel Belcourt, Abderrafi M Ougouag, Hany Abdel-Khalik, Nam Dinh, Kevin Copps, Matt

Sieger.
March 28, 2014

1. ABSTRACT
The purpose of this document is to define a CASL wide strategy for VUQ. The intent is for this
document to provide an inclusive list of VUQ activities that could be done for a large scale code
development project for the nuclear power industry. This document will attempt to define an
ideal approach for VUQ in CASL. Using this ideal VUQ approach as a grocery store, we will
choose which components are appropriate for various activities. We need to define a reasonable
goal for VUQ for things like code teams and challenge problems. Reasonable has to take into
account, budgets, schedules, scope, personnel, and availability of resources like validation data.
By choosing components of this document we will assure that the “spirit” of VUQ is
incorporated into how CASL does business. This document is not intended to be a standard
definition like ISO software quality standards, NQA1 quality standards, or NRC licensing
standards. The purpose is to demonstrate how different components of the VUQ Strategy add
together to increase confidence in the software being used.

Consortium for Advanced Simulation of LWRs
4

2. Contents
REVISION LOG .. ii

1. Abstract ..3

3. List of Figures ..6

4. Executicve Summary ..7

5. Introduction and Overview ...8

6. Predictive Code Maturity Model (PCMM): Background and Overview12
6.1. PCMM Generation 4 Detail ...18
6.2. Customer Specification Completeness (CSC) ..18
6.3. Code Verification (CVER) ...19
6.4. Representation and Geometric Fidelity (RGF) ..20
6.5. Solution Verification (SVER) ..21
6.6. Validation – Hierarchy (VALH) ..22
6.7. Experimental data for Constitutive Model Calibration (DATC)23
6.8. Experimental data for CompSim model validation (DATV)24
6.9. Validation - Component (VALC) ..25
6.10. Uncertainty Quantification (UQ) ...26

7. Prerequisites ...27
7.1. QOI and Decision Making ...27
7.2. Phenomenon Identification and Ranking Table (PIRT) ...27
7.3. Quantified Parameter Ranking Table (QPRT) ...28
7.4. Validation Pyramid ..28
7.4.1. An Example Validation Pyramid ...33
7.5. Partitioning PCMM Work ..37
7.6. Third Party Libraries ..38
7.7. Code Coupling ..38

8. Code (Foundational) PCMM ..38
8.1. QOIs Defined by Requirements ...38
8.2. Software Quality ..39
8.2.1. Good Engineering ..39
8.2.2. From a Code Maintenance Perspective ...39
8.2.3. CASL Standard for Documentation ..40
8.3. Code Verification ...41
8.3.1. Quantified ..44
8.3.2. Analytical Solutions ..44
8.3.3. Method of Manufactured Solutions ...44
8.3.4. Highly Resolved Solution ..44

 Consortium for Advanced Simulation of LWRs
5

8.3.5. Robust Multiple Regression (RMR) ..44
8.3.6. Neutronics ..51
8.3.7. Thermal hydraulics ..52
8.4. Solution Verification ..52
8.4.1. Quantified to Measure Improvement ...54
8.4.2. Neutronics ..55
8.4.3. Thermal Hydraulics ...55
8.5. Validation ...55
8.5.1. Benchmarking ..56
8.5.2. Quantified to Measure Improvement ...56
8.5.3. Confirmatory ...56
8.5.4. Differential ..56
8.5.5. Experimental Error ..56
8.5.6. Neutronics ..57
8.5.7. Thermal hydraulics ..58
8.6. Sensitivity ...62
8.6.1. Local ..62
8.6.2. Global ..62
8.7. Uncertainty Quantification ...63
8.7.1. Parameter Distributions ...63
8.7.2. Neutronics ..64
8.7.3. Thermal Hydraulics ...65
8.8. Calibration (Data Assimilation) ...66
8.8.1. Cautionary Use ..66
8.8.2. Partition Data ...67
8.8.3. Initial Validation ..67
8.8.4. Calibration ...67
8.8.5. Measure Validation Improvement ...67
8.9. Aleatory Versus Epistemic Uncertainty ...67
8.10. User Effect ..67
8.10.1. Best Practices ...68
8.10.2. Error Checking ..68
8.10.3. Graphical User Interface ..68
8.11. Iteration ..68
8.11.1. Measure the Largest Uncertainties ..68
8.11.2. Reduce the Largest Uncertainty ..68
8.11.3. Repeat the Process ...68

9. Application (Challenge Problem) PCMM ..69
9.1. Bricks and Mortar (PCMM for the Wall) ...69
9.2. Coupling Verification ...69
9.3. Multi-Physics Reduced Order Modeling ..70
9.4. Solution Verification Based on the PIRT QOIs ...70
9.5. Solution Validation Based on the PIRT QOIs ...70
9.6. Solution Uncertainty Quantification Based on the PIRT QOIs71
9.7. Calibration Based on the PIRT QOIs ...71
9.8. Total Uncertainty ..71

Consortium for Advanced Simulation of LWRs
6

9.9. Iteration ..71

10. Input PCMM ...71
10.1. Externally Generated File PCMM ..72
10.1.1. Geometry ...72
10.1.2. Mesh ..72
10.1.3. Cross Sections ...72
10.1.4. Chemical Reaction Rates ...72
10.1.5. Material Properties ..72
10.1.6. Equation of State ...72
10.2. CTF ...72
10.3. Hydra (Commercial CFD Software) ..72
10.4. Peregrine (Software Frameworks) ...73

11. DAKOTA Tools to Make PCMM Better and Easier ...73
11.1. Verification and Validation with PERCEPT Based Tools73
11.2. Surrogate Construction ...74
11.3. Sensitivity Analysis ..75
11.4. Uncertainty Quantification ...75
11.5. Calibration (Data Assimilation) and Optimization ..75

12. Summary ..76

3. LIST OF FIGURES

Figure 1 Decomposition of Uncertainty ... 8
Figure 2 A Kiviat (radar) plot of a PCMM score for the Generation 3 PCMM 13
Figure 3 Gatekeepers and the Outer Loop of the PCMM Process .. 16
Figure 4 PCMM Tool's Main Assessment Sheet .. 16
Figure 5 Example of CVER Descriptor Sheet .. 17
Figure 6 A Conceptual Validation Pyramid.. 30
Figure 7 Multiscale, Multiphysics Decomposition of CIPS ... 31
Figure 8 Coolant Chemistry .. 32
Figure 9 TH and Chemistry Coupling for CRUD ... 33
Figure 10 An example of A Validation Pyramid .. 37
Figure 11 Time/length scales and codes in thermal hydraulics. ... 58
Figure 12 Thermal Hydraulics Validation Pyramid .. 60
Figure 13 Parameter Distributions .. 63

 Consortium for Advanced Simulation of LWRs
7

4. EXECUTICVE SUMMARY
The purpose of this document is to serve as a reference document that can be used by the VUQ
team and the code teams and the challenge problem integrators. This VUQ strategy provides a
complete description of all of the components of a code or a challenge problem VUQ plan. As a
reference document it has sections written by different members of the VUQ team. It is intended
to be used as a template for a VUQ plan.

This is a living document. Every time that we apply this strategy to create a code VUQ plan or a
Challenge problem VUQ plan we will learn more about the process and modify this document to
demonstrate what we have learned from each application. As such, this document will represent
the start of the art knowledge of VUQ practices in CASL. The document describes the Key
components of a VUQ study and how they fit together; PIRT, QPIRT, Validation Pyramid, and
PCMM. It describes how these key VUQ tools will be implemented in the CASL VUQ plans.
This is a long and detailed discussion which is designed to be searched by section. Near the end
is a description of the DAKOTA tools to speed up and improve the VUQ analysis.
Occasionally this document gets a little verbal and opinionated. Part of the purpose of this
document is to define the VUQ culture in CASL. As such it sometimes gets a little
philosophical.

The big picture view of the CASL VUQ strategy is the recognition that there are many different
sources of uncertainty in software. In this plan we address the total uncertainty defined by
Total uncertainty = numerical uncertainty + model uncertainty + parameter uncertainty
The key to this strategy is to recognize that unless you measure all three forms of uncertainty,
you cannot know what your total uncertainty is. This holistic view of VUQ puts verification,
validation, and uncertainty quantification on a level ground for comparison of importance.
Another key part of this strategy is to recognize that VUQ needs to be injected into the way a
software development project does business (that is, a VUQ culture). Because of that
recognition, PCMM needs to be done early and often. PCMM is the compass that directs
resources where they can make the largest improvement. Leaving PCMM until the end when
funding is almost gone is simply a waste of time. After years of code development you will
finally find out what was causing the largest uncertainty in your software but you will have no
time to fix it.

We will end with the following quote,

“VUQ is like changing diapers. It’s a dirty job that nobody wants to do but it’s an important job
because when it doesn’t get done things get messy fast!” ANONYMOUS

Consortium for Advanced Simulation of LWRs
8

5. INTRODUCTION AND OVERVIEW

From a computer science point of view this document is the VUQ class. It will contain all of the
process required for a VUQ plan for a challenge problem or a CASL code or coupled CASL
codes. An individual VUQ plan will be a subset of these activities and may even add a few new
VUQ activities that are only relevant to that specific VUQ plan. Not all VUQ plans will include
all of these steps. The individual VUQ plans will be “right-sized” to provide the correct level of
quality assurance.
The key concept in the VUQ strategy is that there are many sources of uncertainty in a
computational result. The VUQ plan needs to address all of these modes of uncertainty and
either measure the uncertainty or at least provide evidence that the uncertainty is small. The main
modes of uncertainty are

1. Code Bugs – This uncertainty is addressed by good software engineering practices (SQA)
that employ documentation and testing.

2. Numerical Errors – This uncertainty is addressed by both code and solution verification.
3. Model Errors – This uncertainty is addressed by validation against relevant experimental

data sets. Note that experimental data relevancy arguments need to address scaling
issues.

4. Parameter Errors – This is addressed by uncertainty quantification. The hardest part is
building the parameter distribution functions.

5. Calibration Errors – Calibration is supposed to reduce parameter uncertainty. However,
it cannot distinguish between, numerical, model, and parameter errors. If done
improperly calibration actually produces compensating errors between parameter error
and model and numerical error.

This uncertainty taxonomy is shown graphically in Figure 1.

Figure 1 Decomposition of Uncertainty

 Consortium for Advanced Simulation of LWRs
9

Because it is difficult to quantify the uncertainty due to code bugs we will assume that good
Software Quality Assurance (SQA) practices eliminate the uncertainty due to code bugs. When
SQA practices are coupled with verification, validation, and uncertainty quantification the
probability of code bugs drops dramatically.
We will quantitatively measure the other uncertainty producers, numerical, model, and
parameter. This requires verification and validation to have clearly defined quantitative
measures. The “view graph norm” is not acceptable. Examples of the view graph norm would
be

1. I refined the mesh until the plot stopped changing.
2. This wiggly line kind of looks like that wiggly line.

Traditionally only the parameter uncertainty is measured in a quantified fashion. We want to
measure as many uncertainties as possible so we get a clear picture of all of the uncertainties that
impact the code’s solution. Many of the applications using computational analysis fail to address
the impact and utility of this approach clearly.
As a computational scientist, or just an engineer using computation, the blame for the
miscommunication lies with the computational scientist’s collective message. The value of
computational science lies directly in its capacity to force the combination of disciplines that
drives innovation in ways the traditional scientific or engineering approaches do not. By
opening the lines of communication between fields, science is enriched in ways that are difficult
to measure. Such innovation is a key to progress and spurs the generation of new ideas.
Computational science is as much about how science is conducted as what that science is. Too
often computational science gets stuck in its own little world of computers, algorithms,
mathematics, code, data and avoids deep dialog with domain science. This inward looking
emphasis is short-sighted, failing to capitalize on the greatest strength of computational science,
its inherently multi-disciplinary point-of-view. Computational analysis necessarily integrates
every aspect of the enterprise if done correctly.

Beyond the difference in approach that computation offers, the importance of modeling on
computers is its natural ability to handle complexity that analytical approaches falter under. This
complexity spurs connections between disparate scientific disciplines that ultimately power
innovation. New ideas are usually not new at all, but the combination of different ideas in new
ways. A new technology is the combination and packaging of existing concepts together to offer
functionality that its base technologies did not offer. Rarely are the ideas explored
computationally completely new with traditional science supplying most of the concepts
explored. More often, new ideas area mélange of existing ideas, but engaged in a fundamentally
different context. As such computational science provides an engine of discovery merely by
providing an effective vehicle for combining disciplines together. As such computational
science is a powerful new “integrating factor” for science.

Computational science has been an emergent technology in the last 70 years. In the past 20 years
there has been a veritable explosion in capability. Computation has risen into prominence
societally through the Internet with all the good and bad it brings. All of this new capability and
connectivity will allow new problems to be posed and solved through providing a meaningful
path to solving problems. Hype today circles around big data, and will likely end up with some
sort of rational equilibrium where big data contributes meaningfully to scientific
progress. Analytical tractability has always been a limitation to meaningful theory. Today

Consortium for Advanced Simulation of LWRs
10

computers offer different paths to tractable solutions for theory. For a theory to be solvable no
longer requires access to analytical solutions, or their near relative in asymptotic
expansions. Instead, the conditions are loosened by access to a numerical solution. Of course
getting the numerical solutions correct is a subtle technical matter requiring immense
skill. Accurate, robust and convergent numerical approximation can be just as challenging as
analytical work, if not more so. In spite of this difficult endeavor, numerical approximation is an
improvement provided by computational science and a boon to scientific progress in general.

Computers and computation is now an indispensable part of science and engineering. A key is to
define computational science as a new way of doing investigations that are computational
experiments which blend complex theoretical models together. Such blends of models were
functionally impossible in the past due to inability to tackle their solutions analytically. Thus a
numerical, i.e., computational approach is necessary. The classical example of such models
comes originally from defense science, e.g., nuclear weapons, but the approach rapidly spanned
spinoffs to weather and climate via the efforts of visionaries such as John Von Neumann. As
such these efforts are central to the tension between science, policy and politics when their
results indicate the root cause of climate change is human activity. Before the advent of serious
computational power, such a modeling activity would have been impossible. This is an
argument for including computational science as something new.

Science creates knowledge that ultimately comes into common use through engineering. This is
another place where computations are reshaping how work is done and what sort of activities is
possible. With the new power comes danger of over-reliance on the virtual experiment over the
cruel mastery of nature. Often the theory that underpins our models is too weak to capture
uncommon events that often dominate issues such as safety. These tail events quite often
become those that shape history. Think of events such as 9/11, Fukishima, Earthquakes,
Tsumanis, Katrina and other massive events that are in the tails of distributions. Our mean field
theory-based science is ill prepared to provide good answers to these issues much less engineer a
robust technological response. The important thing that computational science brings to the table
is the ability to identify the issues more clearly. Only then can we begin to address
solutions. Traditional science hadn’t provided progress enough in that direction prior to the
advent of computational science.

While computational science brings new perspectives to the table it should remain firmly
entrenched in reality. This is where theoretical and experimental science in their largely
traditional form should come in. This is realm of verification and validation. Verification is the
way of tying computations directly to theory, that is can I prove that my model is a correct
solution to the theory I think I’m solving. In the same way validation is the way I prove that my
model is providing some reasonable representation of the observed universe. Together these
techniques tie the three branches of science together as a cohesive whole, and provide some
measure of confidence in the computational view. Add to this uncertainty quantification and we
can start to meaningfully engage with people making decisions.

A key to progress is a natural tension between theory and experiment. Sometimes a new theory
will drive science to make new observations that may confirm or deny an important theory. At
other time observations are made that push theory to explain them. This is a useful and
important tug-of-war. Computational science now offers a third mechanism to achieve this

 Consortium for Advanced Simulation of LWRs
11

import dynamic. A calculation can sometimes serve as the “experiment” to drive new theory
and observation, such as the problem of climate change. Sometimes it fits more firmly into the
theoretical camp as turbulent fluid mechanics where experimental techniques are playing catch
up in measuring the energetic dynamics at small scales. At other times it plays the role of
experimental evidence as with simulations of the evolution of the large scale of universe. The
important aspect is that it plays both roles in a way that pushes knowledge and understanding
forward.

In the end we just have science. Theory is the way we try to conceptually understand the world
and equip ourselves to predict what might happen. Experiments are the way we record
phenomena and observe the world. Experiments and observations are used to confirm or deny
theory. Computation is another path that stands between these two approaches in a different (but
perhaps more unified) manner. It is a new tool to examine and understand. It needs to be used
properly, but also respected as a field of meaningful endeavor. I read the Wired blog post and
didn’t really feel a lot of respect. Computation was characterized as being a bit less important
than the traditional approaches. This is not the way to progress.

It is the realization that computational science is a new approach to conducting science that
enhances the older traditional approaches. It can offer new solutions to problems and provide a
greater chance for success. It only adds to our knowledge, and poses no risk to the tried and true
approaches to science so cherished by many. Rather than competing with traditional scientific
practice, computational science enriches and provides new connections and ideas to solve
today’s most important challenges.

Calibration is a valuable tool for minimizing parameter uncertainty. We intend to promote the
use of this valuable tool. However, incorrectly applied calibration can be a very dangerous tool.
The assumption for applying calibration is that the uncertainties due to code bugs, numerical
error, and model error have already been eliminated or at least made significantly smaller than
the parameter uncertainty. Based on this assumption, calibration “tunes” the parameters to
minimize error. The second assumption here is that parameter tuning will allow for some
amount of extrapolation outside of the existing validation data range.
However, if the calibration process is “tuning” code bugs, numerical error, and model error there
is no way that the software can expect to extrapolate or even interpolate the experiment data set
range. This is why it is so important to have the SQA, verification, and validation evidence in
hand before any code calibration takes place.
The rest of this document will define the VUQ strategy. This will start with a description of the
Predictive Capability Maturity Model (PCMM). This will be our mechanism for documenting
the VUQ work done. Next we will discuss the required prerequisite work for the VUQ plan. We
will then cover Code PCMM, then Application PCMM, and finally Input PCMM. We will then
finish up with descriptions of the DAKOTA tools that we have to make the PCMM analysis
process easier. This will be followed by a summary.

Consortium for Advanced Simulation of LWRs
12

6. PREDICTIVE CODE MATURITY MODEL (PCMM): BACKGROUND
AND OVERVIEW

The Predictive Capability Maturity Model (PCMM) is an expert elicitation tool designed to characterize
and communicate completeness of the approaches used for computational model definition,
verification, validation, and uncertainty quantification associated for an intended application. The
primary application of this tool at Sandia National Laboratories (SNL) has been for physics based
computational simulations in support of nuclear weapons applications. The two main goals of a PCMM
evaluation are 1) the communication of computational simulation capability, accurately and
transparently, and 2) the development of input for effective planning.

The Predictive Capability Maturity Model (PCMM) is an assessment and communication tool
that addresses the ‘Maturity’ of a computational simulation (CompSim) for an intended
application. The term ‘Maturity’ is meant to convey the completeness and rigor of the
approaches used for computational model definition, evaluation, and use. The first generation
PCMM was developed by Oberkampf, et al. (2007) and was in the form of a table with the table
entries containing descriptions of requirements to be met for maturity levels of 0 through 3 for
each of 6 elements deemed important to the credibility of a CompSim. A maturity level of 0
represents a low consequence application with minimal CompSim impact. A maturity level of 3
represents a high consequence application with the decision making heavily dependent on the
CompSim results. The elements are 1) Representative and Geometric Fidelity, 2) Physics and
Material Model Fidelity, 3) Code Verification, 4) Solution Verification, 5) Model Validation,
and 6) Uncertainty Quantification and Sensitivity Analysis and are arranged by row. The
corresponding maturity levels are arranged by column, with higher maturity levels requiring
more complete and rigorous approaches to assessing the confidence in the CompSim.
Martin Pilch developed a second generation of the PCMM (unpublished) beginning in 2008. This
generation is based on the six elements of the first generation documented by Oberkampf et al.
but is expanded to include more detail in the form of multiple sub-elements for each of the main
elements. The sub-elements include more complete description of the issues that should be
addressed in assessing credibility of each of the main elements. This generation is available in
the form of an undocumented spreadsheet.
A third generation PCMM was developed by Pilch et al. (2011), with a focus on ‘maturity’
defined in terms of quality of ‘the evidence’ that various items described in the sub-elements are
addressed in an evaluation. Pilch et al. (2011) provides an extensive discussion of the PCMM,
along with a detailed example demonstrating evaluation of the PCMM for a notional application.
An important addition to the third generation PCMM is the independent development of a
spreadsheet ‘tool’ by Dean Dobranich (unpublished). This tool has been used by several different
teams at Sandia for a series of applications and has been well received.

 Consortium for Advanced Simulation of LWRs
13

Figure 2 A Kiviat (radar) plot of a PCMM score for the Generation 3 PCMM

Each successive generation of the PCMM was developed with one or more of the following
goals:

1. Increase the rigor and completeness of the credibility assessment.
2. Revise the descriptions provided in each cell of the spreadsheet to clarify intent.
3. Better align the use of the PCMM with the needs of computational analysts and their
customers.

While each of these generations of the PCMM represents conceptual evolution, experience with
PCMM evaluations, including the Generation 3, indicates that the approach to the evaluation, the
interpretation of the element descriptions, the perceived purpose, and the impact of the
evaluation vary significantly from team to team and from application to application. Increased
consistency and rigor in the use of the PCMM is required for the resulting information to be
useful for CompSim-informed decision making across the CompSim application space.
The solution to increased consistency and rigor is not necessarily ‘just’ another version of the PCMM. A
more systematic approach to the process of management, evaluation, as well as modifications to the
PCMM itself, is required. A team of PCMM subject matter experts (the authors of this report) was
assembled to perform a top-down evaluation of the PCMM and the processes associated with its
evaluation. Members of this team were selected based on their experience with the development of the
PCMM or PCMM-like frameworks, participating in PCMM evaluations, and their experience with the
assessment of the processes and results of evaluations across multiple application domains.

