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Abstract

This paper evaluates the performance of multiphysics coupling algorithms on
a light water nuclear reactor core simulation. The simulation couples a k-
eigenvalue neutron transport code and a finite element/control volume thermal
hydraulics code. We compare Picard iteration (block Gauss-Seidel), Anderson
Accelerated Picard iteration, and multiple variants of preconditioned Jacobian-
free Newton-Krylov (JFNK). The performance of the methods are evaluated
over a range of energy group sizes, boron concentrations and core power levels.
A novel physics-based Jacobian-vector product approximation has been devel-
oped to demonstrate the effectiveness of JFNK as a solution method for core
calculations.

1 Introduction

This report summarizes the research performed in Milestone L3:PHI.CMD.P8.01
“Evaluation of Coupling Approaches”. This is a follow on study to mile-
stone L3:VRI.PSS.P7.06 “Numerical Studies of Subchannel-Neutronics Cou-
pling”. The goal of this work was to investigate the use of alternate coupling
algorithms in terms of efficiency, accuracy and robustness. The results are meant
to provide CASL with guidance on coupling strategies.

The current VERA core simulator capabilities all rely on Picard iteration.
Examples include the CTF/Insilico coupling, the CTF/Insilico/Peregrine cou-
pling and the CTF/MPACT coupling. While this choice tends to be the fastest
code development path to solving coupled physics, the Picard algorithm suffers
from drawbacks including a lack of global convergence and, at best, a q-linear
convergence rate [6]. This typically requires user defined relaxation methods to
achieve convergence. Newton-based methods, however are shown to be globally
convergent and with q-quadratic convergence rate. Newton-based methods typ-
ically require more invasive access to application codes including residual and
sensitivity information. To avoid having to implement a Jacobian, the Jacobian-
free Newton-Krylov (JFNK) method [7] is employed to solve the coupled system.
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While JFNK has been successfully applied in many areas, it is an open research
topic as to whether JFNK can be competitive with Picard iteration on realistic
core simulator applications.

In the previous milestone, L3:VRI.PSS.P7.06, the basic capabilities were im-
plemented to compare JFNK, Picard and Anderson Accelerated Picard. The
initial results were mixed with no method standing out. This capability was
“Exploratory” under the TriBITS lifecycle model [2]. The simulations were lim-
ited to single pin and the JFNK algorithm was not optimized for the physics.
To perform a fair comparison against JFNK, this milestone included the devel-
opment of novel Jacobian-vector approximations that yielded significant perfor-
mance gains. This approximation is critical as the number of energy groups in
the neutronics calculation is increased.

JFNK-based couplings require residuals and preconditioners. This is not a
trivial requirement, and therefore the codes for this analysis were chosen based
on the capability to supply residuals. Significant work would be required to
obtain residuals from the current core simulator pieces. The Advanced Multi-
Physics (AMP) framework was chosen to provide thermal modeling of the fuel
pins and a subchannel model. The Insilico code was chosen for the radiation
transport model. The codes were coupled using AMP and Trilinos/Thyra vector
abstractions using the nonlinear solvers in Trilinos/NOX.

Section 2 describes the physics models and application codes. Section 3
describes the coupling algorithms. Section 4 contains the results and Section 5
presents conclusions and future work.

2 Physics Models

In this document we consider solution of multiphysics problems involving cou-
pling between neutron transport and heat transfer. For nuclear reactor prob-
lems, the standard formulation of the neutron transport equation is the k-
eigenvalue problem

Ω̂ · ∇ψ(~r,E, Ω̂) + σ(~r,E, T )ψ(~r,E, Ω̂) =∫ ∞
0

dE′
∫
4π

dΩ̂′ σs(~r,E
′ → E, Ω̂′ → Ω̂, T )ψ(~r,E′, Ω̂′) +

1

k
χ(~r,E)

∫ ∞
0

dE′
∫
4π

dΩ̂′ νσf (~r,E′, T )ψ(~r,E′, Ω̂′) , (1)

where Ω̂ is the direction of particle travel, E is the particle energy, T is the
temperature of the background material, σ is the total cross section, σs is the
scattering cross section, νσf is the neutron production cross section, and χ is the
fission spectrum. The goal is to find the largest value of the eigenvalue k and the
corresponding eigenvector ψ. Because Eq.(1) represents an eigenvalue problem,
the vector ψ has no explicit magnitude. We choose a natural normalization by
setting the global heat generation rate (due to nuclear fission occurring in the
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fuel) to a pre-defined value, i.e.∫
dV

∫ ∞
0

dE

∫
4π

dΩ̂κσfψ = P ∗ . (2)

As noted in Eq. (1), the cross sections are dependent on the temperature
of the media, T . Thus, for a reactor not operating at a constant temperature
it is also necessary to solve a heat transfer equation with fission providing the
thermal source, i.e.

−∇ ·K(T )∇T =

∫ ∞
0

dE

∫
4π

dΩ̂κσf (E)ψ(E, Ω̂) , (3)

where K is the material thermal conductivity and κ is the heat generated per
fission event. It should be noted that the concise notation on the left hand side
of (3) hides significant complexity in that it involves not only conduction in the
solid fuel and clad regions, but additionally effective heat transfer between the
fuel pellets and the clad (generally modeled using a gap conductance model) as
well as convective heat transfer between the outer surface of the cladding and
the surrounding coolant and potentially models describing the fluid flow itself.

More specifically, the LHS operator includes the solution of multi-domain
thermal diffusion coupled to a subchannel physics model. Each fuel pellet and
the clad for each rod can be treated as an individual domain over which we solve
the thermal diffusion equation:

−∇ ·K(T )∇T = q(x) , (4)

where K is the thermal conductivity and q(x) is the thermal source due to
heat generated from nuclear fission in each pellet. The individual domains are
coupled through thermal conduction between the pellets and across the gap
between the pellets and the clad. The exterior of the clad is then coupled to
the coolant through the subchannel model that solves the conservation of mass,
momentum, and energy equations:

∂ρ

∂t
+∇ · (ρ~v) = 0 (5)

∂ρvi
∂t

= −∇ · (ρvi~v) + (−∇p+∇ · ~τ)− ~g (6)

∂U

∂t
+∇ · (U~v) = −p∇ · ~v + Φ +∇K(T )∇T + q̇ (7)

where ρ is the mass density, ~v is the velocity, p is the pressure, ~g is the force
exerted by gravity, ~τ is the viscosity tensor, U is the internal energy density, Φ
is the dissipation function, and q̇ is the thermal source. Note that the internal
energy density is related to the enthalpy density through U = h− p. We solve
these equations using a two-equation approximation in which we assume that
the coolant flow is only in the z-direction and neglect thermal diffusion between
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the channels. Assuming steady-state this reduces to:

∂ρv2

∂z
+
∂p

∂z
− ∂τ

∂z
= −g (−∇p+∇ · τ)− g , (8)

∂hv

∂z
= −v ∂p

∂z
− Φ +

∂

∂z
∇K(T )

∂T

∂z
+ q̇ , (9)

In our subchannel model we therefore require two independent variables per
grid point and choose enthalpy and pressure. The thermal source consists pri-
marily of convective heat transfer from the clad and is the primary coupling
mechanism with the temperature of the clad/pellets. We solve these equations
tightly coupled to the thermal diffusion equations for the clad and pellet do-
mains. For notational simplicity, in the remainder of this document we will
allow T to refer to both the solution of thermal diffusion in the pellets/clad and
the enthalpy/pressure solution in the subchannel. Furthermore, we will allow
the operator L(T ) to refer to the equations for thermal diffusion (4) as well as
the equations for the subchannel solution (8)-(9).