Consortium for Advanced Simulation of LWRs
14

 One of the big problems that the entire V&V enterprise has is the sense of imposition on
others. Every simulation worth discussing does “V&V” at some level, and almost without
exception they have weaknesses. Doing V&V “right” or “well” is not easy or simple. Usually,
the proper conduct of V&V will expose numerous problems with a code, and/or simulation. It’s
kind of like exposing yourself to an annual physical; it’s good for you, but you might have to
face some unpleasant realities. In addition, the activity of V&V is quite broad and something
almost always slips between the cracks (or chasms in many cases).

To deal with this breadth, the V&V community has developed some frameworks to hold all the
details together. Sometimes these frameworks are approached as prescriptions for all the things
you must do. Instead I’ll suggest that these frameworks are not recipes, nor should they be
thought of as prescriptions. They are “thou should,” not “thou shalt,” or even “you might. “

 Several frameworks exist today and none of them is fit for all purposes, but all of them are
instructive on the full range of activities that should be at least considered, if not engaged in.

 CSAU – Code Scaling Assessment and Uncertainty developed by the Nuclear Regulatory
Committee to manage the quality of analyses done for power plant accidents. It is principally
applied to thermal-fluid (i.e. thermal-hydraulic) phenomena that could potentially threaten the
ability of nuclear fuel to contain radioactive products. This process led the way, but has failed in
many respects to keep up to date. Nonetheless it includes processes and perspectives that have
not been fully replicated in subsequent work. PCMM is attempting to utilize these lessons in
improving its completeness.

 PCMM – Predictive Capability Maturity Model developed at Sandia National Laboratories for
the stockpile stewardship program in the last 10 years. As such it reflects the goals and
objectives of this program and Sandia’s particular mission space. It was inspired by the CMMI
developed by Carnegie Mellon University to measure software process maturity. PCMM was
Sandia’s response to calls for greater attention to detail in defining the computational input into
quantitative margins and uncertainty (QMU), the process for nuclear weapons’ certification
completed annually.

 CAS – Credibility Assessment Scale developed by NASA. They created a similar framework to
PCMM for simulation quality in the wake of the shuttle accidents and specifically after
Columbia where simulation quality played an unfortunate role. In the process that unfolded with
that accident, the practices and approach to modeling and simulation were found to be
unsatisfactory. The NASA approach has been adopted by the agency, but does not seem to be
enforced. This is a clear problem and potentially important lesson. There is a difference
between an enforced standard (i.e., CSAU) and one that comes across as well intentioned, but
powerless directives. Analysis should be done with substantial rigor when lives are on the
line. Ironically, formally demanding this rigor may not be the most productive way to achieve
this end.

 PMI, Predictive Maturity Index developed at Los Alamos. This framework is substantially more
focused upon validation and uncertainty, and IMHO it is a bit lax with respect to the code’s
software and numerical issues. In my view, these aspects are necessary to focus upon given

 Consortium for Advanced Simulation of LWRs
15

advances in the past 25 years since CSAU came into us in the nuclear industry.

Computational simulations are increasingly used in our modern society to replace some degree
of expensive or dangerous experiments and tests. Computational fluid and solid mechanics are
ever more commonplace in modern engineering practice. The challenge of climate change may
be another avenue where simulation quality is scrutinized and could benefit from a structured,
disciplined approach to quality. Ultimately, these frameworks serve the role of providing greater
confidence (faith) in the simulation results and their place in decision-making. Climate
modeling is a place where simulation and modeling plays a large role, and the decisions being
made are huge.

The question lingers in the mind, “what can these frameworks do for me?” My answer follows:

1. V&V and UQ are both deep fields with numerous deep subfields. Keeping all of this straight
is a massive undertaking beyond the capacity of most professional scientists or engineers.

2. Everyone will default to focusing on where they are strong and comfortable, or interested. For
some people it is mesh generation, for others it is modeling, and for yet others it is
analysis of results. Such deep focus may not lead (or is not likely to lead) to the right sort
of quality. Where quality is needed is dependent upon the problem itself and how the
problem’s solution is used.

3. These are useful outlines for all of the activities that a modeling and simulation project might
consider. Project planning can use the frameworks to develop objectives and subtasks,
prioritize and review.

4. These are menus of all the sort of things you might do, not all the things you must do.
5. They provide a sequenced set of activities, prepared in a sequenced rational manner with an

eye toward what the modeling and simulation is used for.
6. They help keep your activities in balance. They will help keep you honest.
7. You will understand what is fit for purpose, when you have put too much effort into a single

aspect of quality.
8. V&V and UQ are developing quickly and the frameworks provide a “cheat sheet” for all of the

different aspects.
9. The frameworks flexibility is key, not every application necessarily should focus on every

quality aspect, or apply every quality approach in equal measure.
10. Validation itself is incredibly hard in both breadth and depth. It should be engaged in a
structured, thoughtful manner with a strong focus on the end application. Validation is easy to
do poorly.

11. The computational science community largely ignores verification of code and
calculations. Even when it is done, it is usually done poorly.

12. Error estimation and uncertainty too rarely include the impact of numerical error, and
estimate uncertainty primarily through parametric changes in models.

13. Numerical error is usually much larger than acknowledged. Lots of calibration is actually
accounting for the numerical error, or providing numerical stability rather than physical
modeling.

Consortium for Advanced Simulation of LWRs
16

Figure 3 Gatekeepers and the Outer Loop of the PCMM Process

Figure 4 PCMM Tool's Main Assessment Sheet

 Consortium for Advanced Simulation of LWRs
17

The majority of the structural changes that have been implemented in the tool aim at increasing
the usability of the tool and facilitate the assessment. To this end, the tool is designed to be free
standing, that is, an assessment should be executed using only this tool. The elicitation process
itself is embedded in one of the sheets of the tool and explanatory descriptions of each sub-
element and the evidence needed is contained within the tool.
One of the most salient changes to the tool has been the separation of the element and sub-
element names and the description of what they are relative to a particular level (i.e. level 0
through 3). The descriptor and other relevant information are now separated into different sheets
that are hyperlinked to the main assessment sheet. An example of the CVER descriptor sheet is
shown in Figure 5.

Figure 5 Example of CVER Descriptor Sheet

The modified PCMM tool’s elements are arranged in the following way:
1. CVER Code Verification
2. PMMFPhysics and Material Model Fidelity
3. RGF Representation and Geometric Fidelity
4. SVER Solution Verification
5. VAL Validation
6. UQ Uncertainty Quantification

This ordering was based on the workflow that an analyst would (or should) follow when starting
a CompSim effort.
A second high-level change involves the elimination of the word “Maturity” from the columns
identifying the intended use of the CompSim effort. Initially, the column headers were:

Consortium for Advanced Simulation of LWRs
18

Maturity Level 0 = Low Consequence, Minimal Computational Simulation Impact, e.g.
Scoping Studies

Maturity Level 1 = Moderate Consequence, Some Computational Simulation Impact, e.g.
Design Support

Maturity Level 2 = High-Consequence, High Computational Simulation Impact,
e.g. Qualification Support

Maturity Level 3 = High-Consequence, Decision-Making Based on Computational
Simulation, e.g. Qualification or Certification

They are now simply replaced by:
Level 0 = No Words
Level 1 = No Words
Level 2 = No Words
Level 3 = No Words
This is a LARGE CHANGE IN PHILOSOPHY that responds to negative PCMM feedback
associated with the implied grading in the word “maturity.”

6.1. PCMM Generation 4 Detail
Earlier, we described the changes between the Generation 3 and Generation 4 PCMM, and the
underlying logic. In this Appendix, we provide a list of the detailed descriptions of the Generation 4 table
elements. Some users, especially those with greater familiarity of earlier PCMM generations, might find
aspects of this summary to be useful in putting our earlier discussion in context.

The highest-level elements in the Generation 4 PCMM are:

CSC: Customer Specification Completeness
CVER: Code Verification
RGF: Representation and Geometric Fidelity
SVER: Solution Verification
VALH: Validation - Hierarchy

 DATC: Experimental data for Constitutive Model Calibration
DATV: Experimental data for CompSim model validation
VALC: Validation – Component
UQ: Uncertainty Quantification

Sub-element descriptors for given levels are summarized next.

6.2. Customer Specification Completeness (CSC)

CSC1: Needs Descriptor

Level 0 Needs of customer incompletely and informally defined
Level 1 Needs defined with some feedback (informal) from the customer that the
planned product addresses the needs
Level 2 Majority of needs defined with formal feedback from the customer that the
planned product addresses the needs

 Consortium for Advanced Simulation of LWRs
19

Level 3 All needs defined with formal feedback from the customer that the planned
product addresses the needs

CSC2: Domain of Application
Level 0 Domain of application incompletely and informally defined.
Level 1 Domain of application defined with some potential for domain creep for the
model during development and analysis
Level 2 Domain of application formally and completely defined. Little potential domain
creep for the model during development and analysis
Level 3 Domain of application fully defined with formal feedback for the users that the
domain meets customer needs

CSC3: Domain of Validation
Level 0 Domain of validation incompletely and informally defined.
Level 1 Domain of validation defined with some potential for domain creep for the
model during development and analysis
Level 2 Domain of validation formally and completely defined. Little potential domain
creep for the model during development and analysis
Level 3 Domain of validation fully defined with formal feedback from the customer that
the domains meets customer needs

CSC4: PIRT
Level 0 No PIRT exists that is relevant for the domain of application
Level 1 Most major effects/phenomena for domain of application identified and ranked
Level 2 Most major and some secondary effects/phenomena for domain of application
identified and ranked
Level 3 All major and significant secondary effects/phenomena for domain of application
identified and ranked

6.3. Code Verification (CVER)

CVER1: Apply Software Quality Engineering (SQE) processes

Level 0 No identified SQE process
Level 1 Code capability is managed to identified SQE practices
Level 2 Code capability is managed to identified SQE practices. SQE process is managed
Level 3 Code capability is managed to identified SQE practices. SQE process is managed
and optimized

CVER2: Provide test coverage information
Level 0 No test coverage reported
Level 1 Regression testing and/or limited verification tests (VERTS) reported
Level 2 Regression testing and VERTS testing, with VERTS test feature coverage identified
and categorized into 1- & 2- way feature coverage categories.
Level 3 Regression testing and VERTS testing, with VERTS test feature coverage identified
and categorized into 1- & 2- way feature coverage categories. All the

Consortium for Advanced Simulation of LWRs
20

physics/engineering features required for the intended application are covered by the
reported VERTS.

CVER3: Identification of code or algorithm attributes, deficiencies and errors
Level 0 Code/algorithm attributes, deficiencies and errors from VERTS not presented
Level 1 Code/algorithm attributes, deficiencies and errors from VERTS presented
Level 2 Code/algorithm attributes, deficiencies and errors from VERTS presented.
Mapping to the intended application analyzed and presented.
Level 3 Code/algorithm attributes, deficiencies and errors from VERTS presented.
Mapping to the intended application analyzed and presented. Impact on the intended
application is analyzed and presented.

CVER4: Verify compliance to Software Quality Engineering (SQE) processes
Level 0 No assessment
Level 1 PCMM evaluation team self-assessment of SQE process compliance
Level 2 External team review of SQE process compliance
Level 3 External team review and certification of SQE process compliance

CVER5: Technical review of code verification activities
Level 0 No review of code verification activities reported
Level 1 PCMM evaluation team reviewed code verification activities
Level 2 External (independent) review of code verification activities
Level 3 External (independent) review of code verification activities; certification of code
verification activities

CSC5: Technical review of customer specifications
Level 0 No review of customer specifications activities reported
Level 1 PCMM evaluation team reviewed customer specifications activities
Level 2 External (independent) review of customer specifications activities
Level 3 External (independent) review of customer specifications; certification of
customer specifications

6.4. Representation and Geometric Fidelity (RGF)

RGF1: Characterize Representation and Geometric Fidelity
Level 0 Model has no major or minor features present. Model is mainly "blobs" or point
masses or stick-figure models or a curve fit of data.
Level 1 Relative to the actual system, the meshed model is a de-featured representation
of it. Subject matter expertise may define this level of meshing and define the meaning
of "major features," relationship to "actual system," etc.
Level 2 Relative to the actual system, the model has most of the major features.
Component geometries are accurate meshed, but most fillets are omitted, bolts and
holes may or may not be included, etc. Subject matter expertise may define this level of
meshing and define the meaning of "major features."

 Consortium for Advanced Simulation of LWRs
21

Level 3 Model represents "as built" system including all "major features" and most
"minor features." "All" defined by the evaluation team. "Most" defined by the
evaluation team.

RGF2: Geometry sensitivity
Level 0 Simulation sensitivity to major features is not discussed
Level 1 Sensitivity of solution to major features is discussed
Level 2 Sensitivity of solution to SOME major features is quantified
Level 3 Sensitivity of solution to ALL major features is quantified

RGF3: Technical review of representation and geometric fidelity
Level 0 No review of representation/geometry reported
Level 1 PCMM evaluation team reviewed representation/geometry
Level 2 External (independent) review of representation/geometry
Level 3 External (independent) review of representation/geometry; certification of
representation/geometry

6.5. Solution Verification (SVER)

SVER1: Quantify numerical solution errors
Level 0 Errors due to mesh size not examined
Level 1 Sensitivity, or robustness, of one or more computed quantities of interest (QoI)
to mesh resolution and numerical solution parameters is studied and presented.
Quantification as a computational "error" is not required or expected. Conclusions may
be qualitative.
Level 2 Computational errors, due to mesh resolution and choice of numerical solution
parameters, in one or more QoIs are estimated, analyzed and reported. The
computational errors are interpreted as error bars on the computed results for the
chosen QoIs. The question "What is the validity of these error estimates" is answered.
Level 3 Computational errors, due to mesh resolution and choice of numerical solution
parameters, for all QoIs of the intended application are estimated, analyzed and
reported. The computational errors are interpreted as error bars on the computed
results for the chosen QoIs. The question "What is the validity of these error estimates"
is answered.

SVER2: Quantify Uncertainty in Computational (or Numerical) Error
Level 0 Uncertainty in computational error estimate not examined
Level 1 Uncertainty of computational error estimates, of one or more computed
quantities of interest (QoI) to mesh resolution and numerical solution parameters is
examined and presented. Quantification as an uncertainty in computational "error" is
not required or expected. Conclusions may be qualitative.
Level 2 Uncertainty of computational error estimates, due to mesh resolution and choice
of numerical solution parameters, in one or more QoIs are estimated, analyzed and
reported. The computational uncertainties are interpreted as variation in error bars on

Consortium for Advanced Simulation of LWRs
22

the computed results for the chosen QoIs. The question "What is the potential variation
of these error estimates" is answered.
Level 3 Uncertainty of computational errors, due to mesh resolution and choice of
numerical solution parameters, for all QoIs of the intended application are estimated,
analyzed and reported. The uncertainty in computational error is interpreted as
variations in the error bars on the computed results for the chosen QoIs. The question
"What is the validity of the variations on the error estimates" is answered.

SVER3: Verify simulation input decks
Level 0 Inspection of input deck(s) for intended application not reported
Level 1 Inspection of input deck(s) for intended application by the analyst(s).
Level 2 Inspection of input deck(s) for intended application by one or more people other
than the analyst(s). This is an "external" or "independent" review, but need not be
performed as a formal "software inspection."
Level 3 Formal inspection of input deck(s) for intended application by an independent
inspection team (one or more readers, scribe).

SVER4: Verify simulation post-processor inputs decks
Level 0 Inspection of post-processor input deck(s) for intended application not reported
Level 1 Inspection of post-processor input deck(s) for intended application by the
analyst(s).
Level 2 Inspection of post-processor input deck(s) for intended application by one or
more people other than the analyst(s). This is an "external" or "independent" review,
but need not be performed as a formal "software inspection."
Level 3 Formal inspection of post-processor input deck(s) for intended application by an
independent inspection team (one or more readers, scribe).

SVER5: Technical review of solution verification Descriptor
Level 0 No review of solution verification activities reported
Level 1 PCMM evaluation team reviewed solution verification activities
Level 2 External (independent) review of solution verification activities
Level 3 External (independent) review of solution verification activities; certification of
solution verification activities

6.6. Validation – Hierarchy (VALH)

VALH1: Define a validation hierarchy
Level 0 No validation hierarchy is defined (presented, specified, identified,
acknowledged, etc).
Level 1 One level (i.e. level refers to either material level, component level, subsystem
level, etc) of a complete validation hierarchy, or an incomplete validation hierarchy, is
defined (etc).
Level 2 More than one level (i.e. level refers to either material level, component level,
subsystem level, etc) of an incomplete validation hierarchy is defined (etc).
Level 3 Complete validation hierarchy is defined.

 Consortium for Advanced Simulation of LWRs
23

VALH2: Apply a validation hierarchy
Level 0 No identified validation work is aligned with a validation hierarchy.
Level 1 Presented validation work aligns with this level.
Level 2 Presented validation work aligns with these levels.
Level 3 Presented validation work aligns with the complete hierarchy.

VALH3: Characterize completeness versus the PIRT
Level 0 No correlation of relevant material/physics models in the capability with the PIRT
for the intended application is presented; alternative view - NO PIRT elements are
present in the capability to be applied.
Level 1 Some relevant material/physics models in the capability are correlated with the
PIRT for the intended application
Level 2 Most relevant material/physics models in the capability are correlated with the
PIRT for the intended application
Level 3 All relevant material/physics models in the capability are correlated with the PIRT
for the intended application

VALH4: Validation domain vs. application domain
Level 0 No assessment of the relationship (interpolation vs. extrapolation) of the
validation domain to the application domain.
Level 1 Pure extrapolation of validation domain with application domain.
Level 2 Partial extrapolation of validation domain with application domain (i.e. mix of
interpolation and extrapolation).
Level 3 Application domain contained by validation domain (i.e. pure interpolation).

VALH5: Technical review of validation
Level 0 No reported review of validation assessment
Level 1 Project team reviews validation assessment
Level 2 External team reviews validation assessment
Level 3 External team reviews validation assessment and certifies the assessment

6.7. Experimental data for Constitutive Model Calibration (DATC)

DATC 1: Available data
Level 0 Little or no data, constitutive model parameters somewhat arbitrarily set to
values within reasonable ranges
Level 1 Sufficient data for calibration for major constitutive models, calibration
performed using statistical techniques
Level 2 Sufficient data for calibration of major and some minor constitutive models,
calibration performed using statistical techniques with estimates of calibration
uncertainty
Level 3 Sufficient data for calibration of major and significant minor constitutive models,
calibration performed using statistical techniques

DATC 2: Data Uncertainty Descriptor
Level 0 Potential sources and characterization of data uncertainties not addressed

Consortium for Advanced Simulation of LWRs
24

Level 1 Most potential sources of data uncertainty identified with some quantitative
characterization of these uncertainties
Level 2 Most significant sources of data uncertainty identified with characterization
these uncertainties using statistical techniques
Level 3 All significant sources and types of data uncertainties are quantified using
statistical techniques

DATC 3: Impact of incomplete data for constitutive models
Level 0 Impact of incomplete data ignored, associated constitutive model parameters
arbitrarily set to values within reasonable ranges
Level 1 Impact of incomplete data based on judgment, associated constitutive model
parameters set to values based on experience
Level 2 Impact of incomplete data based on judgment with supporting sensitivity
analysis limited to critical constitutive model parameters, other parameters set to values
based on experience
Level 3 Impact of incomplete data evaluated through comprehensive sensitivity analysis

DATC 4: Technical review of data
Level 0 No review of data used for constitutive models reported
Level 1 PCMM evaluation team reviewed sufficiently of data
Level 2 External (independent) review of sufficiently of data
Level 3 External (independent) review of sufficiently of data; certification of sufficiently
of data

6.8. Experimental data for CompSim model validation (DATV)

DATV 1: Available Data
Level 0 Little or no data for validation
Level 1 Sufficient data for validation of high priority items identified in the PIRT,
validation experiment somewhat characterized, validation performed with some
estimate of uncertainty in the resulting differences between simulation and measured
data
Level 2 Sufficient data for validation of high priority items identified in the PIRT,
validation experiment well characterized, validation differences and uncertainty in these
differences are characterized
Level 3 Sufficient data for validation of high and medium priority items identified in the
PIRT, validation experiment well characterized, validation differences and uncertainty in
these differences characterized

DATV 2: Data Uncertainty
Level 0 Potential sources and characterization of data uncertainties associated with the
validation data not addressed
Level 1 Potential sources of data uncertainty identified with some statistical
characterization these uncertainties

 Consortium for Advanced Simulation of LWRs
25

Level 2 Potential significant sources of data uncertainty identified with characterization
of most of these uncertainties using statistical procedures
Level 3 All identified significant sources and types of data uncertainties are characterized
using established statistical procedures

DATV 3: Validation Experiment Definition
Level 0 Experiment not adequately specified to develop a computation model of the
experiment
Level 1 Experiment adequately specified to define a computation model of experiment
with some assumptions required and with additional undocumented information
required from the experimentalist
Level 2 Experiment adequately specified to develop a computation model of experiment
with limited assumptions required and with limited undocumented information
required from the experimentalist
Level 3 Experiment adequately defined with documentation adequate to develop the
computation model of experiment requiring no additional input from the
experimentalist

DATV 4: Technical review of data
Level 0 No review of validation experiments
Level 1 PCMM evaluation team reviewed validation experiments
Level 2 External (independent) review of validation experiments
Level 3 External (independent) review of completeness of validation experiments and
results certified

6.9. Validation - Component (VALC)

VALC1: Quantify model accuracy (i.e., separate effects model validation)
Level 0 No validation assessment is performed (A gatekeeper here is familiarity with the
SNL V&V program approaches to V&V).
Level 1 Imprecise validation conclusions: qualitative statements, in particular use of
vugraph norms, no use of experimental uncertainty, expert opinion-centric validation
statements, etc.
Level 2 Quantitative validation characterizations and conclusions. Some, but
acknowledged INCOMPLETE characterization of uncertainty in experimental data and/or
computational data. Quantitative validation statements are made and supported by
presented quantitative analysis. Pedigree information is presented, but may be
incomplete. Expert opinion may also be presented.
Level 3 Quantitative validation characterizations and conclusions. Complete
characterization of uncertainty in experimental data and computational data.
Quantitative validation statements are made and supported by presented quantitative
analysis. COMPLETE pedigree information is presented. Expert opinion may also be
presented.