Our goal is therefore to find distributions ψ, T and a value k such that
Eqs. (1)–(3) are simultaneously satisfied. For ease of notation in the remainder
of this document, we introduce an operator notation for discretized forms of the
preceding equations:

A(T )φ = λB(T )φ (10)

RSREB(T )φ = P ∗ (11)

L(T )T = REB(T )φ , (12)

where RS and RE are restriction operators in space and energy, respectively.
Here Eq. (10) has taken advantage of the fact that only the angle-integrated vari-
able φ must generally be stored rather than the corresponding angle-dependent
ψ. In addition we have written the eigenvalue as λ ≡ 1

k .
Because the focus of this exploratory investigation is on the assessment of

possible coupling algorithms rather than on delivering a production capability,
physics components and codes have been selected based on flexibility and ease of
implementation rather than consistence with CASL preferred capabilities. For
the radiation transport component, the SPN discretization within the Denovo
code has been selected. The simple nature of the SPN equations offers significant
advantages in the current study, the operators A and B from Eqs. (10)–(12)
can be explicitly constructed as sparse matrices and therefore algebraic precon-
ditioners (algebraic multigrid, for instance) can be easily applied. Through the
Insilico reactor geometry/materials interface, cross sections generated by the
XSProc module of the SCALE package are available. This combined transport
capability is the same as that used in the completion of CASL AMA progression
benchmark problem 7 [12]. For the heat transfer and subchannel flow portions
of the problem, the AMP software package has been employed. AMP offers
a very flexible multiphysics infrastructure that allows interoperability between
different linear algebra components. In the current study several Trilinos solvers
are used, with AMP providing an interface to nonlinear solvers in NOX, linear
solvers in Belos, and algebraic multigrid preconditioning in ML.
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3 Solution Approaches

The radiation transport and heat transfer systems described in Eqs. (10)–(12)
can be written as a single system of coupled equations as

f

φλ
T

 =

fφ(φ, λ, T )
fλ(φ, T )
fT (φ, T )

 =

 A(T )φ− λB(T )φ
RSREB(T )φ− P ∗
L(T )T −REB(T )φ

 = 0 . (13)

One straightforward approach to solving this system of equations is to alter-
nate between solves of the individual physics in a block Gauss-Seidel approach.
This Picard iteration can be written as

A(Tm)φm+1/2 = λmB(Tm)φm+1/2 (14)

φm+1 =
P ∗

RSREB(Tm)φm+1/2
φm+1/2 (15)

L(Tm+1)Tm+1 = REB(Tm)φm+1 . (16)

It has been observed in several studies with various physics approximations
and/or discretizations that this simple iteration scheme applied to light water
reactor problems (such as those of interest to CASL) is prone to poor conver-
gence and possibly divergence due to oscillations induced by certain error modes.
The standard remedy for this issue is to introduce a damping parameter, ω, such
that (16) is replaced by the two step approach

L(Tm+1/2)Tm+1/2 = REB(Tm)φm+1 (17)

Tm+1 = ωTm+1/2 + (1− ω)Tm . (18)

Optimal values for the damping parameter are typically between 0.3 and 0.6
[8, 10, 14]. Note that it is also possible to perform damping on the scalar flux
(or power) instead of temperature.

3.1 Anderson Acceleration

The Picard iteration described above is an example of a fixed-point problem,

x = G(x). (19)

Fixed-point problems are amenable to acceleration techniques. Recently, an
accelerator called Anderson acceleration (AA) [1] has garnered much attention
and has been shown to be effective on certain classes of problems [4, 9, 3].
AA builds on Picard iteration by storing solutions from previous iterations to
accelerate convergence. Fang and Saad [4] have shown that AA is related to
quasi-Newton methods (known as a type II Broyden or “bad” Broyden) while
Walker and Ni [13] have shown that for linear systems of equations, AA is
“essentially equivalent” to GMRES. The stored solution vectors are used to
form an unconstrained minimization problem to evaluate the next solution. Lott
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et. al. [9] have shown, for instance, that AA not only improved the speed of
convergence, but also significantly improved the robustness.

Although it is possible to apply Anderson acceleration directly to the mono-
lithic set of Eq. (13), preliminary studies indicate that this approach exhibits
very poor convergence behavior for the problem of interest and is unlikely to
be competitive without significant work to develop appropriate preconditioning
techniques. Note that an approach similar to this was used for the stand-alone
neutronics k-eigenvalue problem in Ref. [3] with some success, though the ab-
sence of multiphysics feedback and the differing solution algorithms used for
comparison make it difficult to draw substantive comparisons to our current
problem. A more appealing approach is to use Anderson acceleration to accel-
erate and/or stabilize Picard iteration. From Eqs. (14)-(16) we can define two
mapping operations. The first mapping, g(T ), computes a power distribution
from a known temperature distribution, i.e.

g(T ) =
REB(T )φ

RSREB(T )φ
, (20)

where φ is the solution to the eigenvalue problem

A(T )φ = λB(T )φ. (21)

The second mapping operation, h(P ) is given by solving the nonlinear equation

L(T )T = P. (22)

With this notation, the Picard iteration scheme described by Eqs. (14)-(16) can
be written as the fixed-point mapping

T j+1 = h
(
g(T j)

)
, (23)

which can be solved using Anderson acceleration. Alternative mappings were
also explored. A reverse the mapping that accelerates the power unknowns was
implemented

P j+1 = g
(
h(P j)

)
, (24)

and all unknowns, x, were accelerated using the mapping

xj+1 =

(
T j+1

P j+1

)
=

(
g(T j)
h(P j)

)
. (25)

3.2 Jacobian-Free Newton-Krylov

Ideally, we would like to use Newton’s method to solve (13), however compu-
tation of the Jacobian is problematic because the temperature dependence of
nuclear data is not available in closed form, but it is rather the result of complex
cross section processing routines which extract pre-tabulated data from files and
perform numerous small-scale transport calculations to produce collapsed cross
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sections suitable for use in a radiation transport code. The availability of a non-
linear function but difficulty in formulating the corresponding Jacobian matrix
suggests that the use of Jacobian-free Newton Krylov (JFNK) methods might
be appropriate [7]. JFNK methods are based on two primary ideas. First, if the
Newton correction equation given by

J(um)δm = −f(um) (26)

is solved using a Krylov subspace method then access to the full Jacobian matrix
is not necessary, only the action of the Jacobian applied to a vector is required.
The second idea is that the product of the Jacobian and a given vector can be
approximated using a finite difference approach, e.g.

J(um)v ≈ f(um + εv)− f(um)

ε
. (27)

Note that second (or higher) order approximations are possible, but the form
in (27) is far more common because it requires only a single function evaluation
per Jacobian-vector product (the value of f(um) can be computed and stored
once per Newton iteration so that each subsequent Jacobian-vector product
requires only the evaluation of f(um+ εv)). The JFNK method therefore allows
an approximate Newton method to be performed using only evaluations of the
nonlinear function.

3.2.1 JFNK Preconditioning

Even though the use of JFNK eliminates the need to explicitly form or store
the Jacobian matrix, some knowledge about the Jacobian is still beneficial in
order to construct a preconditioner so that (26) can be solved effectively. The
true Jacobian corresponding to the function defined by (13) can be written as

J

φλ
T

 =


A(T )− λB(T ) −B(T )φ

∂(A(T )φ− λB(T )φ)

∂T

RSREB(T ) 0
∂(RSREB(T )φ)

∂T

−REB(T ) 0
∂(L(T )T −REB(T )φ)

∂T

 , (28)

where the entries in the last column of this block matrix are left as simply
partial derivatives with respect to temperature to indicate that these terms
are generally not available in closed form due to the dependence on material
properties. A simple approach to preconditioning a linear system involving
(28) is a block diagonal approach in which preconditioners for each physics are
applied independently, i.e.