VALC2: Assess interpolation vs. extrapolation of physics and material model

Consortium for Advanced Simulation of LWRs
26

Level 0 Interpolation and/or extrapolation of the application domain to the validation
domain is not analyzed or presented.
Level 1 The application domain does not intersect the validation domain, so that the
application is a full extrapolation beyond the validation domain.
Level 2 The application domain partially intersects the validation domain. Part of the
application domain is therefore an interpolation of the validation domain, while the rest
is an extrapolation.
Level 3 The application domain is entirely contained within the validation domain, so
that the application is solely interpolation within the validation domain.

VALC3: Technical review of validation
Level 0 No reported review of validation assessment
Level 1 Project team reviews validation assessment
Level 2 External team reviews validation assessment
Level 3 External team reviews validation assessment and certifies the assessment

6.10. Uncertainty Quantification (UQ)

UQ1: Aleatory and epistemic uncertainties identified and characterized.
Level 0 No uncertainties identified/characterized
Level 1 Some uncertainties identified/characterized. Aleatory/epistemic separation
(segregation, etc) not performed.
Level 2 Some uncertainties identified/characterized. Aleatory/epistemic separation
(segregation, etc) is performed for these uncertainties.
Level 3 All significant uncertainties identified/characterized except for
unknown/unknowns. Aleatory/epistemic separation (segregation, etc) is performed for
these uncertainties.

UQ2: Perform sensitivity analysis
Level 0 No sensitivity analysis of uncertainties performed
Level 1 Qualitative sensitivity analysis of some uncertainties is performed
Level 2 Quantitative sensitivity analysis of some uncertainties is performed
Level 3 Quantitative sensitivity analysis performed for all characterized uncertainties

UQ3: Quantify impact of uncertainties from UQ1 on QoIs
Level 0 Impact reported for uncertainty characterization
Level 1 Impact reported for some uncertainty characterizations without
aleatory/epistemic separation
Level 2 Impact reported for some uncertainty characterizations with aleatory/epistemic
separation
Level 3 Impact reported for ALL uncertainty characterizations with aleatory/epistemic
separation

UQ4: UQ aggregation and roll-up
Level 0 No aggregation or roll-up performed
Level 1 Aggregation or roll-up performed for some of the major uncertainties

 Consortium for Advanced Simulation of LWRs
27

Level 2 Aggregation or roll-up performed for most of the major uncertainties
Level 3 All significant sources of uncertainty are aggregated and rolled-up

UQ5: Technical review of uncertainty quantification
Level 0 No review of UQ is reported
Level 1 PCMM evaluation team reviewed UQ
Level 2 External (independent) review of UQ
Level 3 External (independent) review of UQ; certification of UQ

7. PREREQUISITES
There is a certain amount of prerequisite work required to make the PCMM analysis useful. In
general the prerequisite work focuses on two questions.

1. How will the software be used?
2. How does one decompose the software into small testable pieces?

7.1. QOI and Decision Making
A given piece of software can have a large amount of capability that can be applied to a wide
range of applications. The goal of VUQ is to focus the discussion into a finite amount of work
that can be done in a reasonable amount of time that will provide confidence in the use of the
software.
VUQ is done on software that will be used to make important decisions. The important decision
may be, “How to distribute resources on a $25M/year project?” Or it may be, “How do I operate
my reactor to minimize the safety or financial impact of CRUD?” It is always important to keep
in mind what decision is going to be made with the software. It is also important to recall that
the decision is important and therefore the decision maker needs to understand what level of
confidence they can have in your code results.
A decision is never made based on the 254,357th velocity vector from a 3-D CFD simulation.
Decisions are made with one or a few pieces of integral data that describe the overall behavior of
the system. These small set of integral quantities are called the Quantities Of Interest (QOI). So
we now focus on quantifying how accurate we can predict a QOI that is going to be used to make
a decision. The required level of accuracy depends on the decision that is being made.
If at all possible it is important to define a QOI that can be (or already has been) measured
experimentally. This QOI experimental data will play a key role in uncertainty quantification
and uncertainty reduction.

7.2. Phenomenon Identification and Ranking Table (PIRT)
Once we have defined the QOI the next step is to decompose the QOI into its physical
phenomenon components. This is done with a Phenomenon Identification and ranking table
(PIRT). The PIRT provides a list of all of the physical phenomena that contributes to the QOI.
This list is then ranked by both the expected impact on the quantity of interest and our
knowledge of the phenomena. Note that this is similar to giving the sensitivity and the parameter
distribution.
The PIRT serves as a map of what needs to be done in order of importance. It defines the
requirements of the software and what physical phenomenon needs to be modeled accurately.

Consortium for Advanced Simulation of LWRs
28

7.3. Quantified Parameter Ranking Table (QPRT)
The PIRT process is based on “expert opinion” and a detailed knowledge of the physics of a
nuclear reactor. The QPRT is a quantitative measure based on the physics that is modeled by the
simulation code. The QPRT is constructed from the following steps.

1. The quantity of interest (QOI) needs to be exposed for study in the code
2. The PIRT physical phenomena are mapped to correlations in the theory manual of the

code.
3. The theory manual is then mapped to correlation in the software.
4. The code logic that determined that this was the correct correlation to use, is the first set

of parameters.
5. These parameters need to be exposed and measured for sensitivity. Note that the control

parameters may impact other “nearby” correlations due to continuity constraints.
6. The correlation is comprised of a set of parameters. These parameters need to be exposed

and measured for sensitivity as a group. We need to measure the sensitivity of the
correlation as a whole.

7. We then study the sensitivity of the individual parameters.
8. The next step is to construct a parameter distribution for each parameter in the

correlation. This can be done by:
a. Expert opinion provided minimum and maximum values with a uniform

distribution assumed in between.
b. Bayesian analysis of the correlation and its experimental data

9. Correlation ramps and under relaxation impact the way that the correlation transitions to
the next correlation in time or in state space. The ramp and under-relaxation parameters
impact on the QOI also needs to be studied.

10. The final step is to quantify the uncertainty of the parameters. This is done based on code
logic controls, all of the parameters in the correlation as a group, the smoothing of the
parameters in state space with “ramps” or in time with “under-relaxation,” and finally by
the individual parameters.

The key is to iterate the PIRT and QPRT processes until they come into agreement. This may
require adding new physics models to the code and/or discussion with the “experts” to clarify
understanding.

7.4. Validation Pyramid
Validation, validation data, database infrastructure, and increasingly, data mining and data
assimilation are instrumental to technical and regulatory decision making. Validation and
data are central in establishing and assuring that quality of advanced modeling and
simulation (AMS) results (measured in uncertainty) are commensurate with the importance
of decisions they support (i.e. PCMM). It is noted that the term “validation” used in the
present work denotes activity of assessing maturity of the AMS capability for a specific
application, or a well-defined class of applications. It is important to keep in mind that an
AMS capability, at best, is validated for an application domain. Using a “validated code”
with a poorly defined application domain almost ensures its misuse.

 Consortium for Advanced Simulation of LWRs
29

During late 1980s, the US Nuclear Regulatory Commission, through its group of leading
experts (to the largest extent, specialized in thermo-hydraulics), developed so-called CSAU
(Code Scaling, Applicability, and Uncertainty) methodology. The CSAU provides guidance
on code assessment process including the use of experimental data. The CSAU was applied
to “legacy” codes. In the early 2000s, the US NRC issued Regulator Guide 1.203 “Transient
and Accident Analysis Methods”, which presents the Evaluation Model Development and
Assessment Process (EMDAP). Notably, both CSAU and EMDAP provide a framework,
whose steps are high level, leaving significant flexibility for applicants to implement the
recommendations. The EMDAP aims at modern AMS codes, although the process has not
been practiced for them.
In the decision context, the “communication” aspect of uncertainty is delineated here on
equal footing of “quantification” of uncertainty. Applying this notion to validation, the
validation activity aims as much at the AMS developers and users (analysts) as at the
reviewers, decision-makers, and regulators. It is thus most critical to portray the validation
process in a comprehensive, consistent, and complete fashion. Within a graded approach, one
would expect that during an early formative stage of the capability, assessments (testing,
benchmarks) are designed to help the developers in selecting models, screening significant
modeling assumptions, and dealing primarily with model-form uncertainties. At a later stage,
however, validation is part of the arguments (the “case”) for using certain capability for the
application at hand. It has been observed in practice that frustrations and tensions arise when
presentation of apparently substantial validation packages fails to convince constructive
opponents of the “case”. For complex decision and complex phenomena, the “case” is not a
collection of tests (code-to-code and code-to-experiments benchmarks). To be convincing,
the “case” should communicate a clear objective, validation metric, structured and scrutable
approach to achieving the metric, and a body of evidences that this approach is implemented
and every element of it is evaluated carefully, with the objective in mind. Experimental data,
plant observations, and other expertise (including results of other codes) constitute the body
of evidences. In CASL PCMM is the process we use to build the “evidence case.”
Conceptually, the structure of validation has been viewed in term of hierarchy that reflects
multi-scale nature of the CASL challenge problems; see Figure 6. This hierarchy can be
constructed in both a bottom-up and top-down fashion. Top-down sensitivity analyses can
identify the most important systems and components that need to be validated so that the
uncertainties at the full-system level are minimized. Cost, schedule, and resources such as
experimental facilities can also influence the design of the validation hierarchy (CASL,
2009). According to this scheme, value of particular dataset would be determined by its
support for the pyramid. It is noted that a single-block validation pyramid as shown in Figure
6 is only conceptual. It portrays an impression of modeling and simulation capability subject
to testing as a monolithic entity. This is the case for single-physics e.g., CFD for single-phase
flow. However, for practical problems like CIPS, there are a large number of models
involved in each scale and component. Consequently, practical implementation of validation
pyramid in applications like CIPS has proven a challenge, with a number of issues emerged
due to the problem’s complexity.

Consortium for Advanced Simulation of LWRs
30

Figure 6 A Conceptual Validation Pyramid

While keeping with the idea of using hierarchical structures to describe and characterize a
system with increasing complexity, it has become important to construct the validation
pyramid to capture different dimensions of complexity in typical nuclear reactor engineering
problems, namely interactions between physics, and interactions between (topological)
components. The validation pyramid should support a systematic approach to treatment of
phenomena, components, scales, and physics to appropriate levels of the pyramid. In fact, the
validation pyramid treats VUQ of modeling and simulation capability similar to testing of a
mechanical system, which can be topologically decomposed into weekly coupled subsystems
and components. In such “topological decomposition”, “lower-level” tests constitute
subsystems and components. In reactor engineering problems like CIPS, each physics test
represents a self-contained simulation problem, whose objective is to test a physical model.
“Calibration/Validation/Prediction process is performed many times, hierarchically,
towards the full-system predictive capability. The uncertainty from each prediction at the
lower levels is propagated upward to be carried along in the full-system calculation. System
response quantities-of-interest at the lower levels must be chosen carefully so that they
properly interface to the inputs at the upper levels.” (CASL, 2010).
Validation Data Plan (VDP) is a dynamic planning instrument to guide and, potentially,
optimize activities on data production and acquisition (e.g., through new experiments or plant
measurements), data analysis and management (e.g., qualification, classification/meta-data,
archiving), and data usage so that they enable effective support for development, assessment
and application of simulation tools intended for a challenge problem. Seven factors that
affect the VDP formulation are:

(i) Challenge problem specification (mission and success criteria)

(ii) Problem solution framework and approach (which simulation codes, and how
they are used, and their applicability)

(iii) Status of required capabilities in available and selected analysis tools

 Consortium for Advanced Simulation of LWRs
31

(iv) VUQ techniques and method for assessment of predictive capability

(v) Types, quality, availability, and accessibility of existing data

(vi) Projected time and resources for generating new data

(vii) Decision model that integrates information from (i) through (vi) and prioritizes
data activities, based on cost-benefit analysis of possible activities.

Consistent with PIRT, validation hierarchy reflects specificity of multi-physics, multi-scale,
multi-component nature of challenge problems.
A systematic review of models (modeling assumptions) and model parameters is a critical
step in the process for capturing validation data needs. This step requires phenomenological
decomposition of governing physics and identification of sources of uncertainty, both model-
form and model-parameter types. This section illustrates a framework for a systematic
decomposition on CIPS case study.
A hierarchical representation of CIPS is necessarily multi-dimensional, reflecting hierarchy
within each of the participating physics (TH, CC, RT, and FC) and their inter-physics
interactions. Certain multi-physics interaction are weaker, others are stronger (shown as dark
magenta), like TH-CC, RT-TH. The inter-physics interactions occur at respective scales,
forming own hierarchy.

Figure 7 Multiscale, Multiphysics Decomposition of CIPS

Figure 7 depicts a CRUD and CRUD-related coolant chemistry dimension of the CIPS hierarchy.
Interfaces between TH and CC are shown in Figure 8. Near-wall transport and resulting
distribution (residence time, saturation) of chemicals (Boron, additives) and corrosion products
are governed by fluid flow patterns in the wall-region boiling layer. The liquid coolant also
enters porous structures of the crud, affecting precipitation/deposition of crud materials and crud

Consortium for Advanced Simulation of LWRs
32

temperature field. Near-wall transport and near-wall distribution (concentration) of corrosion
products, particulates, and soluble chemicals (Boron, additives), will have a direct influence over
the precipitation, deposition and crud growth. Also on Figures 8, “crud morphology/porosity” is
shown to exert influence on SFB. Mechanisms of [CC]  [TH] feedback (on nucleation,
nucleation pattern, wettability) can be seen in Figure 9 via lines emanated from boxes
representing “surface morphology” and “coolant chemistry” factors.

While interfaces are
provided between tools
developed for [CC], [TH]
(and others), the modeling
would have to be highly
heuristic because of limited expertise in complex multiphase dynamics in the near-wall bubbly
layer. Absence of data hampers effort to assess and reduce uncertainty in the interfacing models.
A realistic modeling of crud needs input from [TH], e.g., concentration of chemicals and
particles in the near-wall fluid layer, and deposition rate. As boiling occurs, evaporating fluid
meniscus layer (beneath the bubble) gets increasingly enriched in chemicals. If the bubble stays
long enough on the surface, the triple contact line (of the meniscus) will get over-saturated with
chemicals and particulates. However, if the nucleated bubbles grow to certain size, then detach
and slide away, their meniscus does not have enough residence/evaporation time for
concentrating the chemicals toward saturation. This shows the importance of bubble departure
(diameter, frequency) in a condensing turbulent flow, and this all in turns depends on contact line
dynamics, nucleation phenomena/patterns, that all in turns depends on surface
material/morphological conditions (oxidation, deposits, crud).
Determining concentration of chemicals and particulates in near-wall layer isn't simple for
boiling situation. The velocity field that would be calculated from two-fluid models (assuming
that it can be validated), is averaged-in-time and in space. This "effective field" velocity in the
normal-to-the-wall direction is small and can hardly be predicted (there were void distribution
and some data on axial velocity profile, but never radial near-wall fluid velocity in boiling flow).

Figure 4 Coolant Chemistry Figure 8 Coolant Chemistry

 Consortium for Advanced Simulation of LWRs
33

Thus, for the problem at hand, time-resolved boundary-layer velocity and fluid/particle residence
time are needed.
This presents a source of uncertainty that even a well-calibrated two-phase (six-equation, with k-
epsilon turbulence) "effective-field" model cannot help reduce. At the same time, description of
details of thermal-fluid and transport in boundary layers introduce even more models, more
parameters and hence uncertainties. It requires more research (including carefully designed
separate-effect experiments and LES/ITM simulations) before the uncertainty can be brought
down.

Arrows show the direction of

information. Micro-
scale interactions are

dominated by [CC]
[TH] direction (as crud
morphology and composition affect nucleation and wettability). Meso-scale and macro-scale
interactions are dominated by [TH] [CC] direction (as fluid flow governs transport of
chemicals and particulate materials to the near-wall region). Modeling of fluid flow
characteristics needed for describing the [TH] [CC] feedback requires substantial
revision/adaptation/enhancement of CMFD. The red font boxes are indicative of lack of data to
quantify modeling assumptions about the interactions and calibrate corresponding models.

7.4.1. An Example Validation Pyramid
The validation pyramid is a key component to the VUQ strategy. This is where we decompose
the QOI for a challenge problem into is smallest physical phenomenon. This process, defines
what physical processes will be provided by which piece of software and how these physical
phenomenon can be decomposed into their basic phenomenon.

7.4.1.1. Mini-PIRT for VERA-CS progression problem 6
Quantity of Interest: 3D fuel temperature

Phenomenon will be ranked as an ordered pair in red (importance, knowledge) immediately
after the phenomenon number.

Figure 5 TH and chemistry coupling for CRUD Figure 9 TH and Chemistry Coupling for CRUD

Consortium for Advanced Simulation of LWRs
34

7.4.1.1.1. Thermal Hydraulics
Here we are considering the fluid flow over the fueled portion of the pin.

1. (H,M) Subcooled boiling (minimal effect due to void, possible effect due to improved
heat transfer but subcooled boiling occurs where the power is low)

2. (H,H) Single phase heat transfer (Dittus Bolter effects fuel temperature)
3. (H,L) Cross flow models (important near guide tubes)
4. (H,M) Spacer grid model

a. (H,M) Loss coefficient is steady state
b. (M,M) Mixing term
c. (M,M) Enhanced heat transfer

7.4.1.1.2. Fuel Model
Here we consider the pellet, the gap, and the clad. Energy is transferred from the fuel across the
gap to the clad. We are currently employing the fuel model in CTF, later this will be replaced by
Peregrine. Note we are only considering fresh fuel so there are no burn-up effects.

1. (H,M) Gap conduction model (pure He filled)
2. (H,H) Clad density
3. (H,H) Clad thermal conductivity
4. (H,H) Clad heat capacity
5. (H,H) Heat addition from neutronics
6. (H,H) Heat removal from thermal hydraulics

7.4.1.1.3. Neutronics
1. (H,H) Energy released per fission
2. (H,M) Boron density in coolant
3. (H,H) Moderator density
4. (H,H) Fuel temperature (Doppler feedback)

 Previously we have a very succinct PIRT for VERA-CS progression problem 6. The first step is
to define the QOI and for this example it was chosen to be, 3-D fuel temperature. This is not a
particularly good QOI because it does not lend itself to a decision making process. As can be
seen in Figure 10, the QOI goes on the top of the pyramid.
The second step is to partition the problem into its large scale physical components. Here we use
Fuel, Thermal Hydraulics and Neutronics to partition the validation pyramid. The next step is to
determine which codes are going to provide which large scale physics. For this example we will
use Insillico SPn for neutronics and CTF for thermal hydraulics and a fuel model (for this
application the simple fuel model in CTF is sufficient and the Peregrine model was considered to
be over-kill for progression problem 6).
We now start filling in the pyramid from the bottom. For the fuel model our PIRT has
determined that

1. Fuel density
2. Fuel Heat Capacity
3. Fuel Specific Heat

 Consortium for Advanced Simulation of LWRs
35

4. Gap Conductance
a. Gap Gas Conduction
b. Gap Gas Convection
c. Gap Gas Radiation

Note that Gap Conductance needed to be decomposed into its smaller components for the base of
the pyramid. Thermal hydraulics was decomposed into

1. Cross flow model
2. Single Phase Heat Transfer
3. The Grid Spacer Loss Coefficient
4. Subcooled Boiling

a. Boiling Latent and Sensible Heat Absorption and Release
b. Surface Effects that impact boiling
c. Bubble Lift and Drag (interfacial friction).

Note that Subcooled Boiling also required a further decomposition. For neutronics we first
assumed that the cross sections and their pedigree have already been established. Therefore we
only have

1. Boron Density
2. Energy Per Fission

The second row of the pyramid includes terms that are decomposed in the first row (Subcooled
Boiling and Gap Conductance) and coupling terms between the physics.

1. Neutronics produces
a. Fission Heat which heats the fuel in the fuel model
b. Gamma Heating which heats the water in the thermal hydraulics model

2. Thermal hydraulics produces
a. Heat removal which removes heat from the fuel in the fuel model
b. Moderator density with effects the cross sections in the neutronics model

3. Fuel Model produces
a. Fuel temperature which affects the Doppler feedback in the neutronics model.

The bottom of the pyramid defines the requirements for the codes.
1. Insilico

a. Boron Density
b. Energy per fission

2. CTF
a. Fuel density
b. Fuel Heat Capacity
c. Fuel Specific Heat
d. Gap Gas Conduction
e. Gap Gas Convection
f. Gap Gas Radiation

Consortium for Advanced Simulation of LWRs
36

g. Cross flow model
h. Single Phase Heat Transfer
i. The Grid Spacer Loss Coefficient
j. Boiling Latent and Sensible Heat Absorption and Release
k. Surface Effects that impact boiling
l. Bubble Lift and Drag (interfacial friction).

This will define Code PCMM.
The rest of the pyramid defines the requirements for the coupled code that are not part of any of
the individual codes.