P1

φλ
T

 =

Â(T )− λB̂(T ) 0 0
0 1 0

0 0 L̂(T )

 , (29)
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where (̂·) indicates that some approximation of the operator is used in the pre-
conditioner. Possible choices for this approximation include incomplete factor-
izations, algebraic multigrid methods, or physics-based approximations. This
preconditioner selection has the advantages of being relatively simple to con-
struct and inexpensive to apply (assuming the approximations to the individual
physics operators are inexpensive). However, neglecting terms in the Jacobian
that represent coupling between different physics components in the precon-
ditioner is likely to result in a large number of iterations being required for
convergence. Development of preconditioning strategies that account for cou-
pling behavior between physics components has the potential to significantly
improve the convergence behavior of the JFNK approach and the development
of such techniques is an attractive area of research for future investigations.

3.2.2 Approximate Jacobian-Vector Products

Improving the quality of the preconditioner used to solve linear systems involv-
ing the Jacobian matrix is one route to improving the efficiency of the overall
solution strategy, but as noted previously even a very strong preconditioner
may not be sufficient to reduce the number of cross section processing steps to a
very small number. Another approach to achieve this goal is to use an approx-
imation to the Jacobian when computing the Newton direction in the spirit of
quasi-Newton methods, i.e.

Ĵ(um)δm = −f(um) . (30)

In the interest of maintaining the attractive matrix-free nature of JFNK, we
can determine a corresponding approximate function evaluation, f̂ , such that a
finite difference operation approximates a product with Ĵ rather than the full
Jacobian, i.e.

Ĵ(um)v ≈ f̂(um + εv)− f(um)

ε
. (31)

It should be noted that the base function evaluation, f(um), is used to evaluate
convergence of the nonlinear iterations and must be the full nonlinear operator,
including computation of all cross sections at the specified temperature.

One possibility for approximating the Jacobian is to simply neglect the tem-
perature variation of cross sections during an approximate Jacobian-vector prod-
uct, corresponding to an approximate Jacobian of

Ĵ


φ

λ

T

 =


A(T )− λB(T ) −B(T )φ 0

RSREB(T ) 0 0

−REB(T ) 0
∂(L(T )T )

∂T

 , (32)
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Figure 1. Temperature dependence of 23 group absorption cross sections. Each
curve represents the absorption cross section in a different energy group.

or equivalently an approximate function evaluation of

f̂


φ+ ∆φ

λ+ ∆λ

T + ∆T

 =


A(T )(φ+ ∆φ)− (λ+ ∆λ)B(T )(φ+ ∆φ)

RSREB(T )(φ+ ∆φ)− P ∗

L(T + ∆T )(T + ∆T )−REB(T )(φ+ ∆φ)

 . (33)

This selection, however, results in no updated temperature information being
communicated from the heat transfer solver to the neutronics domain during
a given nonlinear iteration. This lack of information is expected to have a
detrimental effect on the convergence behavior of the nonlinear solver.

It may be possible to include some information about the temperature feed-
back effect on cross sections without performing a full cross section processing
step at each function evaluation. This can be accomplished by noting that the
strongest temperature feedback effect is due to an increase in absorption with
increasing temperature (largely due to Doppler broading in 238U). As shown
in Fig. 1, the temperature dependence of absorption cross sections is approxi-
mately linear over a wide range of temperatures. This suggests a modification
to the Jacobian approximation of Eq. (32) which uses a linear approximation
to the temperature dependence of the absorption cross section and neglects the
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temperature dependence of all other cross sections:

Ĵ


φ

λ

T

 =


A(T )− λB(T ) −B(T )φ

∂σa
∂T

φ

RSREB(T ) 0 0

−REB(T ) 0
∂(L(T )T )

∂T

 . (34)

The function evaluation corresponding to Eq. (34) is

f̂


φ+ ∆φ

λ+ ∆λ

T + ∆T

 =


A(T )(φ+ ∆φ)− (λ+ ∆λ)B(T )(φ+ ∆φ) +

∂σa
∂T

φ∆T

RSREB(T )(φ+ ∆φ)− P ∗

L(T + ∆T )(T + ∆T )−REB(T )(φ+ ∆φ)

 .