1. VERA-CS
a. Doppler Feedback between fuel model and neutronics
b. Convective heat transfer between the fuel model and the thermal hydraulics (Note

that since we used the fuel model in CTF and not Peregrine this coupling belongs
to CTF note VERA-CS)

c. Gamma Heating of the thermal hydraulics from the neutronics
d. Fission product heating of the fuel from the neutronics
e. Moderator density feedback computed by the thermal hydraulics and passed to the

neutronics

The top of the validation pyramid defines Application (Challenge Problem) PCMM.
The validation pyramid decomposes the simulation into its components and then provides

1. How the physics is separated between the codes
2. How the codes are coupled
3. How the quantity of interest is computed from the component codes
4. What validation (verification and uncertainty) testing needs to be done on the individual

code components (requirements testing) and on the coupled system (challenge problem
testing).

5. Define the separation between Code PCMM and Application PCMM.

The validation pyramid provides a large amount of detailed physical insight into the challenge
problem in a single picture. This clear illuminating of physical coupling is what provides an
invaluable contribution to the VUQ strategy.

 Consortium for Advanced Simulation of LWRs
37

Figure 10 An example of A Validation Pyramid

For capability development that is not part of a challenge problem we can still construct a
validation pyramid and define a VUQ plan based on the validation pyramid.

7.5. Partitioning PCMM Work
We will divide the PCMM work between the code teams (VERA and VERA-CS included) and
the Challenge Problem Integrators. We will define the minimum work for each group and then
define how non-challenge problem capabilities will be incorporated in to the PCMM analysis.
The code team PCMM analysis will focus on requirements. These come from the bottom of all
of the validation pyramids for all of the challenge problems. For each challenge problem that a
code participates in, the validation pyramid will define a set of requirements for that code. The
sum of all of these requirements will be the basis for the code PCMM analysis.
Note that if a code has a capability that is not utilized by any of the challenge problems (for
example the droplet capability in CTF) it is perfectly acceptable to define a set of code
capabilities that will get added to the requirements list. If this capability is important to CASL
then the same PCMM process applies as those capabilities required by the challenge problems.
The application PCMM work is defined by a single challenge problem. Single challenge
problems will include many different codes and how they are coupled. It is the responsibility of
the challenge problem integrator to ensure that all of the physical phenomena in the challenge
problem pyramid are documented and tested with a PCMM process. By definition this PCMM

Consortium for Advanced Simulation of LWRs
38

work must include the code teams, PHI, AMA, and VUQ. The main strength of the CASL
challenge problems is the role that they play in integration across the different focus areas.
A focus area or a few focus areas may decide that a coupled code capability is needed that is not
directly covered by a challenge problem. The VERA-CS progression problems are an example
of these. The new coupled code capability needs to produce a validation pyramid and then
construct the application PCMM that documents and tests the new capability.
CASL has a challenge problem centric view of the world, but the VUQ strategy will be adaptable
to allow for non-challenge problem capabilities to be added to the CASL single codes and
coupled codes and still have a PCMM pedigree.

7.6. Third Party Libraries
Modern software often relies on a large number of third party libraries to do tasks like graphics,
linear solvers, and other tasks that are common to many code development processes. The third
party libraries need to have a level of documentation that meets or exceeds the CASL
requirements. It is the code team’s responsibility to gather the PCMM information for the third
part libraries that are employed. If the third party library does not match the documentation level
required by CASL then it is the responsibility of the code team to create the PCMM
documentation for the third party libraries.

7.7. Code Coupling
Code coupling provides a variety of challenges to VUQ. The first is to recognize that the code
coupling needs its own documentation and testing. The first level of code coupling
documentation comes from having to make sure that what is being sent by the first code is what
is being expected by the second code. The first most obvious mistake is for the two codes to
have different units. The units in both codes, and how their units are converted from one code to
another, need to be documented.
The second key component that needs to be documented is the homogenization of the variables
being passed. If one code is homogenizing over a fuel pin and another code is homogenizing
over a fuel assembly, then there is a significant error even though the units are correct.
The third key component is the level of implicitness. Even for steady state coupled codes the
implicitness of the code coupling can be important to iteration convergence. For transient
capabilities the level of implicitness of the code coupling sets a code stability limit. This means
that the time step control may need to be a function of the code coupling, not the physics in the
codes being coupled.

8. CODE (FOUNDATIONAL) PCMM
This is the part of the PCMM analysis that the code team is responsible for. This is the
documentation of basic capabilities of a code that are independent of the application. For
example a thermal hydraulics code needs to be able to compute wall friction. This is a
foundational capability that supports all applications.

8.1. QOIs Defined by Requirements
For code PCMM, the Quantity of Interest (QOI) is set by the basic capability that is being
defined. If we are testing wall friction then the QOI is the pressure drop due to wall friction.
Each basic test will have its own low level QOI. The high level QOI from the challenge problem

 Consortium for Advanced Simulation of LWRs
39

does not affect the code PCMM study. The first sets of requirements come from the base of the
validation pyramids. Other requirements can be volunteered by the code team.

8.2. Software Quality
Software Quality or Software Quality Assurance (SQA) or Software Quality Engineering (SQE)
are processes used to minimize the uncertainty due to bugs in the code. It should be noted that
version control is the zeroth step in software quality. The ability to reproduce code version from
previous date is critical to the testing and debugging process.

8.2.1. Good Engineering
Software Quality is simply good engineering practices applied to software. Suppose I am
building a bridge. I would use the following steps.

1. Gather requirements. How big is the river? How much weight does it need to hold?
2. Design the bridge. Based on the requirements determine if the bridge should be built

with wood, concrete or steel.
3. Build the bridge. Following the design, build the bridge noting any design changes made

while building.
4. Test the bridge. Determine that the bridge can hold the required weight. Test the bridge

before it is used by the public.
5. Provide the basic traffic control signs that inform people what speed they can travel and

how to “use” the bridge.

8.2.2. From a Code Maintenance Perspective
A second way to think about software documentation is to assume that you have been assigned to
maintain software that you played no role in writing. In addition the software development team
just won the lottery and they all moved to Jamaica and are no longer answering E-mail or the
phone. What documentation would you want to have to be able to maintain software that you
know nothing about? Note that we have to assume that you have the basic engineering
knowledge to understand the physical processes that the software simulates.

1. Requirements Document – This describes what the code does and what the code doesn’t
do.

a. Capabilities from the code PCMM work from the challenge problem validation
pyramids

b. Capabilities that are not related to the challenge problems
2. Theory Manual - This document describes how the code implements the requirements.

a. Partial Differential Equations – what is the physical model described by the
PDEs? What physics is included? What physics is excluded?

b. Solution Methods - What is the designed spatial and temporal convergence rate?
If steady state, what is the designed steady state convergence rate? What are the
stability constraints of the code?

c. Subgrid models (closure laws, turbulence models, cross sections) – What is the
range of applicability of these models? What is the expected
accuracy/uncertainty?

d. Implementation decision - What other software was considered? What other
numerical methods were considered? What other physical models were
considered? Basically describe why the other possible choices were rejected and
how you ended up on this path.

Consortium for Advanced Simulation of LWRs
40

3. Programmers Manual – Describe how the theory manual is implemented in the
software.

a. Code structure Describe the data flow through the code
b. Data dictionary – Describe the important variables in the code and what their

units are.
4. Testing Plan – This document describes how one proves that all of the requirements are

met with testing.
a. Unit testing – Computer science based effort to test the programming with known

solutions.
b. Regression testing – Computer science based testing focused on catching

unexpected output changes. The goal is to get as large of code coverage as is
reasonable.

c. Code Verification – Testing the numerical methods by quantitatively showing
the correct convergence rate to the exact solution with simplified physics.

d. Solution Verification – Testing of the full physics where an exact solution
becomes infeasible but the convergence rate can still be quantitatively measured.

e. Validation - compare the code results with experimental data. Compare both how
well it matches the data as well as how well it matches the trends (derivatives).
Validation is a quantitative procedure that measures with metrics the distance
between the code results and the experimental results.

f. Benchmarking - quantitatively compare the code results (point values and
derivatives) with another code. The pedigree of the “other” code then becomes
part of the evidence file.

5. User Manual – describe the code input, and how to build and run the code. The user
manual should also describe “best practices” to minimize code users from incorrectly
applying the code.

8.2.3. CASL Standard for Documentation

The software documentation must include and/or describe the following. The organizational
structure indicated here is not required, but all applicable elements must be covered.

• The purpose and intended use of the software
o Include scope and/or range of applicability

• Computer hardware requirements, operating system requirements, and any supporting
software library requirements

• Theoretical foundation
o A description of the model(s) and equation set(s) being solved
o A description of the numerical methods used to solve the equations
o Any other theoretical aspects central to the software

• A Users Guide
o How to install and build, including installation acceptance tests
o How to set-up and run the software for its intended use

 Input files or usage commands, both required and optional
 Description of solver options and suggested settings
 Output produced (options, files, warnings, etc.)
 Description of how to do post processing

 Consortium for Advanced Simulation of LWRs
41

o A set of example problems or use cases clearly illustrating software usage
• A code architecture overview that links code capabilities to software classes, modules, or

subroutines, at a high level appropriate for a user
• Verification and Validation Manual(s)

o Verification tests and/or evidence (e.g. regression tests, unit tests, ...)
o Validation methodology and tests

 Acceptance tests used to demonstrate capabilities claimed
• A bibliography of appropriate references

The value of a well-written “developers manual” to assist continued code development is also
recognized, but not listed above as required documentation for software users.

8.3. Code Verification
Code verification is a well-defined process by which the correctness and accuracy of a software
implementation of a numerical algorithm can be evaluated. Solution verification is a related but
distinct process by which the discretization error is estimated in simulations of interest. In this
document a workflow for code verification is presented.
Most numerical methods used to obtain approximate numerical solutions of continuum models
have a number of key properties. Among these characteristics is the order-of-accuracy (also
called the convergence rate), which is given by the exponent in the power law relating the
numerical truncation error to the value of the discrete parameter. The most common approach to
code verification is to compare the theoretical rate of convergence of the numerical method to
the observed rate produced by an implementation of that method, to gauge the correctness of the
implementation.
The procedure by which to provide this measure of correctness is systematic mesh refinement (or
variation). The results of this approach are combined with error measurement to produce the
observed rate-of-convergence, which is compared with the ideal or theoretical rate-of-
convergence of the underlying algorithm. For code verification, the use of an analytical or exact
solution to a problem plays a fundamental role in the process by providing an unambiguous
fiducial solution.
In summary, the workflow for conducting code verification is the following:

1. Starting with an implementation (i.e., code) that has passed the appropriate level of SQA,
choose the executable to be examined.

2. Provide a complete analysis of the numerical method as implemented including accuracy
and stability properties.

3. Select the analytical solution(s) for problems to be examined, and provide the analytical
solution in a form that allows direct comparison with the numerical solutions and provide
the means for computing the errors in the numerical solution.

4. Produce the code input to model the problem(s).
5. Select the sequence of mesh discretizations to be examined for each solution.
6. Run the code and provide the means of producing appropriate metrics to evaluate the

difference between the numerical and analytical solutions.
7. Use the comparison to determine the sequence of errors corresponding to the various

discretizations.
8. The error sequence allows the determination of the rate-of-convergence for the method,

which is compared to the theoretical rate.

Consortium for Advanced Simulation of LWRs
42

9. Using these results, render an assessment of the method’s implementation correctness.
10. Examine the degree of coverage of features in an implementation by the verification

testing.
In a modern code development environment, this process should be repeatable and available on-
demand.
The focus of this document is code verification, which is a necessary prerequisite for solution
verification, validation, and uncertainty quantification. These other assessment techniques are
only briefly introduced to distinguish them from code verification.
The outcome of code verification analyses provides hard evidence of mathematical
consistency—or inconsistency—between the mathematical statements of the physics models and
their discrete analogues as implemented with numerical algorithms in the simulation codes. The
necessity of code verification must be emphasized. In the absence of confirmatory verification
evidence, “good agreement” of calculations with experimental data could be accidental, i.e., “the
right answers for the wrong reasons.”
A common confusion with regard to code verification is associated with software quality
assurance, which is a vital, but primarily unrelated activity and discipline in its own right. Code
verification typically flourishes in a development culture focused on high quality software
development, but good code verification practices are neither necessary nor sufficient for good
SQA practices—and vice-versa. Each area of expertise should be independently developed and
supported, although the practice of each is mutually self-supporting.
The purpose of scientific simulation software differs from that of much commercial software,
which is often intended to provide exact solutions to problems that actually have exact solutions
(e.g., spreadsheets) or to generate results for problems that have subjectively defined goals (e.g.,
image processing, word processors). Verification is needed for scientific simulation codes
because that software is designed to produce approximate solutions to mathematical problems for
which (i) the exact solution is not known and (ii) knowledge of the error is potentially as
valuable as knowledge of the solution, per se. Due to these distinguishing and critical aspects of
scientific simulation codes, software quality practices from the broader industry (e.g., regression
testing) are necessary but not sufficient for high-consequence scientific simulation codes.
Verification analysis of scientific simulation codes is an example of the assessment of a complex
system for which the systematic gathering of appropriate evidence is required. While tests may
demonstrate that software is manifestly incorrect, there is no clear-cut procedure with which to
“prove” unambiguously that software behavior is, indeed, correct. Thus, the process by which
relevant verification evidence is generated and interpreted requires knowledge of the entire
simulation and analysis chain. Such knowledge includes understanding of:

• the system being simulated (e.g., the relevant physics, physics models, and these models’
representations in mathematical equations);

• the nature of the simulation (including the algorithms used to obtain approximate
solutions to the mathematical equations, these algorithms’ limitations, the associated
numerical analysis, and the software implementation of those algorithms); and

• the process by which the code results are analyzed in the verification process (including,
e.g., theory, implementation, and interpretation of convergence analysis).

This body of knowledge is both large and multi-faceted; consequently, the determination of
appropriate of verification problems requires guidance from and consensus among experts in
each of these fields.
Decision makers and code analysts should bear in mind that simulation software represents

 Consortium for Advanced Simulation of LWRs
43

intricate numerical algorithms coupled with a complicated hardware/system-software platform.
Said another way, code users and their customers should recognize that simulation software is
not a “physics engine” that generates instantiations of physical reality. Hence, documented,
quantitative verification analysis is a necessary component for developing code confidence and
credibility.
Code and calculation verification are an overlooked step for assuring the quality of codes and
calculations. Perhaps people don’t have enough good reasons to do this work. It can often be
labor intensive, frustrating and disappointing. That is a real awful sales pitch! I really believe in
doing this sort of work, but the need to provide better reasoning is clear. I’ll get at the core of
the issue right away, and then expound on ancillary benefits.

In the final analysis, not doing code verification is simply asking for trouble. Doing code
verification well is another matter altogether, but doing it well is not as necessary as simply
doing it. Many developers, students, and researchers simply compare the solutions to
benchmarks using visual means (i.e., comparing to the benchmark solution in the infamous
eyeball norm, or the “viewgraph” norm if its presented). This is better than nothing, but not by
much at all. It is certainly easier and more convenient to simply not verify calculations.

Very few of us actually create codes that are free of bugs (in fact I would posit none of us). To
not verify is to commit an act of extreme hubris. Nevertheless, admitting one’s intrinsic
fallibility is difficult; dealing with the impact of one’s fallibility is inevitable.

So, without further philosophizing, the list of what verification does for you is:

1. Don’t assert that your code is correct; prove it’s correct. This is the scientific method;
respect it, and apply it appropriately. Treat a code as you would an experiment, and
apply many of the same procedures and measures to ensure quality results.

2. Mistakes found later in the code development process are harder and more expensive to
fix. There is vast evidence of this and I recommend reading the material on the
Capability Maturity Model for Software, or better yet Steve McConnell’s book, “Code
Complete,” which is a masterpiece.

3. Once completed (and you aren’t ever really done), you will be confident in how your
code will perform. You will be confident that you’ve done things correctly. You can
project this confidence to others and the results you and your handiwork produce.

4. You will find the problems with your code instead of someone else like a code customer
or user. As much as we dislike finding problems, someone else finding our problems is
more painful.

5. Verification will allow you to firmly establish the accuracy properties of your method if
you look at error and convergence rates. You might have to confront the theory behind
your method and problem, and this might help you learn something. All of this is really
good for you.

6. Doing the same thing with your calculations will allow you to understand the error
associated with solving the equation approximately. Again, confront the available theory,
or its lack of availability. It will provide you much needed humility.

7. It is embarrassing when a numerical error is influencing or hiding a model
deficiency. Worse yet, it is badly conducted science and engineering. Don’t be
responsible for more embarrassments.

Consortium for Advanced Simulation of LWRs
44

8. When you are calibrating your model (admit it, you do it!), you might just be calibrating
the model to the numerical error. You want to model physics, not truncation error, right?

9. Verification results will force you to confront really deep questions that will ultimately
make you a better scientist or engineer. Science is about asking good questions, and
verification is about asking good numerical questions.

10. You are a professional, right? Doing verification is part of due diligence, it is being the
best you can be. Adopting a personal quality mentality is important in one’s
development. If you are in the business of numerical solutions, verification is a key part
of the quality arsenal.

11. You won’t really understand your code until you look really hard at the results, and
verification helps you understand the details you are examining. You will look at your
work more deeply than before and that is a good thing.

12. Conducting real error analysis can help you make sure and prove that your mesh is
adequate for the problem you are solving. Just because a mesh looks good, or looks like
the thing you’re simulating isn’t evidence that it actually allows you to simulate that
thing.

13. It is 2014, so come on! Please do things in a way that reflects a modern view of how to
do computational science.

8.3.1. Quantified
The key part of code verification is that it has to be quantified. That is it has to be measured and
given a number. That way one can measure improvement by the measure number getting
smaller or larger. Verification measures both the accuracy (the norm of the exact solution minus
the computed solution) and the convergence rate. The accuracy needs to be measure to
determine the convergence rate and the convergence rate needs to be measured to compare it
with the expected convergence rate given in the theory manual.

8.3.2. Analytical Solutions
For simplified physics and geometry one can compute an analytical solution to the partial
differential equations. This is the preferred method of validation.

8.3.3. Method of Manufactured Solutions
There are often times where even with simplification closed form analytical solutions cannot be
obtained. This is a good time to try to use the method of manufactured solutions. In the method
of manufactured solutions the source terms in the equations and the boundary conditions are
modified to produce a known solution. This known solution can then be used as an analytical
solution.

8.3.4. Highly Resolved Solution
Sometimes the code’s boundary conditions and source terms are not available for modification.
In this case a non-closed form of an exact solution may be all that is available. A highly resolved
numerical integration of this non-closed form solution may be the best option.

8.3.5. Robust Multiple Regression (RMR)
The excuses for not doing verification of numerical solutions are myriad. One of the best
although it is unstated, is that verification just doesn’t work all the time. The results are not
“robust” even though the scientist “knows” the results are OK. A couple things happen to

 Consortium for Advanced Simulation of LWRs
45

produce this outcome:

1. The results are actually not OK,
2. The mesh isn’t in the “asymptotic” range of convergence
3. The analysis of verification is susceptible to numerical problems.

Each of these deserves a bit more comment and suggests some changes to mindset and analysis
approach.

First, there are a few more pernicious ways people avoid verification. These are especially bad
because they often think they are doing it. For example, let’s say you have an adaptive mesh
code (this is done without AMR, but more common with AMR because changing resolution is
often so easy). You get solutions at several resolutions, and you “eyeball” the solutions. The
quantity you or your customer cares about isn’t changing much as you refine the mesh. You
declare victory.

What have you done? It is not verification, it is mesh sensitivity. You could actually have a
convergent result, but you actually don’t have proof. The solution could be staying the same
because it isn’t changing, and is in fact, mesh-insensitive. What would verification bring to the
table? It would provide a convergence rate, and an error estimate. In fact, error estimates are the
true core of verification. The error estimate is a much stronger statement about the influence of
mesh on your solution, and you almost never see it.

Why? Quite often the act of computing the error estimate actually undermines your faith in the
seemingly wonderful calculation and leaves you with questions you can’t answer. It is much
easier to simply exist in comfortable ignorance and believe that your calculations are
awesome. This state of ignorance is the most common way that people almost do verification of
calculations, but fail at the final hurtle. Even at the highest level of achievement in
computational science, the last two paragraphs describe the state of affairs.

Let’s get the zeroth point out of the way first. Verification is first and foremost about estimating
numerical errors. This counters the oft-stated purpose associated with “order” verification where
the rate of convergence for a numerical method is computed. Order verification is used
exclusively with code verification where a solution is known to be sufficiently differentiable to
provide proof that a method achieves the right rate of convergence as a function of the mesh
parameters. It is an essential part of the verification repertoire, and it squashes a more important
reason to verify, error quantification whether true or estimated.

The first point is the reason for doing verification in the first place. You want to make sure that
you understand how large the impact of numerical error is on your numerical solution. If the
numerical errors are large they can overwhelm the modeling you are interested in doing. If the
numerical errors grow as a function of the mesh parameters, something is wrong. It could be the
code, or it could be the model, or the mesh, but something is amiss and the solution isn’t
trustworthy. If it isn’t checked, you don’t know.

The second point is much more subtle. So let’s get the elephant in the room identified, meshes
used in practical numerical calculations are almost never asymptotic. This is true even in the

Consortium for Advanced Simulation of LWRs
46

case of what is generously called “direct numerical simulation (DNS)” where it is claimed that
the numerical effects are small. Rarely is there an error estimate in sight. I’ve actually looked
into this and the errors are much larger than scientists would have you believe, and the rates of
convergence are clearly not asymptotic.

All of this is bad enough, but there is more and it is not easy to understand. Unless the mesh
parameters are small the rate of convergence should systematically deviate from the theoretical
rate in a non-trivial way. Depending on the size of the parameter and the nature of the equation
being solved, the correct convergence rate could be smaller or larger than expected. All of this
can be analyzed for ideal equations such as a linear ordinary differential equation. Depending on
the details of the ODE method, and the solution one can get radically different rates of
convergence.

The third point is the analysis of numerical solutions. Usually we just take our sequence of
solution and apply standard regression to solve for the convergence rate and estimated converged
solution. This simple approach is the heart of many unstated assumptions that we shouldn’t be
making without at least thinking about them. Standard least squares relies a strong assumption
about the data and its errors to begin with. It assumes that the errors from the regression are
normally distributed (i.e., Gaussian). Very little about numerical error leads one to believe this is
true. Perhaps in the case where the errors are dominated by dissipative dynamics a Gaussian
would be plausible, but again this analysis itself only holds in the limit where the mesh is
asymptotic. If one is granted the luxury of analyzing such data, the analysis methodology,
frankly, matters little.

What is the alternative approach?

One of the problems that plagues verification is bogus results associated with either bad data,
changes in convergence behavior, or outright failure of the (nonlinear) regression. Any of these
should be treated as an outlier and disregarded. Most common outlier analysis itself relies on the
assumption of Gaussian statistics. Again, making use of this assumption is
unwarranted. Standard statistics using the mean, and standard deviation is the same
thing. Instead one should use median statistics, which can withstand the presence of up to half
the data being outliers without problems. This is the definition of robust and this is what you
should use.

Do not use a single regression to analyze data, but instead do many regressions using different
formulations of the regression problem, and apply constraints to the solution using your
knowledge. If you have the luxury of many mesh solutions run the regression over various
subsets of your data. For example, you know that a certain quantity is positive, or better yet
must take on values between certain limits. The same applies to convergence rates, you
generally have an idea what would be reasonable from analysis; i.e., a first-order method might
converge at a rate between one-half and two. Use these constraints to make your regression fits
better and more guaranteed to produce results you can use. Make sure you throw out results that
show that your second-order method is producing 25th order convergence. This is simply
numerical garbage and there is no excuse.

At the end of this you will have a set of numerical estimates for the error and convergence

 Consortium for Advanced Simulation of LWRs
47

rate. Use median statistics to choose the best result and the variation from the best so that
outliers along the way are disregarded naturally.

Verification should (almost) always produce a useful result and injecting ideas from robust
statistics can do this. Going beyond this point leads us to some really beautiful mathematics that
is hot property now (L1 norms leading to compressed sensing, robust statistics, …). The key is
not using the standard statistical toolbox without at least thinking about it and justifying its
use. Generally in verification work it is not justifiable. For general use a constrained L1
regression would be the starting point.

The starting point for verification analysis is the definition of a postulated model for the
numerical error. The standard model is a power law (which we continue to study albeit in
modified form),
  p

k kA A Ch= + (1.1)

where Ak is the value computed on the kth mesh, Ã is the (estimate of the) mesh converged
solution, C is a proportionality constant, hk is the mesh length scale (e.g., cell size in 1D), and p
is the convergence rate. This ansatz is motivated by conventional analysis (e.g., Richardson
extrapolation). One should bear in mind, however, that any such form is an assumption. Here we
also use the set of angular errors forms discussed above (equations 15, 16, 17). Therefore, one
could explore alternative models, but we do not in this work. Often verification (in particular,
code verification) focuses on the convergence rate, p as the key result and its congruence with
theoretical expectations, ptheo. In solution verification, the focus can be expanded to the overall
error term, C hp, with specific application to error estimation.
We repeat the important point that the theoretical convergence rate is dependent not only upon
the method used for computations, but also upon the nature of the solution itself, the quantity
whose convergence is being analyzed, and the metric being considered. For example, a second-
order method can be used to compute a result, but the presence of a discontinuity can render the
solution only first-order convergent at best [Majda77]. Moreover, under these conditions the
first-order result can only be expected for an integrated quantity (e.g., in a hydrocode simulation,
the specific internal energy integrated over the domain), and a non-integrated quantity (e.g., the
specific internal energy at a point) might be expected to be non-convergent. We have found that
the neutronics literature does not contain significant results regarding the expected rate of
convergence for discrete ordinates methods as a function of the angular order of the quadrature.
In the following development, we will first apply the standard error model in an attempt to
achieve a “best-case” result. When this result is available, the error should be defined as the
distance between the solution and the best estimate, where the notion of distance will be made
precise in the metric used. This is a divergence from the current standard practice for defining
“numerical error bars’’ that are symmetric about the finest mesh used as data. We note that this
procedure can only be utilized under the circumstance where the behavior is ideal. Should the
data be congruent with the underlying assumptions associated with this model, then this estimate
using the standard error model will be termed as a “best-estimate” result. If the best estimate is
available, then we can also produce an error bound using the second (error) model, which we
shall describe. In either case, the error model can be used to bound the error. These estimates
provide the foundation by which to define error bars in the currently accepted standard manner,
with the error bars associated with the values computed on the finest mesh.

Consortium for Advanced Simulation of LWRs
48

Given a set of metrics computed on a sequence of mesh resolutions, the standard practice is to
utilize nonlinear least squares to solve for the parameters in the error model, Eq. (18). Usually
this step is completed with little consideration of the implications of this solution procedure. To
help illuminate the significance of this choice, we examine some basic properties of the least
squares curve fit. First, the least squares approach is directly associated with normal (Gaussian)
statistical assumptions regarding the errors in the parameter values [Bjork]. Specifically, the
nonlinear least squares fit is optimal if the errors in the parameters are normally distributed about
the optimal values. The least squares formulation has distinct virtues for linear regression
problem, because the solution is rendered linear by the minimization of fit residual in the L2
norm. This property is lost when moving to nonlinear models, such as those we will utilize here.
Consequently, we lose little in moving to a more general formalism for the regression and then
implemented via optimization in the work reported here.
We have replaced the regression with the equivalent, but more flexible practice of optimization.
This allows us to pose the minimization functional more generally as well as access more robust
solution techniques than the general nonlinear regression methods allow. We are not limited by
the specific implementation in the regression package in software. In particular robust
regression, Tihkonov regularized least squares or LASSO regression can all be easily defined
along with a reliable solution to the L1, L1/2 and L-infinity regression problems.
The field of robust statistics has been developed to reduce the sensitivity of regression
procedures to outliers in a given data set. The simplest robust regression approach is to minimize
the L1 norm of the residual. In distinction to the least-squares approach mentioned above, the L1
regression has a different statistical connection. For L1 regression, the fit is optimal if the errors
are distributed by Laplace’s (double-exponential) distribution [Bjork]. The double-exponential
distribution is sharply peaked at the mean and has longer tails than the normal distribution. At
the other end of spectrum is the minimization of the Linfiity norm of the residuals (also known as
Chebyshev or minimax approximations). Unlike minimization of the L1 norm, Linfiity -based
regression is minimally robust because it can be greatly influenced by outliers; nevertheless, this
form of regression is indeed optimal if the errors are distributed uniformly. There are other
robust regression procedures, such as least median deviation, we do not utilize such approaches
here, but they may prove useful for more general work. More broadly, there is an infinite class of
regressions defined by the norm that is chosen for minimization.
For the case we are considering, i.e., a set of metrics computed on a sequence of mesh
resolutions, the distribution of errors is unknown and, most likely, does not correspond to any
particular analytical probability distribution. There is no reason to favor one distribution over
another; that is, that the ensemble of errors should be consistent with some particular distribution
is not supported by existing theory or empirical evidence. In particular, there is no reason that
the Gaussian distribution associated with standard least-squares regression should be favored,
despite its widespread use in applications, including verification.
Finally, we can provide an improvement in the regression via the application of weighting the
data. We do have the prior expectation that the results computed on finer grids (i.e., with smaller
mesh spacing) are “better.” This presumption is essentially a restatement of our belief,
ultimately, of convergence under mesh refinement. To reflect this assumption quantitatively, the
data can be weighted inversely proportional to the mesh spacing (i.e., by 1/h)1. In this work we

1 Of course, this weighting could be modified to be inversely proportional to the mesh spacing to some
positive power, i.e., 1/hq, where q > 0. In this effort we also introduce the weighting with respect to
angle, i.e., a weight of n/h, or nq /hq.

 Consortium for Advanced Simulation of LWRs
49

combine the weights for space and angle for a weight, (n/h). That is, we judge a priori as more
“important” the values computed on the finer meshes. This weighting, while usually plausible, is
not associated with any particular analytical statistical distribution, but nevertheless provides an
alternative, rational approach to data analysis.
Another approach based on prior information would be to utilize the expected (theoretical)
convergence rate in the regression. For example, the assumption that the error model for a
second-order method is would produce a linear regression problem. Based on this
prior knowledge, the observed convergence rate could reasonably be expected to lie in a certain
range, so that a model can be solved using the bounds of this range. Such a line of thought can be
extended to the general regression problem by appealing to constrained regression using the
above-stated bounds as constraints to the regression problem in the chosen minimization norm.
Our first effort focused upon the implementation within regression software, but upon the
examination of results we found that direct optimization produced better results within our
chosen software tool, Mathematica™. Overall, the solution methods used for the minimization
are more flexible, reliable and robust. Moreover, significant additional flexibility was gained in
defining the functions being used for regression. The allowed a number of robust regression
procedures to be utilized in the work including L1, and infinity norms as well as regularized
functionals such as Tikhonov and LASSO regularizations.
Robust statistics offer a set of models and regression techniques with which to form estimates of
the error and, consequently, of the converged solution. The values of the parameters vary
depending on the method used, and the level of variation in the inferred parameters is a direct
measure of how the values are distributed. Results may be largely the reflection of outliers in the
data set, in which case the parameters themselves may be outliers. The conventional statistics for
characterizing a set are the mean and standard deviation, the latter of which is implicitly
associated with a Gaussian distribution. These measures are known to be susceptible to the
presence of outliers [Huber]; that is, a single outlier can produce a substantial change in these
statistics. Of course, the determination of what constitutes an outlier depends upon the
statistical assumptions made (often implicitly) in the data analysis.
We contend that such sensitivity is not an appropriate characteristic for a ``best estimate’’ of the
result. We make this assertion based on our experience that apparent outliers in the results of
numerical calculations of computational science and engineering are far from unknown. To help
address this issue, we choose instead the median of our estimates as the measure of central
tendency. Unlike the mean, the median of a data set is substantially more robust to outliers
[Huber]. The variation in the data can likewise be measured by the median deviation (analogous
to the standard deviation), which is the median of the deviation from the median across the
ensemble. Our procedure will regress the data using the error model and a number of regression
techniques elucidated above, and we will then apply median statistics to identify the best
estimate.
Another novel element of our approach it is the ability to examine the results in a manner that
does not assume the symmetry of the estimates. The primary analysis is a best estimate of the
mesh converged result, Ã, which should not necessarily be symmetric, but rather potentially have
a bias. To accomplish this analysis we first compute the median of Ã and then divide the list of
estimates into two lists of estimates: those less than the median value and those greater. We
subtract the median (Ã) from each element of these sets and then compute the median deviation
for each list. These values are signed, and provide an estimate of the negative or positive bias in

Consortium for Advanced Simulation of LWRs
50

the analysis. On the other hand, the error estimate, |E| is symmetric by construction and should
be interpreted as such.
Finally, our approach possesses a number of characteristics of the statistics technique known as
bootstrapping. In the bootstrap, small data sets are resampled to provide a better basis for
statistical inference. In the case of verification, typically a (very) small number of data points is
available. In our analysis, the different regressions provide the set of different statistical views
of the data. By using differing regressions and subsets of the data, a bootstrap of a sort is
applied. If the data are completely consistent with a certain convergence rate (i.e., the solutions
are all in the asymptotic range for the method), then the results of this ensemble will be self-
consistent. This will have the effect of producing accurate error estimates with intrinsically
small uncertainty. Conversely, if the data are not consistent, then the error estimate will vary
significantly, and a large uncertainty will be indicated. Such behavior is ideal for the purposes of
solution verification analysis. Our examples will demonstrate this property.
Given this background we will define a sequence of steps to produce overall error estimates
without resorting to universal constants. These estimates will produce a best estimate if the data
supports this, and an estimate of the bounds of the error. While the procedure is congruent across
the possibilities of under-, exactly- or over-determined optimization there are subtle differences
that must be acknowledged. At a high level, the overall algorithm is expressed below:

1. Produce an analysis of the numerical method used and the problem solved to establish a
theoretical rate of convergence with lower and upper bounds for the convergence rate,
plower and pupper . For the more complex error ansatz with two discrete variables, bounds
are entered for all variables. In addition, the basic nature of the solution can be encoded
as a constraint (such as positive definiteness, or more specific upper or lower bounds).

2. Screen the data for the basic character (i.e., whether the convergence is monotonically
convergent, convergent, or divergent).

3. If the data is monotonically convergent (even weakly, using the end points of the data
sequence). Chose a data set starting with the finest mesh values S1=[(hN-1,nN-1,AN-1), (
hN,nN,AN)],j=1.

4. Using the subset of the data, S1, produce the following steps.
a. Using the data pairs (hk,nk,Ak) produce a set of constrained regressions using

several techniques L1, L2, Linfinity, weighted L2, ptheo L2, plower L2, and pupper L2. In
addition, L4, L8, Tikhonov, LASSO, and weighted variants of each using (nk/hk).

b. Examine the results to see whether the computed estimates of p match either the
lower or upper bound. This is a warning sign that probably precludes the
completion of a “best estimate” of A . These estimates will be provided for
spatial, or angular errors alone, or their coupled error.

c. Work through the data points from the finest resolution, adding additional
(coarser) data points and producing new regression fits for each set of data. This
aspect of the procedure is predicated upon the assumption that finer grids produce
more accurate results. Thus, for each part of the full data set, one obtains a set of
regressions, with the results biased toward the finer grids. Return to step 4a until
the data is exhausted.

d. Find the median of the Ãmedian estimates, the median deviation, ∑median. The
estimate of the mesh converged solution is Ãmedian±3 ∑median. Here, the value
3∑median provides a bound analogous to the 95% confidence interval sought with
other solution verification procedures.

 Consortium for Advanced Simulation of LWRs
51

e. Conduct the asymmetric analysis of the results by separating a sorted list of the Ã
into two equal lists, one with elements less than Ãmedian and the other greater than
Ãmedian. Compute the median of each of these sets and subtract Ãmedian, which
provides a negative and positive bias, 3∑- and 3∑+, in Ãmedian.

f. For all results, one can produce a “GCI-like” result in terms of percentage as
GCI=3∑/Ã * 100.
(This overall procedure is implemented as a Mathematica™ script in Appendix A).

5. If the absolute value of the error is monotonically convergent (this includes the
monotonically convergent case) Note: this form of analysis is excluded from this study
due to the focus on angular discretization:

a. Compute the absolute difference between the solutions at adjoining meshes,
(hk,nk,hk-1,|Ak-Ak-1|) (define ∆Ak,k-1 := |Ak-Ak-1|.

b. Produce a set of regressions using the data above L1, L2, Linfinity, weighted L2, ptheo
L2, plower L2, and pupper L2) for the error model, C|hk

p – hk-1
p| where the additional

constraint that C>0 is used.
c. Screen the results of the regression for anomalous behavior in convergence rates.

Return to step 5a until the data is exhausted.
d. For the best estimate of error, use the median of the error model, C hn

p regressions
evaluated at hn , where n is the finest grid available. This is the best estimate of the
error bar.

e. Additionally find the max(C hn
p) to produce the bound of the numerical error at

the finest grid.
6. If the errors diverge, compute the rate of divergence and exit.*
7. If there are unused coarse grid data points j:=j+1 ;(if j<N-1), Sj=[(hN-j,AN-j), …(hN,AN)];

and return to step 3.
* For under-determined (2 grid) cases, this cannot be explicitly determined. We further
note that the error examination has been excluded from this study for brevity.

It is worthwhile to make a few comments on the procedure. Expert judgment is added to the
process in several key places: the determination of the expected convergence, the screening of
the data (with potential rejection of anomalous solutions, and the screening of the regression
results). The use of robust statistics can provide some relief from this step, but expert opinion
remains a necessary element in this activity. If the data are very well behaved, one produces both
a best estimate with a numerical error bar that is not symmetrically placed with regard to the
finest solution, and a bounding estimate that is congruent with existing practice. Finally, the
procedures eliminate the use of an empirical safety factor, rather instead upon the diversity of
estimates and the use of a maximum over those estimates to provide safety in the estimations.

8.3.6. Neutronics
Code verification is normally an integral part of the code development cycle and hence should be
expected to have already been carried out when the code is received by CASL or deployed
within CASL. Code verification is intended to verify that the numerical algorithms and methods
implemented into the code are indeed performing as expected and are indeed the algorithms and
methods intended for implementation. Thus the first step in code verification is a peer review,
subroutine by subroutine and module by module of the code by the developing team. Then, the
code must be subjected to series of test that identify potential performance flaws. A minimal set
of tests for a neutronic code should incorporate the verification of the correct implementation of

Consortium for Advanced Simulation of LWRs
52

the solution method including verification of the performance of various physical situations and
boundary conditions. The minimal set of verification tasks should include:

• Check against known analytic solution problems with a variety of BCs
• Gradually increased complexity and number of groups and different materials in various

regions.
o Homogeneous 1-D slab, 2-D, and 3-D, 1-group model
o Homogeneous 1-D, 2-groups model:

 Symmetric full slab case
 Half-slab case

• 2-regions 1-D, 1-group mode

These types of problems are typical of the types of problems used during the coding phase to
verify and debug the code implementation. Other cases should be identified and formulated
during implementation of the verification process.

8.3.7. Thermal hydraulics
We will separate this discussion into two distinct types of codes, CFD codes like Hydra and
traditional thermal hydraulics codes like CTF. For CFD codes, code verification is the standard
way of doing business. Some do it better and some do it worse but everyone does something and
its importance is understood. The verification manual in hydra is a good example of how to
verify a CFD code.
For CTF the problem is much more complicated. It is often difficult to separate the Partial
Differential Equations (PDEs) from the closure laws and correlations. Exact solutions are not
possible due to the highly nonlinear coupling with the closure laws.
The first step in code verification for CTF is to separate the PDE from the closure laws. This is
equivalent to being able to turn the closure laws off. Once the closure laws are turned off, then
the accuracy of the PDE integration can proceed similar to what is done for CFD codes.
Because of the tight coupling between the closure laws and the PDE in most thermal hydraulic
codes, code verification was never done and it never became part of the culture.

8.4. Solution Verification
Numerical methods that are used to obtain approximate numerical solutions of continuum
models unavoidably lead to errors in the computed results. These errors are associated with the
numerical method alone and have nothing to do with any assumptions related to the physical
correctness of the continuum models (e.g., model-form errors). The process of determining
model-form error and correctness is known as validation and is distinct from verification. The
challenge of solution verification is to help provide estimates of such numerical errors. These
errors can be decomposed into four general types:

1. Round-off errors,
2. Sampling errors,
3. Iterative (linear and nonlinear) solver errors, and
4. Discretization errors.

Our primary focus in this work will be the last of these, the discretization error, which most often
is the dominant error from these sources. Fully verifying the veracity of our assumption would
require further study, but has been found to be a reasonable presumption. These discretization
errors are a direct consequence of the numerical scheme used to obtain a discrete approximation

 Consortium for Advanced Simulation of LWRs
53

of the continuous model equations (e.g., finite difference, finite element, or finite volume
methods). The solution approach used on those discrete equations and the nature of the solution
itself determine the expected behavior of the error. Many researchers contend that discretization
error is often the dominant source of numerical error in scientific computing simulations. This is
consistent with much of the authors’ experience, although nonlinear solver error can dominate
strongly coupled problems.
Among the most important characteristics of discretization schemes is the order-of-accuracy
(also called the convergence rate), which is given by the exponent in the power law relating the
numerical truncation error to the value of a parameter associated with the discretization, usually
given by the size of the computational cell (for spatial convergence) or time step (for temporal
convergence). This is a standard property of the numerical method; however, it formally applies
only when the solution is continuously differentiable (i.e., smooth). The factor multiplying this
term gives a measure of the overall error of a given scheme; thus, two different schemes that
converge at the same rate may have different (absolute) discretization errors. The standard
method by which to estimate this accuracy is systematic mesh refinement (or variation), although
there are, other, less general approaches [Roy10a]. The results of this approach are combined
with error measurement to produce the observed rate-of-convergence, which is compared with
the ideal or theoretical rate-of-convergence of the underlying algorithm.
In solution verification, unlike code verification, the use of an analytical or exact solution to a
problem is not available as an unambiguous fiducial solution. Instead, the comparisons are made
between solutions using different grid resolutions under the a priori assumption that finer mesh
resolution yields more accurate solutions, which we will take as a fundamental assumption that
underpins the entire study. Perhaps we might refer to this as the fundamental assumption in
verification. This assumption is broadly regarded as being primal, given its fundamental
character with regard to numerical analysis.
The workhorse technique for estimating discretization error is systematic mesh refinement (or
de-refinement, i.e., coarsening), while the method for estimating iterative error involves
systematic changes in stopping criteria for the iteration. A fundamental expectation for a
numerical method is the systematic reduction in solution error as, say, the characteristic length
scale associated with the mesh is reduced. In some cases the error is viewed as being
proportional to the number of degrees of freedom employed to achieve a solution. This criterion
becomes important when several types of adaptively are used as in h-p refinement. For mesh
refinement, in the asymptotic limit where the mesh length scale approaches zero, a correct
implementation of a consistent method should approach a rate of convergence given by
numerical analysis (often obtained with the aid of Taylor series expansion). In practice, however,
a series of calculations might not be in the asymptotic range. This circumstance does not obviate
the need for some estimate of the numerical error, however imprecise that estimate may be; in
fact the necessity may be increased under these conditions.
To conduct analysis using this approach, a sequence of grids with different intrinsic mesh scales
is used to compute solutions and their associated errors. The combination of errors and mesh
scales can then be used to evaluate the observed rate of convergence for the method in the code
on the given problem. In order to estimate the convergence rate, a minimum of two grids is
necessary (giving two error estimates, one for each grid). The convergence tolerance for iterative
solvers can be investigated by simple changes in the value of the stopping criteria. Assessing
iterative convergence is complicated by the fact that the level of error is also related to the mesh
through a bounding relation in which the error in the solution is proportional to the condition

Consortium for Advanced Simulation of LWRs
54

number of the iteration matrix. Most investigations of iterative solver error only consider the
impact of the stopping criteria alone.
Solution and code verification are done for quite different reasons. They reinforce each other,
but they serve different purposes in conducting quality computational science. Code verification
is done to provide clear evidence that numerical methods are implemented to solve governing
equations correctly. Solution verification provides an estimate of discretization error for an
applied problem. Insofar as providing evidence of correctness of implementations, solution
verification is simply a “feel-good” exercise. This seeming confusion is actually quite
understandable. In retrospect it is the fault of a poorly chosen taxonomy.

Lately, it has become fairly clear to me people are starting to believe that actively doing
verification is a good idea. This is great, the message has been received and action has been
taken. The good work of code verification helps to provide faith that the implementation of a
solution method is correct. To remind the reader, code verification compares a numerical
solution to an analytical solution. One of the key measures in conducting code verification is the
observed rate of convergence for a method. This is directly compared to what is theoretically
expected. If the values match, the verification is confirmed, and this evidence is amassed to
indicate that the method is implemented correctly. If one completes this exercise over-and-over
for different problems having analytical solutions, the evidence can become overwhelming. I’d
note for experts out there that the expected rate of convergence depends not only on the method,
but the nature of the solution. In other words if the analytical solution lacks smoothness
(differentiability) or contains a discontinuity, the expected rate of convergence will degrade over
the ideal case.

As I stated above, solution verification has an entirely different purpose. It is conducted to help
provide an estimate of the numerical error in a solution. That is the key thing, the error estimate,
not the rate of convergence. The rate of convergence is an outcome of secondary interest, an
auxiliary quantity. If the convergence rate does not match the given order of a numerical
method, it does not necessarily mean the method is implemented incorrectly. It might mean
that. Instead it is a quantity that invites caution and examination by the code’s user. The reason
is that rarely do we have firm theoretical expectations for convergence in “real” applied
problems. Often the solution of interest in a problem involves functionals of the solution that are
immune to firm theoretical estimates for convergence. The problem being studied does not
generally have an analytical solution although the estimates could be applied to the same
problems used for code verification. In a sense “code” verification techniques should be used to
verify the error estimates produced by solution verification.

8.4.1. Quantified to Measure Improvement
Same as code verification solution verification needs to be quantified. I refined the grid until the
solution appeared to stop changing is not an acceptable solution verification study. Since there is
not an exact solution the main thing to verify is the convergence rate. To measure the
convergence rate one needs and accurately quantify the differences between successive
simulations.

 Consortium for Advanced Simulation of LWRs
55

8.4.2. Neutronics
In neutronics, the solution verification is a redundant process once the code has been verified. In
all neutronic applications all code runs must be fully converged spatially. Spatial convergence is
revisited later in this section following a brief discussion of iterative convergence.
With regard to iterative convergence the acceptable prescription is one of convergence to within
a prescribed iterative tolerance that must be guided by the known rate of iterative convergence of
the problem under consideration. When the convergence rate is very slow, it might appear that
the solution has converged iteratively when in fact it has not. This is a frequent situation in
neutronics and careful assessment of the convergence rate must be carried out in order to
determine if the solution for the problem at hand is one that has indeed converged iteratively or if
the rate of convergence is very low and the solution is still far from converged. These situations
can usually be remedied by using appropriate acceleration techniques (but with great care).
With regard to spatial convergence, which describes the property of the solution of the
computational discretized model to approach the solution of the continuum mathematical model,
there is no room for compromise in neutronics. Specifically, the solutions must be spatially
converged before any meaningful comparison with other solutions, be they analytical,
computational or experimental could be undertaken. The reason for this strict requirement is that
taking a spatially non-converged solution as a functional equivalent of a converged one is
tantamount to an uncontrolled change of the operator that is being solved for. A computational
solution is recognized as spatially converged when any further refinement of the discretization
results in no change in the computational results. All computational solutions must be spatially
converged and only the spatially converged values should be reported, unless the purpose of the
computational exercise is to study the rate of spatial convergence.

8.4.3. Thermal Hydraulics
Again the discussion will be separated between CFD codes like Hydra and thermal hydraulic
codes like CTF. In Hydra the geometry is described separately from the grid. It is usually
relatively painless (in simple geometries) to refine the grid keeping the geometry the same. This
can become complicated when things like sharp corners are included in the geometry. In general
this is a straightforward process and the main constraint is having a large enough computer to
achieve a mesh converged solution.
For thermal hydraulic codes like CTF the geometry and the mesh come together in a single input
description. Additionally some physics is homogenized to a fixed length scale, a channel for
instance in CTF, which cannot be refined due to the construction of the model. Another problem
with CTF is there are certain models that do not lend themselves to mesh refinement.
For example a grid spacer is modeled by a loss coefficient that gives the experimentally
measured pressure drop over the grid spacer. This is an inherently zero dimensional model
because the experimental data is gathered over the whole grid spacer. There were no
measurements to describe the pressure drop inside of the grid spacer. Therefore mesh refinement
makes no sense.
In general verification is a challenge for thermal hydraulics code, but the fact that it is hard does
not minimize the importance of understanding the numerical uncertainty.

8.5. Validation
It is important to clearly distinguish the difference between validation and benchmarking.
Validation is the comparison between your code results and experimental data. Benchmarking is
comparison between two computer codes. The experiment, plus it experimental uncertainty, is a

Consortium for Advanced Simulation of LWRs
56

measure of “reality.” Comparisons with experimental data measure whether you have (or have
not) captured all of the important physics in your computer model. This measurement of the
quality of the physical model is the key to validation.

8.5.1. Benchmarking
Benchmarking is the comparison between two or more different computer codes. Although
benchmarking does provide evidence of the quality of your code, it does not replace validation.
Two computer codes may match solutions because they share a common “bad” model. The
benchmarking measures that you both have coded the “bad” model the same way.
To get credit for benchmarking it is important to have the PCMM evidence for the code that you
are benchmarking with. If there is value in matching code results, then there should be evidence
to prove the code that you are comparing to his getting the “right answer.” The PCMM evidence
provides the bridge from the experimental data used to validate the code that you are
benchmarking against.

8.5.2. Quantified to Measure Improvement
It is critical to quantify validation. I need to be able to compare two different models and
quantitatively determine which model is better. The “view graph norm” (this wiggly line sort of
looks like that wiggly line) is not an acceptable form of validation. This becomes particularly
important when one considers verification and validation simultaneously. Now the question
becomes do I match the experimental data better or worse as I refine the mesh.

8.5.3. Confirmatory
There are two basic types of validation experiments, confirmatory and differential. The
confirmatory experiment is done previous to the simulation. Experimental data is gathered that
is easy to measure and easy to match with a simulation code. These experiments provide
evidence that the large scale physical model has the correct trends most of the time.

8.5.4. Differential
In a differential experiment, the simulation is done before the experiment is run. One runs
different simulations with different models. Where the different models give the same answer
one can be relatively confident that the physics is captured correctly. However, where the
models give different answers you only know that some or all of the models are wrong.
In a differential validation experiment, the experimental data is gathered precisely where
different models give different answers. In this case, if the experimental error is small enough,
one can differentiate between the good models and the bad models. This type of experiment,
where the simulation takes place before or simultaneously with the experiment, is significantly
more valuable than experiments that are run before the simulation.

8.5.5. Experimental Error
Experimental error is a function of space and time. When someone “quantifies” experimental
error as “plus or minus five percent” they are often reading this number off the back of an
experimental instrument. Real experimental error is hard to come by. The best measure of
experimental error is obtained through replicate experiments. The idea here is to run the
experiment at a point in state space and gather data. Run the experiment again at a different
point in state space. Then repeat the experiment at the first point in state space. The difference
between the two experimental measurements, at the same point in state space, provides a
defendable measure of the experimental error.

 Consortium for Advanced Simulation of LWRs
57

There is another valid way to think about experimental uncertainty. Consider an experiment run
at lab A. They document the results of their experiment. This document is then sent to Labs B,
C, D, and E. These four labs rerun the experiment based on the documentation from Lab A. The
difference in experimental results between the five labs defines experimental error. Accurate and
complete documentation is very important for validation experiments.

8.5.6. Neutronics
The validation of neutronic codes is a misnomer. In reality, in neutronics, validation pertains to
the triplet “code/data/model” taken always together. This is in contrast to thermal-hydraulics
where the data facet is essentially independent of the code and the model, such as water
properties and steam tables. In this case, when two state variables are known (e.g., temperature
and pressure), the remaining properties of the fluid are also known unequivocally (e.g., viscosity,
density, etc.). However, in the case of neutronic modeling, the data (or neutronic material
properties) are not uniquely defined for all reactors and all designs; and in fact, the effective
neutronic properties vary from one reactor design to another and from one state of a reactor to
another state of the same reactor. For example, the effective scattering cross section in a given
region of a reactor depends on the local composition and local temperature and also on the
conditions in neighboring regions since the effective values of the cross sections depend on the
local neutron spectrum, itself a complicated function of local conditions as well as of neutron
streaming from neighboring regions. For these reasons, the validation of a code as a standalone
entity does not make sense in neutronics, nor does the validation of a code and data pair without
the model element, as the data cannot be fully defined unless a model is also known.
The goal in the CASL project is to model typical LWRs. It follows that the validation of the
code/data/model triplet must be carried out either for actual LWRs of the type that will be
modeled using CASL codes or on a suitable surrogate or suite of surrogates. A surrogate is
defined as a reactor experiment that embodies as many physical features as possible that are
present in the LWR while being “contaminated” as by as few as possible that are not in the
LWR.
 An obvious choice of a validation experiment, in the context of CASL, is an actual LWR that
was already modeled using a CASL code. Such a reactor is the Watts Bar Unit 1 reactor in its
first cycle at zero power. Of course, at other power levels either the same reactor could be used
if the relevant data are made available to the project, or surrogates would have to be identified.
A preliminary identification of well documented and available surrogate experiments has been
completed. It is recommended, at present, to use one experiment (or more) from the International
Handbook of Evaluated Reactor Physics Benchmark Experiments. The IPEN (mB01)-LWR-
RESR-001 experiment in the Handbook is recommended as the initial choice for validating the
code/data/model in a situation that shares many of the features of LWRs. Subsequently, the
follow-up experiments in the same series IPEN (mB01)-LWR-RESR-002 through IPEN (mB01)-
LWR-RESR-014 are also recommended as potential cases for additional validation.
 In the process of validating a neutronic triplet, it is important to compare as many model-
computed parameters as possible to their experimentally determined equivalent ones. However,
a minimal subset should always comprise the computed k-eff for the known just critical
configuration, control rods worth values, reflector worth, critical dissolved boron concentrations,
flux distributions, neutron spectrum, and (if possible) safety parameters such as various reactivity
coefficients.

Consortium for Advanced Simulation of LWRs
58

8.5.7. Thermal hydraulics
As currently composed, the THM activities are multi-faceted involving a wide range of
scales and processes/phenomena whose models need calibration, from turbulence to
nucleation to condensation rate in subcooled flow boiling. Time-averaged (effective-field)
essentially-1D models (like in RELAP, CTF), time-averaged 3D models (in CMFD codes),
and LES/ITM codes -- each class involves modeling of mechanisms whose characteristic
time scales vary so broadly that each code class requires fundamentally different data and
hence separate diagnostic techniques. Clearly, “mechanistic” treatment of the
phenomenology is necessarily heuristic and ad hoc. Individual models are empirical, based
on observations made at non-reactor conditions. Many processes (e.g., nucleation) are not
well understood, stochastic, or not quantifiable.
There are a wide range of models and simulation codes that pertain to nuclear reactor
thermal-hydraulics. While higher-fidelity/higher-resolution models are trendy, engineering
applications remain bound to computationally affordable lower-resolution simulations. This
is particularly true when the engineering process involves a long time scale. From an
engineering practice standpoint, development and integration of higher-resolution AMS
codes are meaningful when they have the potential for generating results for conditions of
interest (e.g., PWR, CIPS) that aid uncertainty reduction in coarser-grain models.

Figure 11 Time/length scales and codes in thermal hydraulics.

 Consortium for Advanced Simulation of LWRs
59

The highest resolution (lowest length scales) simulation capability of T-H in core fuel
assemblies is provided by CFD / CMFD codes in VERA, currently with Star-CCM+ and
HYDRA-TH. Development and validation of HYDRA-TH is the focus in THM. The coarse-
grain (subchannel) simulation code CTF is used for core thermal-hydraulics in VERA core
simulator. System-level simulation is also required e.g. in CIPS as to enable simulation of
transport of corrosion products over long period. The system code can provides more
accurate modeling of T-H in the reactor primary system over a wide range of plant
operational and abnormal transients, including e.g., loop-asymmetric scenarios induced by
processes in the plant’s secondary side.
Relative to T-H capability to inform CASL challenge problem, key areas of model
calibration and validation include (i) validation of single-phase capability (turbulence
models), and (ii) testing and refining two-phase flow capability. A wide range of
experimental data is needed to support validation of T-H simulation capability. A set of
benchmarks for validating VERA thermal-hydraulics simulation capability, specifically the
CFD and CMFD (multi-phase CFD) codes, was defined to include

o Basic CFD validation
o Specific-geometry CFD validation
o Basic CMFD validation
o Specific-regime CMFD validation

 Subcooled flow boiling (SFB)
 DNB

o Specific geometry CMFD validation

Hierarchically, TH AMS capabilities of interest include
• Atomistic/MD (surface physics, coolant chemistry) of importance to, e.g.,

Nucleation
Wettability (triple contact line)

• Micro-hydrodynamics
Evaporating meniscus
Deposition
Thin film (breakup/coalescence)

• Continuum with interface tracking
Bubble/interface dynamics

• Turbulence
Turbulence-interfacial surface interactions

• Inter-field exchanges … closure physics
Mass (evaporation/condensation)
Momentum
Energy

• Two-phase averaged model
Flow pattern

• Gradient across flow channel
Multi-dimensional effect

• Domain decomposition coupling between models of different formulation
Interface of models of different fidelity/resolution

Consortium for Advanced Simulation of LWRs
60

While benchmarks are valuable on their own right, it remains open how relevant the tests are
for reactor prototypic conditions of interest, and how to interpret, and make use of, the
benchmark results (failure or success) relative to the VERA capability to predict QOIs in
challenge problems. Answer to this question helps determine coverage of benchmarks in the
capability space, given a large number of degrees of freedom in models and codes involved.
For CMFD validation, experiments were performed several decades ago. Experimental
“data” exist largely as plots in reports and dissertations. Information about measurement
uncertainty or reproducibility is limited, inadequate or not available at all.
Air/water and subcooled flow boiling tests were performed under (system pressure, flow rate,
geometry, heater surface, heat flux) conditions far from PWR operating conditions. When
boiling (nucleation, wettability) is concerned, non-prototypical surface material/morphology
(crudded zirconium vs clean steel) and coolant chemistry (reactor water vs. distilled water)
introduce uncertainty that is hard to quantify.
Measurements in the past tests are integral (as opposed to tests using advanced high-
resolution diagnostics). Benchmarking against the old (integral) data provides a basis to
assess performance of “composite/integrated models”, but it is not an effective means for
characterizing performance of modeling assumptions in individual closure relations and sub-
grid-scale
models.

8.5.7.1. Overview of the state-of-the art of multiphase flow experimentation

Multiphase flow measurement is highly complicated due to:

1. Presence of multiple interacting phases with significantly different properties and high
concentration of interfaces which obscures the flows, hence difficulty in using optical
measurement methods

 Figure 12 Thermal Hydraulics Validation Pyramid

 Consortium for Advanced Simulation of LWRs
61

2. Inter-dependence of flow characteristics/physics and interface morphology which varies
significantly and, sometimes, abruptly with the change of flow regime

3. Strong influence of pressure, flow rate and heat flux on flow regime change which
decreases scalability of data

4. Wide range of involved physical scales, from small scale, e.g. wall nucleation, bubble
dynamics, etc., to large scale flow pattern change

5. High speed, high frequency physics, e.g. bubble nucleation and growth, which can be
hard to measure or observe

6. Some important physics cannot be directly measured, observed or even known (e.g.
partitioning of wall heat flux, heat transfer coefficient, etc.) and can only be indirectly
deduced from others.

Measurement of flows of subcooled boiling light water, which is used in LWRs as coolant, is
greatly different from measurement of other multiphase flows which involve, for instance, oil,
other liquids, or solid particles. The flow orientation (which defines the flow regime map) is
mostly vertical.
The parameters which are measured in subcooled flow boiling experiments include :

(i) mass flow and velocity;
(ii) temperature;
(iii) void fraction;
(iv) flow regimes;
(v) wall shear stress and turbulence;
(vi) critical heat flux (CHF);
(vii) liquid level and film thickness; etc.

Different techniques may be required for measurement of the above flow characteristics.
The transparency of water allows the use of optical or optical-based measurement methods, such
as Particle Image Velocimetry (PIV), Ultrasonic/ Laser Doppler Anemometry (LDA), high-speed
photography/videography, etc., which are used to study local characteristics of interfaces, e.g.
bubble dynamics, bubble merge or breakup, flow regime transition, etc. These measurement
techniques are commonly employed in small-scale separate effect tests (SETs) or experiments.
As noted, such SETs are normally conducted under conditions with low pressure (mostly near
atmospheric condition), low heat flux, low flow rate, and simplified flow geometry, which are
much different from LWR-prototypical conditions.
In addition to optical-based methods and visual observations, non-intrusive methods such as
(multi-beam) gamma-ray densitometry, X-ray tomography, X-ray attenuation, acoustic
attenuation, gamma-ray/neutron scattering, etc., can be used to measure distributions of void
fraction and variation of flow pattern.
Local flow characteristics can also be measured with intrusive methods using hot-film/wire
anemometer probe, Pitot tube, microthermocouple (Auracher & Buchholz, 2005), etc., in local
velocity and temperature measurements, and fiber-optical probe, impedance void metering
double-sensor conductivity probe, capacitive sensor, etc., in local phase characteristic
measurements. Due to its importance in two-phase flow modeling, special interest has been
devoted to flow pattern identification and flow regime map construction. Flow pattern

Consortium for Advanced Simulation of LWRs
62

identification can be based on a variety of measurement techniques and signals, which are
classified as follows (Bertani, De Salve, Malandrone, Monni, & Panella, 2010):
Direct observation using

1. Visual and high-speed photography/videography
2. X-ray attenuation imaging
3. Electrical contact probes
4. Gamma-ray densitometry

Indirect determination from
1. Static pressure oscillation analysis
2. X-ray attenuation fluctuation analysis
3. Thermal neutron scattering “noise” analysis
4. Drag-disk signal analysis

8.6. Sensitivity
It is important to understand the difference between sensitivity and uncertainty. Sensitivity is the
change in the QOI with respect to the change in a parameter so it has units of the quantity of
interest divided by the units of the parameter. Often this is then normalized to be
nondimensional. The nondimensional number then can be compared for relative importance.
Sensitivity analysis is an early step that helps to focus work on parameters that matter and
remove parameters that do not matter. It is important to understand the units on your sensitivity
results. This is based on the dimensionality of the original parameter and the normalization
process if it is employed.

8.6.1. Local
Local sensitivity can be thought of as a global sensitivity with a very small parameter range.
With a small parameter range local sensitivity is an approximation to the derivative of the QOI
with respect to a parameter. Local sensitivity provides information about a point in state space.
This can be very useful if the point in state space is a steady state solution with particular design
significance. Local sensitivity can be quickly computed, relatively accurately, and with a small
number of code runs.

8.6.2. Global
Global sensitivity provides information about how the QOI changes over the entire range of
possible values for a parameter. It has an obvious advantage and obvious disadvantages over
local sensitivity. The obvious advantage is it provides one with knowledge of the larger solution
structure. That is it can detect discontinuities in the solution space that might be near enough to
impact a uncertainty study but far enough away that it would not be caught by a local sensitivity
study. Understanding the structure of the solution space is important to assessing uncertainty.
The first obvious disadvantage is that it requires a large number of runs. The acceptable
parameter range has to be partitioned into a set of runs that provide coverage of the parameter
range. For large parameter ranges this may require a large number of runs. The second less
obvious disadvantage is that it requires the code developer to define the acceptable parameter
range. Some parameters have a physical interpretation that makes the range a relatively simple
concept. Some parameters are dimensionless and have no physical interpretation. Defining the

 Consortium for Advanced Simulation of LWRs
63

acceptable parameter range for these parameters can be a challenge. Usually parameter ranges
for global sensitivity studies are obtained through “expert opinion.”

8.7. Uncertainty Quantification
Quantifying the uncertainty is the first important step in providing confidence in the use of
software. The second important step is uncertainty reduction. Hopefully the uncertainty
quantification process will provide enough information that there is a clear path on how to
reduce the uncertainty. New calibration data is the key to uncertainty reduction.

8.7.1. Parameter Distributions
The key difference between sensitivity and uncertainty is the need to define parameter
distributions. For uncertainty quantification it is important to have the parameter distributions
defined. One should note that it is the narrowing of the parameter distribution that causes the
uncertainty to reduce. As more data is added, the parameter distribution narrows as more
experimental values cluster around the mean.

8.7.1.1. Computed

Figure 13 Parameter Distributions

Consider the simple example shown in Figure 13. Here I have four experimental data points and
I fit them with a line described by
 0 0y a x b= + (1.2)

Consortium for Advanced Simulation of LWRs
64

This is shown as the solid black line in the figure. I can create a family of curves by fixing the y
intercept, b0 and adjusting the slopes to match the data.
 []0 where 1, 4iy a x b i= + ∈ (1.3)

This defines the family of red dashed lines. Similarly I can create a family of curves by fixing
the slope, a0, and adjusting the y intercept to match the data.
 []0 where 1, 4iy a x b i= + ∈ (1.4)

This defines the family of blue dotted lines. This is not how the Bayesian analysis works but it
simply provides the motivation that parameter distributions can be created from the correlation
and the original data. This is the easiest parameter distribution to defend since it is completely
quantitative.

8.7.1.2. Expert Opinion
The traditional way to build parameter distributions is based on expert opinion. Here the expert
defines the minimum and maximum value that he/she expects the parameter to have and a
uniform distribution is assumed between the minimum and maximum value. When there is no
quantitative way to generate the parameter distributions expert opinion is the default method.

8.7.2. Neutronics
Uncertainty quantification of the effect of errors (or uncertainty) in input variables on the output
variables of a code can theoretically be performed using a number of methods.
The most obvious and straightforward approach is to a-priori select as the neutronic code one
that includes an adjoint capability, and then to perform both forward and adjoint calculations and
generate sensitivity coefficients on all the input parameters of interest. A second option would
be to include into the code a gradient capability such as can be generated by a post-processing of
the source code using a post-processor similar to the GRESS code. In this option sensitivity
coefficients to a limited number of input variables can be generated for selected output variables.
Both of the options just mentioned require extensive coding work and are therefore not
considered practical for either of the CASL neutronics codes.
A slightly less problematic approach than the ones mentioned above would be one based on
stochastic sampling of input variables over their range (and distribution) of uncertainty in a
pseudo-random combinatorial implementation. In the case of neutronics codes with thousands of
input variables, this latter approach would still be impractical. It is therefore recommended to
identify and implement and approach that a-priori reduces the number of input variables down to
a more manageable range. Such an approach would consist in identifying a-priori which input
variable are important from the point of view of their impact on the output quantity of interest.
This can be achieved through the use of a surrogate method on a model identical to the one under
consideration. Using a code (other than the CASL codes) that includes the capability to
determine sensitivities or to identify important input variables (e.g., through embedded adjoint
solution), the work would then consist in identifying which input variables have the largest
impact on the output ones, i.e., obtaining the relevant sensitivity parameters in the surrogate
code. Once the most important input variables have been identified, carrying out sensitivity
analyses and uncertainty quantification on the CASL code using one of the methods described
above would then be possible, as the number of input variables to be considered would be
manageable. It is recommended that the project proceed with the identification of important

 Consortium for Advanced Simulation of LWRs
65

input variables using a code from the SCALE suite and then continue on with sensitivity
coefficients determination in the CASL neutronic for those input variables using a perturbation
technique or a pseudo-stochastic sampling approach.

The application of VUQ analysis to neutronics calculations focuses on three goals. First, an
uncertainty analysis propagates basic nuclear data uncertainties, i.e., cross-section uncertainties,
to the reactor attributes of interest, e.g., eigenvalue, pin power distribution. Second, a sensitivity
analysis identifies the key contributors to the propagated uncertainties. Third, a data assimilation
device employs the body of available measurements to reduce the propagated uncertainties by
updating the prior knowledge on the key sources of uncertainties. The application of VUQ
analysis to the CASL progression models is challenged by the high dimensionality of the
parameter’s uncertainty space and the responses of interest. To overcome this challenge, CASL
has adopted a number of hybrid approaches in which the best contenders for uncertainty and
sensitivity analysis methods are combined in order to overcome their individual limitations. For
example, combining both adjoint and forward sensitivity methods has proven effective in
quantifying sensitivities for models with many parameters and many responses, a task that is
computationally infeasible with either method applied alone..

8.7.3. Thermal Hydraulics
We applied several sets of changes to Cobra-TF (CTF), the CASL Thermal Hydraulics code, to
help quantify uncertainty associated with CTF. These changes involved (1) identifying closure
laws associated with the PDE’s and adding the ability to turn off or scale each separate closure
law, (2) based on the VERA-CS Progression Problem Six PIRT, we took the identified important
thermal hydraulic correlations and added the ability to tune each individual parameter in these
correlations, and (3) added the ability to supply an external power profile to CTF acting as a
surrogate for a coupled neutronics code.
Phase one involved reading the CTF Theory manual, finding the PDE’s with their associated
closure laws, locating these closures in the CTF code, and applying an Ax+B type scaling to the
closure variable (x) in the source code. Because we didn’t want to change the default CTF
behavior, given a CTF closure variable x, we set the default value of A to 1.0 and B to 0.0
thereby ensuring no meaningful changes to CTF computations. The use of an Ax+B type scaling
gives us the ability to disable the closure completely (A = 0.0), perturb the closure around its
nominal value (e.g. A = 0.95 or A = 1.05), or to set the closure to a constant value such as might
be desired in a method of manufactured solution type environment (e.g. A = 0.0, B = 0.37). We
refer to A and B as a multiplier and adder, respectively, and these can be set via a multiplier
input file. If the multipliers and adders are not set through input, their default values are 1.0 and
0.0.
Phase two involved taking the highest ranked correlations from the Problem Six PIRT, in terms
of importance, and exposing these correlation parameters in the CTF source code. For each
identified correlation, we located the correlation in the CTF source code, identified the set of
constant parameters in the correlation, and replaced these constants with variables having the
same default value, thereby exposing each correlation parameter effectively making the
correlation tunable. In some cases, the correlations are coded up in more than one place in the
source code so as part of this parameter exposure work; all occurrences were modified in the
same way. The CTF variable was given the parameter default value to ensure there were no
significant changes to CTF numerical results. The correlation parameters can be set via either

Consortium for Advanced Simulation of LWRs
66

CTF input or through a separate parameter input file, no correlation parameter can be set in both
files, its one file or the other.
It is important to note here that we are taking a broad view of the correlation. For example, if the
value is under-relaxed we will include the under relaxation as a parameter in the correlation. If
there are “ramps” that smooth the transition between two correlations we will include the width
of the “ramp” as a parameter in that correlation.
Some correlations require a piecewise continuous transition from one correlation to another.
This means that the transition point and the intersection point with the neighboring correlations
may change with perturbations to parameters in the correlation that we are studying. If the
transition is discontinuous, then the parameter that determines when we enter a flow regime
(note this may be a function note just a single parameter) and the parameter that determines when
we leave a flow regime are also considered parameters of the correlation.
In phase three, we wanted to explore the uncertainty associated with the VERA-CS Progression
Problem Six test case. This test couples CTF to Insilico with CTF transferring density, fuel, clad
and moderator temperature to Insilico, and Insilico transferring rod power back to CTF. The
coupled problem runs to steady state so we wanted to use the converged rod powers from Insilico
as the values of the rod power closure in CTF. Because our Ax+B scaling is too simplistic to
support this 3d rod power distribution, we implemented an enhanced rod power closure
capability. Instead of scaling the rod power, we call a function passing in the CTF control
volume location (spatial and temporal) and have the function return the converged rod power at
that location via table lookup. That is, this function acts as a surrogate for Insilico so we can run
the same problem six test case with CTF without coupled to Insilico and have this function return
the converged rod powers as if Insilico were in the coupling. This rod power interface gives us a
MMS type capability that’s able to support a spatial and temporal variation in closure law value
instead of a simple scaling. This enhanced interface could be very useful in coupled-code cases
where an expensive code is replaced with a surrogate model and some spatio-temporal variation
of some quantity of interest.

8.8. Calibration (Data Assimilation)
Calibration is a very powerful tool for uncertainty reduction. If all other modes of uncertainty
(bugs, numerical, model) are all smaller than the parameter uncertainty, the calibration will
reduce the overall solution uncertainty by “tuning” the correlation parameters within their
acceptable bound.

8.8.1. Cautionary Use
Calibration can also be very dangerous. This is a mathematical minimization process. It will
“tune” the parameters to meet the new data. If one still has numerical error or is solving the
wrong equations, calibration will still tune the parameters to match the data. The result is that
calibration will create compensating errors to cover for bad models or bad numerics. This is
dangerous for two reasons.

1. If a better numerical method comes along that makes the numerical error smaller, the
calibrated parameters will produce a worse answer. This leads to the wrong conclusion
that better numerics decreases accuracy.

2. One should use caution when extrapolating (predicting) with calibrated parameters.
However, if compensating errors have been created by causing a numerical error to

 Consortium for Advanced Simulation of LWRs
67

cancel a model error, there is no chance for a predictive (extrapolatory) use of the
software.

8.8.2. Partition Data
The first step in Calibration is to partition the new experimental data into two bins. The first bin
is used for calibration and the second bin is used to measure the improvement due to calibration.

8.8.3. Initial Validation
We first quantitatively validate or code with the validation bin of data. This provides the
baseline measurement of the validation.

8.8.4. Calibration
We then employ one of the many calibration methods in DAKOTA to tune our parameters to
match the data in the calibration bin.

8.8.5. Measure Validation Improvement
We then quantitatively validate the code with the data in the validation bin a second time. We
can then quantify the reduction in model uncertainty due to tuning the parameters. This is how
calibration uses new data to reduce uncertainty.

8.9. Aleatory Versus Epistemic Uncertainty
There are some things that can be measure and reasonable well predicted. Examples of these
would be nucleation site density or hydride concentration. The accuracy with which we can
predict these parameters increases with new experimental data. These are sources of epistemic
uncertainty and the uncertainty is reduced by calibration.
There are quantities that are unknowable and are stochastic in nature. For example nucleation
site location or hydride location. Because these are unknowable they have to be treated as a
stochastic variable. That is there is some random distribution that you sample from to get one
result and you need a large number of results before useful information can be obtained from
statistical analysis of the results distribution. These are aleatory uncertainties.
For PCMM analysis it is important that the code teams understand which parameters have
epistemic uncertainty that can be reduced with calibration and which parameters have aleatory
uncertainty that can only be address by multiple random samples.
It should be noted that aleatory uncertainties have a strong impact on the uncertainty
quantification run time because the aleatory uncertainty becomes a nested sampling problem that
has the potential to square the run time of the uncertainty quantification analysis.
Understanding and differentiation of aleatory and epistemic uncertainty plays a key role in the
PCMM score for uncertainty quantification.

8.10. User Effect
The user effect is a recognized form of uncertainty recognized by the NRC. The basic
understanding comes from this hypothetical situation. Take 10 equally qualified engineers.
Give them the same analysis project and the code user manual. The difference in the 10 results
is called the “user effect” mode of uncertainty. This effect can be clearly seen in any benchmark
study where multiple organizations use the same simulation tool. There are three approaches for
minimizing the “user effect” uncertainty, best practices, input error checking, and Graphical User
Interfaces.

Consortium for Advanced Simulation of LWRs
68

8.10.1. Best Practices
Best practices are additional information that is added to a user manual to describe the preferred
value for an input parameter or at least an acceptable range. Two of the most important best
practice descriptions are for mesh generation (or nodalization in a thermal hydraulics code) and
time step selection. Appropriate grid spacing minimizes the spatial discretization error.
Appropriate time step control minimizes the temporal discretization error.

8.10.2. Error Checking
Many input parameters have physically acceptable ranges. Many codes have test to make sure
that values are positive when that is required but few actually place acceptable ranges on
parameters and at least print out a warning when the code is being applied incorrectly.

8.10.3. Graphical User Interface
A well designed user interface will have the best practices “built in” to the software. Default
values are automatically loaded and it requires additional work by the code user to change the
default values.
It is very hard to prevent a malicious code user from producing bad results with a code. Like all
other modes of uncertainty we are not trying to eliminate “user effect” but simply trying to
minimize it. By requiring the code user to do extra work to violate the best practices (which
need to be clearly documented) we can prevent all but the most motivated code users from
violating best practices. This is the goal because research applications of the software often
require violation of the standard usage best practices.

8.11. Iteration
Code PCMM is a never ending process. It should begin the first time your software is mature
enough to make a “significant” simulation. You should then compute all of the different forms
of uncertainty so you know what confidence that you can have in your significant result.

8.11.1. Measure the Largest Uncertainties
While measuring the different forms of uncertainty (bug, numerical, model, parameter) you will
be able to see which ones are the largest.

8.11.2. Reduce the Largest Uncertainty
For example, if your largest uncertainty comes from the fact that you haven’t documented or
tested your software, then your next step should be to stop building new undocumented and
untested software and document and test the software that you have. If your largest uncertainty
is caused by a lack of validation data, then improving the numerical methods in you code will not
improve uncertainty.

8.11.3. Repeat the Process
Now that you have done work to reduce your uncertainty, repeat the PCMM analysis and find
the new largest uncertainty. The PCMM analysis is done continuously and serves as a
“compass” to point focus your resources to where the largest uncertainty reduction can be
achieved. This iterative process should continue from near birth through the whole software life
cycle.
If you develop software for years without documentation and testing you are accumulating a
large debt of documentation and testing to get caught up on. The worst case scenario is when the

 Consortium for Advanced Simulation of LWRs
69

PCMM analysis is put off until the funding is almost gone. You then do a PCMM analysis to tell
you where your largest uncertainties came from, but you have no resources to make the
uncertainties smaller. You may find that a bad choice early in the software design has destroyed
you predictive capability and you have waited too long to do anything about it.

9. APPLICATION (CHALLENGE PROBLEM) PCMM
Application PCMM is based on the top of the validation pyramid. This is where code coupling
and Multiphysics become important. Additionally, near the top of the validation pyramid we can
always “see” the QOI that we are going to use to make our decision. It’s this focus on a single
QOI that separates the code (foundation) PCMM from the Challenge Problem (application)
PCMM.

9.1. Bricks and Mortar (PCMM for the Wall)
In code (foundational) PCMM we assessed the quality of the individual pieces or the bricks. In
application PCMM we now focus on the whole wall which includes the bricks and the mortar
that hold the bricks together. We now focus more on the Multiphysics coupling and the codes
coupling.

9.2. Coupling Verification
We first need to assess that the impact that the code coupling has on the coupled code solution.
Have we lost accuracy by how we coupled codes together? Have we lost accuracy because we
coupled a lower accuracy code to a higher accuracy code? Does the coupling procedure
conserve mass, momentum, and energy?
An easy way to test the code coupling is to produce driver codes. Driver codes use the same
interface as the real codes like CTF or Insilico, but they are very simplified. The simplest driver
code behaves like a boundary condition. We may make a neutronics code that is simply a known
space and time dependent energy source for the thermal hydraulics code. We may build a
thermal hydraulics driver code that simply produces a spatially and temporally varying fuel
temperature and moderator density. We can then create a simple driver codes that accept
information from the interface and produce a known response given the correct input. Here is a
list of the way driver codes can be used to test the interface.

1. Using a neutronics driver code do solution verification on the thermal hydraulics code to
show that the coupling did not reduce the numerical error in the thermal hydraulics code.
The coupled code solutions with the neutronics driver can be compared exactly with a
solution computed by the thermal hydraulics code with a known source term.

2. The neutronics code can be tested similarly by using a thermal hydraulics driver code and
matching stand-alone neutronics calculations.

3. Using both a neutronics driver and a thermal hydraulic driver the spatial and temporal
accuracy of the code coupling can be measured.

Code coupling verification will measure the uncertainty due to the code coupling software.

Consortium for Advanced Simulation of LWRs
70

9.3. Multi-Physics Reduced Order Modeling

The use of reduced order modeling has been recognized as necessary for the comprehensive
application of VUQ analysis to complex multi-physics reactor models. The overarching objective
of VUQ analysis is to propagate, prioritize, and ultimately reduce all sources of uncertainties in
the simulation. The computational cost required to achieve these goals is dependent on the
number of uncertainty sources. For realistic reactor models, this number is considerably large,
which renders the VUQ application computationally infeasible. To address this challenge, CASL
has invested in the development of reduced order modeling techniques as an effective means to
reduce the computational cost of the associated VUQ analysis. Departing markedly from
parametric approximation techniques which rely on using low fidelity physics model as
surrogates for the high fidelity models, ROM techniques reduce the effective dimensionality of
variables associated with the various physics models, including physics input parameters, state
functions, and responses of interest. The reduced dimensions are determined such that the
resulting reduction errors (difference between the respective variable’s variation in the original
space and those reconstructed from the reduced dimensions) meet pre-defined error tolerance
limits with an overwhelmingly high probability. Past CASL developments have contributed a
number of algorithms that can be used to reduce the effective dimensionality of single physics
models, e.g., neutronics transport calculations, depletion calculations, thermal analysis, etc., with
recent developments demonstrating their potential for extension to multi-physics models.

9.4. Solution Verification Based on the PIRT QOIs
For coupled code simulations, exact solutions are almost impossible. We now rely more heavily
on solution verification. The main difference between application PCMM solution verification
and code PCMM solution verification is the QOI is now defined by the PIRT. We are measuring
how the coupled code simulation converges with respect to the PIRT QOI.
We first build a refined solution through Richardson extrapolation, RMR, or just computing a
solution on a highly resolved mesh. Due to the computation cost of coupled code simulation the
last option is almost never viable.
Given a refined solution we can then measure the convergence rate to the refined solution with
the following equation.
 refinednumerical uncertainty = QOI QOI x∆− (1.5)

In words the numerical uncertainty is the difference between the refined quantity of interest and
the grid dependent (computed) quantity of interest.
The numerical uncertainty should then reduce by the designed convergence rate of the numerical
method of the coupled codes and the designed convergence rate of the code coupling, whichever
is smaller. This is based on the weakest link idea. If I use lower order coupling, then there is no
value in higher order codes since the code coupling will dominate the convergence rate.

9.5. Solution Validation Based on the PIRT QOIs
Assuming that we have chosen a QOI for the PIRT that can be measured, we now have an
obvious process to measure model uncertainty
 experimentalmodel uncertainty = QOI -QOI x∆ (1.6)

 Consortium for Advanced Simulation of LWRs
71

In words, the model uncertainty is the difference between the experimentally measured quantity
of interest and the grid dependent (computed) quantity of interest.

9.6. Solution Uncertainty Quantification Based on the PIRT QOIs
We will now compute the parameter uncertainty. We will measure the parameter uncertainty as
the best estimate value (the norm of the parameter distribution for a Gaussian parameter
distribution) plus and minus the two standard deviation (95 percentile) error determined by the
uncertainty quantification process. This gives us the following equation
 best estimate 2parameter uncertainty = QOI QOI σ± (1.7)

In words the parameter uncertainty comes from the two standard deviation error bars from the
uncertainty quantification process.

9.7. Calibration Based on the PIRT QOIs
When we have a large number of experimental measurements of the PIRT QOI we can then uses
this data to calibrate the coupled code solution. Note that care needs to be taken to ensure that
system level experiments that measure the PIRT QOI do not significantly change the lower level
parameters that were tuned with separate effects test calibration. The main goal of application
calibration is to tune the new coupling parameters based on our integral effects experiments that
directly measure the PIRT QOI. This process should reduce both the model uncertainty and the
parameter uncertainty.

9.8. Total Uncertainty
We can now construct the total uncertainty as a sentence. The total uncertainty is the sum of the
numerical uncertainty plus the model uncertainty plus the parameter uncertainty. In equation
form from Equations (1.5), (1.6), and (1.7) we get;
 total refined experimental best estimate 2UQ = QOI QOI QOI -QOI QOI QOIx x σ∆ ∆− + + ± (1.8)

In application PCMM there is less judgment required. We can measure the different forms of
uncertainty in a manner that has the same units and the same norm and therefore can be
compared directly. For application PCMM there is a clear definition whether resources should
go to numerics, better equations, or different closure laws.

9.9. Iteration
Just like code PCMM this is an iterative process that should start the first time that you have a
legitimate coupled code solution prediction of the PIRT QOI. You measure the largest
uncertainty, you work to make it smaller, and then you measure again to see which one is the
largest.

10. INPUT PCMM
We often focus our attention for VUQ on the software. However the cliché “Garbage in, garbage
out” is very truthful. If we are going to make decisions based on the output of a code we need to
make sure that we have applied a VUQ strategy to the code Input. In building up the input
pedigree for a code we need to address all of the inputs that define the simulation.

Consortium for Advanced Simulation of LWRs
72

10.1. Externally Generated File PCMM
In some simulation codes a significant amount of the input information is generated by third
party software. The assumptions and range of applicability of these external input files needs to
be established.

10.1.1. Geometry
The geometry description for a CFD code may come from CAD software or some other 3-D
drawing package. The pedigree of the geometry description should be documented and verified
for correctness.

10.1.2. Mesh
Once the geometry is established, the next step is to construct a mesh. There are a variety of
mesh generators that all have a large number of input parameters. The choice for these
parameter values should be documented and justified. Note that this is the place where one
needs to build and document multiple meshes required for verification studies.

10.1.3. Cross Sections
There is a long process from experimentally measured cross sections to what is put into a CASL
neutronics code as input. The pedigree of the cross section library used in a simulation needs to
be clearly established. Specifically what processes and what data has been used to homogenize
or calibrate the cross sections.

10.1.4. Chemical Reaction Rates
Similar to cross sections chemical reaction rates should come with a pedigree for their quality.

10.1.5. Material Properties
Material properties should have their own pedigree.

10.1.6. Equation of State
Any equation of state should have its own pedigree.

10.2. CTF
Input in CTF is similar to many thermal hydraulic codes. The input describes the initial
conditions and a simplified view of the model geometry. In addition, CTF input includes loss
coefficients and decisions on what models to turn on and turn off. Specifically, the CTF input
can change the data flow in the software.
There should be some form of pedigree for the CTF input decks that are used as part of its
testing. Geometry simplifications, modeling choices, should all be documented and justified for
“important” input decks.

10.3. Hydra (Commercial CFD Software)
Hydra input brings in a variety of Input PCMM issues. The geometry will be constructed with
different software; the mesh will be constructed with different software so these external files
need their own PCMM pedigree. If there are different turbulence models that can be changed in
input the choice of turbulence model needs to be documented and justified.
Hydra brings in a whole new level of input PCMM due to the ability to employ user defined
functions. These means a significant piece of the code physics has been removed and the code
user is allowed to change this physics. Although this is a great way to enable flexibility, it

 Consortium for Advanced Simulation of LWRs
73

disables the PCMM pedigree created for the software that was replaced by the user function.
Therefore there needs to be a pedigree established for every user function defined in an
important simulation.

10.4. Peregrine (Software Frameworks)
The far end of flexibility is represented by frameworks like MOOSE/BISON/Peregrine. Since
MOOSE is a general PDE integration package, the MOOSE input defines the simulation code.
From that perspective, the PCMM level is now small on the framework like MOOSE, but large
on the MOOSE input. Therefore a Full PCMM analysis of the equations defines by input would
be required for Peregrine Input.
There are two main challenges for MOOSE/BISON/Peregrine software. The first is to figure out
where a relevant physical phenomenon is coded. Is it in MOOSE or BISON or Peregrine? Then
you need to check the documentation and testing for “the animal from the herd” that computes
the phenomenon. This adds a significant level of complexity to the PCMM analysis. The second
challenge is compatibility. Is the Peregrine correlation consistent with the way it’s utilized in
BISON and is this consistent with the PDE that is solved by MOOSE? The interface testing
between BISON and Peregrine and BISON and MOOSE becomes more important.
From a PCMM point of view there is a conservation of misery law. You can make a code more
flexible so it is easier to capture new simulations but when you do you need to now do more
testing and documentation of the software-input combination.

11. DAKOTA TOOLS TO MAKE PCMM BETTER AND EASIER
The DAKOTA software is the distribution center for VUQ tools. The goal of the VUQ team is
to provide tools in DAKOTA (which is part of VERA) that make implementing a VUQ plan or
doing a PCMM analysis as easy as possible. To that end we have built an interface between the
VERA Common Input processor and DAKOTA. We have brought tools over from the
PERCEPT software to make verification and validation easier to use. The general idea is that all
code analysis steps

1. Verification
2. Validation
3. Uncertainty quantification
4. Calibration
5. Surrogate construction

Can all be done as automated scripts with DAKOTA

11.1. Verification and Validation with PERCEPT Based Tools
This section describes initial work to make performing V&V analyses in CASL easier. It is
motivated by a solution verification study of a simplified version of Progression Problem 6.
Whereas Problem 6 involves thermal-hydraulics via Cobra-TF coupled to neutronics via Insilico,
the simplified version considered here replaces the power from Insilico with a constant uniform
distribution used by CTF. This amounts to a CTF-only version of Problem 6 that permits
relatively fast V&V studies over minutes rather than hours that would be required for the fully-
coupled version.

Consortium for Advanced Simulation of LWRs
74

As opposed to VUQ algorithms that are available in CASL through Dakota, V&V is currently
being enabled within the VUQDemos component of VERA-CS. Together, Dakota and
VUQDemos represent a collection of algorithms, utilities and scripts that leverage existing PHI
components and utilities to drive VUQ and V&V studies. For the CTF-only solution verification
study of this section, the relevant PHI components include the CTF application code, the VERA
Common Input toolchain, and the CTF preprocessor.
As described in Section 7.4, solution verification typically involves running simulations over a
sequence of meshes of varying refinements, extracting a Quantity of Interest (QOI) from each
run, and then determining a measure of solution error related to mesh refinement using an
assumed expression for error. As further described in Section 7.4.3, traditional assumptions for
performing solution verification on PDE codes often do not strictly apply to thermal hydraulics
codes like CTF that are based on subchannel methods that blend mesh and parameter
information. For this reason, we initially perform solution verification in a mostly manual
manner with regard to mesh refinement, hand-coding the various CTF meshes respecting special
features such as the zero-dimensional spacer grids (c.f. Section 7.4.3). In this manner, we can
find the best software path for performing these studies in an automated way. Our current
experience is that augmenting the scripts in VUQDemos which interface with the xml files
produced by VERA Common Input provides the most flexible entry point for parameterizing the
CTF (and later coupled CTF-Insilico) meshes while preserving consistency of the overall
problem configuration among any and all codes involved. For example, we could have, and
actually did entertain direct modification of CTF input files for refining the mesh but found that
this would break consistency with other codes such as Insilico.
Our first solution verification study of the CTF only version of Problem 6 was further simplified
by removing the presence of the spacer grids to produce a single-region flow domain with
meshes that were much easier to refine and that were fully characterized by a single mesh size
parameter, h, consistent with equation (10) in Section 7.3.5. Using equal weighting for all
meshes and a simple nonlinear regression fit to the model of eq. 10 led to the following result:

where the QOI is the total pressure drop through the single assembly of Problem 6. Of particular
importance is that the exponent for the dependence of the QOI on mesh size is reasonably close
to the theoretical value of 1.0 expected from the numerical methods employed by CTF. A
subsequent solution verification study of the same problem but now including the presence of the
spacer grids showed a degraded order-of-convergence reflected by an exponent in the range 0.68
to 0.75 depending on how the mesh size parameter was chosen. This deviation from the
theoretical value of 1.0 reflects a blending of more than one mesh spacing when spacer grids are
present and indicates the need to enrich the error model to account for multiple values of h.
Work is ongoing to be able to repeat these studies in an automated way using augmented
capability in VUQDemos as well as to generalize the error model and the ability to fit the
coefficients using more of the Robust-Multi-Regression methodology described in Section 7.3.5.

11.2. Surrogate Construction
Surrogate models are typically employed to provide computationally efficient approximate
representations of trends and residual (error) processes in physical data or code output. The terms
“emulator,” “response surface,” and “meta-model" refer to the generation of surrogate
predictions with associated uncertainty quantification. In the Dakota context, surrogate models
are automatically generated based on empirical samples of the true simulation model's

 Consortium for Advanced Simulation of LWRs
75

input/output relationship. This type of surrogate can be contrasted with physics-based surrogates
which make simplifying assumptions to create a simpler, faster running simulation model.

11.3. Sensitivity Analysis
The primary goal of sensitivity analysis is to determine which input parameters most influence
computational model responses, or deterministic quantities of interest. A ranked list of parameter
influences can focus resources for data gathering or model/code development, or can make
calibration, optimization, or uncertainty quantification more tractable over a reduced set of
parameters. Sensitivity information is useful in determining whether or not the response
functions are robust with respect to small changes. The Dakota sensitivity analysis studies have
important secondary benefits as well:

1. they can help identify key model characteristics such as smoothness, nonlinear trends,
and robustness to enable selection of suitable Dakota methods for follow-on studies

2. some yield sampling designs that can be used to construct the surrogate models for
subsequent analyses.

In the CASL context, a phenomena identification and ranking table (PIRT) might help identify
the superset of parameters to consider in a sensitivity analysis study. Then the relative parameter
rankings resulting from a Dakota-driven sensitivity study form the basis of a Quantitative
Parameter Ranking Table, or QPRT. These results could also help prioritize model development
or data gathering, or identify insensitive parameters to omit from calibration or UQ studies.

11.4. Uncertainty Quantification
At a high level, uncertainty quantification (UQ) constitutes the process of characterizing input,
numerical, and experimental uncertainties -- consisting of both measurement errors and
variability in replicate data, propagating these uncertainties through a computational model, and
performing statistical or interval assessments on the resulting responses. This process determines
the effect of uncertainties and assumptions on model responses or quantities of interest (QoI).
Quantifying the uncertainty is the first important step in providing confidence in the use of
software. It also facilitates optimal design and decision making and is necessary to ensure
robustness, performance or safety margins.

11.5. Calibration (Data Assimilation) and Optimization
Deterministic calibration techniques provide point estimates for calibration inputs comprised of
parameters, initial and boundary conditions, exogenous forces or control inputs, but provide no
measure of uncertainty. Approaches such as Wilks' formula employ uniform input distributions,
which are generally based on expert opinion. The resulting intervals are often based on
qualitative, rather than quantitative, knowledge and hence they are typically conservative.
Bayesian inference provides a framework for probabilistic model calibration based on the
assumption that calibration inputs are random variables having associated probability density
functions (PDFs). These PDFs quantify both the support, or admissible parameter values, and
the plausibility of each admissible parameter value. In Bayesian model calibration, one employs
a likelihood, which incorporates measured data and computed model information, to update prior
density information to obtain a more accurate posterior parameter density, which is consistent
with experimental uncertainties.

Consortium for Advanced Simulation of LWRs
76

Input densities or bounds, constructed in this manner, are tighter and contain more information
than uniform densities constructed solely to bound potential input values. Propagation of these
input densities using the sampling, nonintrusive polynomial chaos expansions, or stochastic
collocation techniques will provide reduced response uncertainties and hence tighter robustness,
performance or safety margins. For example, these densities could be employed in Wilks'
formula to construct tighter tolerance bounds than those obtained using conservative, non-
inference based input densities.

12. SUMMARY
This document provides the CASL VUQ strategy. It has as its backbone the PCMM process.
This document describes all of the steps for a full VUQ analysis. The code team or Challenge
Problem Integrator will then work with the VUQ team to negotiate a “right-sized” VUQ plan.
The VUQ plan is then iterated in a continuous process that provides uncertainty quantification at
all times during the code development process. The VUQ tools in DAKOTA can then be used to
help make management decisions about future software development. In addition a software
pedigree can be quickly produced whenever the code is released.
The truth of the matter is that the most difficult problems in simulation will not be solved
through faster computers alone. In areas I know a great deal about this is true; direct numerical
simulation of turbulence has not yielded understanding, and the challenge of climate modeling is
more dependent upon modeling. Those who claim that a finer mesh will provide clarity have
been shown to be overly optimistic. Some characterized stockpile stewardship as being
underground nuclear testing in a “box,” but like the other examples depends on greater acuity in
modeling, numerical methods and physical theory. Computational simulation is a holistic
undertaking dependent upon all the tools available, not simply the computer. Likewise,
improvement in this endeavor is dependent on all the constituent tools.

Most of the money flowing into scientific computing is focused on making computations faster
through providing faster computers. In my opinion we should be more focused upon improving
the calculations themselves. Improving them includes improving algorithms, methods,
efficiency, and models not to mention improved practice in conducting and analyzing
computations. The standard approach to improving computational capability is the development
of faster computers. In fact, developing the fastest computer in the world is a measure of
economic and military superiority. The US government has made the development of the fastest
computers a research priority with the exascale program gobbling up resources. Is this the best
way to improve? I’m fairly sure it isn’t and our over emphasis on speed is extremely suboptimal.

Moore’s law has provided a fifty year glide path for supercomputing to ride. Supercomputers
weathered the storm of the initial generation of commodity-based computing development, and
continued to provide the exponential growth in computing power. The next ten years will
represent a significant challenge the nature of supercomputing. Computers are changing
dramatically with the fundamental physical limits of current technology hitting limits. To
achieve higher performances levels of parallelism need to grow to unpredicted levels. Moreover,
existing challenges with computer memory, disc access and communication all introduce
additional challenges. The power consumed by computers also poses a difficulty. All of these
factors are conspiring to make the development of supercomputing in the next decade an
enormous challenge, and by no means a sure thing.

 Consortium for Advanced Simulation of LWRs
77

I am going to question the default approach.

The signs pointing to the wastefulness of this approach have been with us for a while. During
the last twenty years the actual performance for the bulk of computational simulations has been
far below the improvements that Moore’s law would have you believe. Computational power is
measured by the LINPAC benchmark, which papers over many of the problems in making “real”
applications work on computers. It solves a seemingly important problem of inverting a matrix
using dense linear algebra. The problem in a nutshell is that dense linear algebra is not terribly
important, and makes the computers look a lot better than they actually are. The actual
performance as a proportion of the peak LINPAC measured performance has been dropping for
decades. Many practical applications run at much less than 1% of the quoted peak
speed. Everything I mentioned above makes this worse, much worse.

Part of the problem is that many of methods, and algorithms used on computers are not changing
or adapting to reflect the optimality of the new hardware. In a lot of cases we simply move old
codes onto new computers. The codes run faster, but nowhere as fast as the LINPAC benchmark
would lead us to believe. The investment in computer hardware isn’t paying off to the degree
that people advertise.

Computational modeling is extremely important to modern science. It reflects substantial new
capability to the scientific community. Modeling is a reflection of our understanding of a
scientific field. If we can model something, we tend to understand that thing much better. Lack
of modeling capability usually reflects a gap in our understanding. Better put, computational
modeling is important to the progress of science, and its status reflects the degree of
understanding that exists in a given field. That said, faster computers do not provide any greater
understanding in and of themselves. Faster, more capable computers allow more complex
models to be used, and those more complex models may yield better predictions. These complex
models can be contemplated with better computers, but their development is not spurred by the
availability of supercomputing power. Complex models are the product of physical
understanding and algorithmic guile allowing for their solution.

I am going to suggest that there be a greater focus on the development of better models,
algorithms and practice instead of vast resources focused on supercomputers. The lack of focus
on models, algorithms and practice is limiting the effectiveness of computing far more greatly
than the power of the computers. A large part of the issue is the overblown degree of
improvement that new supercomputers provide, only a fraction of the reported power. There is a
great deal of potential headroom for greater performance with computers already available and
plugged in. If we can achieve greater efficiency, we can compute much faster without any focus
at all on hardware. Restructuring existing methods or developing new methods with greater
accuracy and/or greater data locality and parallelism can gain efficiency. Compilers are another
way to improve code and great strides could be made there to the good of any code using
computers.

One of the key areas where supercomputing is designed to make a big impact is direct numerical
simulation (DNS), or first principles physical simulation. These calculations have endless
appetites for computing power, but limited utility in solving real problems. Turbulence, for
example, has generally eluded understanding and our knowledge seems to be growing

Consortium for Advanced Simulation of LWRs
78

slowly. DNS is often at the heart of the use case for cutting edge computing. Given its ability to
provide results, the case for supercomputing is weakened. Perhaps now we ought to focus more
greatly on modeling and physical understanding instead of brute force.

Advances in algorithms are another fruitful path for improving results. Algorithmic advances are
systematically under-estimated in terms of their impact. Several studies have demonstrated that
algorithmic improvements have added as much or more to computational power than Moore’s
law. Numerical linear algebra is one area where the case is clear; optimization methods are
another. Numerical discretization approaches may be yet another. Taken together the gains
from algorithms may dwarf those from pure computing power. Despite this, algorithmic
research is conducted as a mere after thought, and more often than not is cut first from a
computational science program.

One of the key issues with algorithmic research is the “quantum” nature of the
improvements. Rather coming is a steady, predictable stream, like Moore’s law, algorithm
improvements are more like a phase transition where the performance jumps up changing my an
order of magnitude when a break-through is made. Such breakthroughs are rare and the
consequence of many less fruitful research directions. Once the breakthrough is made the
efficiency of the method is improved in a small steady stream, but nothing like the original
discovery. Many examples of these quantum phase transition type of improvements exist:
conjugate gradient, multigrid, flux-limited finite differences, artificial viscosity, Karmakar’s
method, and others.

The final area I will touch on is computational practice. Things like verification and validation
become important to the process. Modern computational science ought to be about being honest
and straightforward about our capability, and V&V is one of the things at the heart of this. Too
often computations are steered into agreement with reality by the heavy hand of calibration. In
fact, calibration is almost always necessary in practice, but the magnitude of its impact is far too
infrequently measured. Even more importantly, the physical nature of the calibration is not
identified. In a crude sense calibration is a picture of our uncertainty. Too often calibration uses
one sort of physics to cover up our lack of knowledge of something else. My experience has told
me to look at turbulence and mixing physics as the first place for calibration to be identified.

If calibration is the public face of uncertainty, what is the truth? In fact, the truth is hard to
find. Many investigations of uncertainty focus upon the lack of knowledge, which is distinctly
different than physical uncertainty. Lack of knowledge is often explored via parametric
uncertainty of the models used to close the physics. This lack of knowledge studied from
parametric uncertainty often does not look like the physical sources of uncertainty, which arise
from a lack of knowledge of precise initial conditions that blow up to large scale differences in
physical states. These distinctions loom large in many applications such as climate and weather
modeling. Unraveling the differences between the two types of uncertainty should be one of
computational sciences greatest foci because of its distinct policy implications. It also figures
greatly in the determination of the proper placement of future scientific resources.

Calibration is also used to paper over finite computational resolution. Many models need to be
retuned (i.e., recalibrated) when computational resolution changes. This effect can easily be
measured, but we stick our collective head in the sand. All one has to do is take a calibrated

 Consortium for Advanced Simulation of LWRs
79

solution and systematically change the resolution. Repeatedly, people respond, “I can’t afford a
refined calculation!” Then coarsen the mesh and see how big the changes are. If you can’t do
this, you have big problems, and any predictive capability is highly suspect. This sort of
estimation should provide a very good idea of how much calibration is impacting your
solution. In most big computational studies calibration is important, and unmeasured. It is time
to stop this, and come clean. Ending this sort of systematic delusion is far more important than
buying bigger, faster computers. In the long run “coming clean” will allow us to improve
computational science’s positive impact on society far more than short-term focus on keeping
Moore’s law alive.

Computational science isn’t just computers, it is modeling, it is physical theory, it is algorithmic
innovation and efficiency, it is mathematics, it is programming languages, programming
practice, it is validation against experiments and measurements, it is statistical science, and data
analysis. Computer hardware is only one of the things we should focus on, and that focus
shouldn’t choke resources away from things that would actually make a bigger difference in the
quality. Today it does. A balanced approach would recognize that greater opportunities exist in
other aspects of computational science.

	REVISION LOG
	1. Abstract
	3. List of Figures
	4. Executicve Summary
	5. Introduction and Overview
	6. Predictive Code Maturity Model (PCMM): Background and Overview
	6.1. PCMM Generation 4 Detail
	6.2. Customer Specification Completeness (CSC)
	6.3. Code Verification (CVER)
	6.4. Representation and Geometric Fidelity (RGF)
	6.5. Solution Verification (SVER)
	6.6. Validation – Hierarchy (VALH)
	6.7. Experimental data for Constitutive Model Calibration (DATC)
	6.8. Experimental data for CompSim model validation (DATV)
	6.9. Validation - Component (VALC)
	6.10. Uncertainty Quantification (UQ)

	7. Prerequisites
	7.1. QOI and Decision Making
	7.2. Phenomenon Identification and Ranking Table (PIRT)
	7.3. Quantified Parameter Ranking Table (QPRT)
	7.4. Validation Pyramid
	7.4.1. An Example Validation Pyramid
	7.4.1.1. Mini-PIRT for VERA-CS progression problem 6
	7.4.1.1.1. Thermal Hydraulics
	7.4.1.1.2. Fuel Model
	7.4.1.1.3. Neutronics

	7.5. Partitioning PCMM Work
	7.6. Third Party Libraries
	7.7. Code Coupling

	8. Code (Foundational) PCMM
	8.1. QOIs Defined by Requirements
	8.2. Software Quality
	8.2.1. Good Engineering
	8.2.2. From a Code Maintenance Perspective
	8.2.3. CASL Standard for Documentation

	8.3. Code Verification
	8.3.1. Quantified
	8.3.2. Analytical Solutions
	8.3.3. Method of Manufactured Solutions
	8.3.4. Highly Resolved Solution
	8.3.5. Robust Multiple Regression (RMR)
	8.3.6. Neutronics
	8.3.7. Thermal hydraulics

	8.4. Solution Verification
	8.4.1. Quantified to Measure Improvement
	8.4.2. Neutronics
	8.4.3. Thermal Hydraulics

	8.5. Validation
	8.5.1. Benchmarking
	8.5.2. Quantified to Measure Improvement
	8.5.3. Confirmatory
	8.5.4. Differential
	8.5.5. Experimental Error
	8.5.6. Neutronics
	8.5.7. Thermal hydraulics
	8.5.7.1. Overview of the state-of-the art of multiphase flow experimentation

	8.6. Sensitivity
	8.6.1. Local
	8.6.2. Global

	8.7. Uncertainty Quantification
	8.7.1. Parameter Distributions
	8.7.1.1. Computed
	8.7.1.2. Expert Opinion

	8.7.2. Neutronics
	8.7.3. Thermal Hydraulics

	8.8. Calibration (Data Assimilation)
	8.8.1. Cautionary Use
	8.8.2. Partition Data
	8.8.3. Initial Validation
	8.8.4. Calibration
	8.8.5. Measure Validation Improvement

	8.9. Aleatory Versus Epistemic Uncertainty
	8.10. User Effect
	8.10.1. Best Practices
	8.10.2. Error Checking
	8.10.3. Graphical User Interface

	8.11. Iteration
	8.11.1. Measure the Largest Uncertainties
	8.11.2. Reduce the Largest Uncertainty
	8.11.3. Repeat the Process

	9. Application (Challenge Problem) PCMM
	9.1. Bricks and Mortar (PCMM for the Wall)
	9.2. Coupling Verification
	9.3. Multi-Physics Reduced Order Modeling
	9.4. Solution Verification Based on the PIRT QOIs
	9.5. Solution Validation Based on the PIRT QOIs
	9.6. Solution Uncertainty Quantification Based on the PIRT QOIs
	9.7. Calibration Based on the PIRT QOIs
	9.8. Total Uncertainty
	9.9. Iteration

	10. Input PCMM
	10.1. Externally Generated File PCMM
	10.1.1. Geometry
	10.1.2. Mesh
	10.1.3. Cross Sections
	10.1.4. Chemical Reaction Rates
	10.1.5. Material Properties
	10.1.6. Equation of State

	10.2. CTF
	10.3. Hydra (Commercial CFD Software)
	10.4. Peregrine (Software Frameworks)

	11. DAKOTA Tools to Make PCMM Better and Easier
	11.1. Verification and Validation with PERCEPT Based Tools
	11.2. Surrogate Construction
	11.3. Sensitivity Analysis
	11.4. Uncertainty Quantification
	11.5. Calibration (Data Assimilation) and Optimization

	12. Summary