(35)

4 Results

To test the behavior of different nonlinear solvers, we consider the solution of
AMA Problem 6 [11]. This problem consists of a single 17 × 17 PWR fuel
assembly with 264 fuel pins containing 3.1% enriched UO2, 24 guide tubes and
a single central instrumentation tube. Eight spacer grids are located along the
axial length of the assembly, as well as upper and lower assembly nozzles. A full
description of the problem, including detailed material and geometric details, is
contained in Ref. [11].

For the base configuration, we model the assembly at 17.67 MW and 1300
ppm dissolved boron; the effect of power level and boron concentration on solver
convergence will be studied later in this section. The base configuration uses
a 56 energy group cross section library and uses the XSProc module of the
SCALE package to collapse these cross sections to 23 groups for Denovo SPN
calculations. Distinct cross sections are used for each fuel pin and for each of
49 axial levels. An SP3 angular order (containing 2 angular moments) is used
for all calculations, along with P1 scattering. A 2× 2 spatial mesh per pin cell
is used in the x–y plane, with a maximum axial mesh size of 2 cm, resulting
in 290,156 mesh cells for the full assembly. The AMP heat transfer problem
contains 15,504 mesh cells per fuel pin (over both the fuel and clad meshes),
resulting in approximately 4.1 million total cells. A linear continuous finite
element discretization of the heat transfer problem is used. All problems in
this study are executed in parallel on 289 processing cores on the OLCF EOS
cluster, resulting in 1 fuel pin per core.

Five different solver approaches are considered. First is a damped Picard
iteration with the damping applied to the temperature component of the solu-
tion as described in Section 3. Except where otherwise noted, all calculations
use a damping factor of ω = 0.45 which appears to produce nearly optimal
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convergence behavior for a wide range of problems. Within Picard iteration
the k-eigenvalue problem is solved with a generalized Davidson eigensolver and
the heat transfer and subchannel flow problem is solved using a JFNK approach
(due to the temperature dependence of the thermal conductivity, the heat trans-
fer problem by itself is nonlinear). The second solver is Anderson acceleration
of Picard iteration, as described in Section 3.1. The next solver consists of a full
JFNK solver using the nonlinear function evaluation described by Eq. (13). Re-
call that this selection requires performing full cross section processing at every
linear iteration. The final two solvers are modified JFNK approaches based on
the function evaluations in Section 3.2.2. The approach denoted by MJFNK1
corresponds to the function evaluation of Eq. (33) in which the temperature de-
pendence of the cross sections is entirely neglected during a nonlinear iteration.
The approach denoted by MJFNK2 corresponds to Eq. (35) in which a linear
approximation to the temperature dependence of the absorption cross section is
used during each nonlinear iteration. This linear approximation is determined
by performing stand-alone XSProc calculations at 600K and 1500K to compute
pin-homogenized absorption cross sections. In both modified JFNK approaches,
only a single cross section processing step is performed per nonlinear iteration.

A brief mention should be made of the memory usage of the various solution
approaches. Picard iteration itself uses virtually no memory on its own (only a
single extra copy of the solution vector to determine convergence), and therefore
the memory usage is determined by the individual solvers. In this study, the
JFNK solver used by the heat transfer solver internally uses a GMRES linear
solver which required a subspace containing up to 20 vectors containing the
thermal solution. The generalized Davidson solver used in the SPN calculations
requires multiple subspaces, which combined required the storage of up to 75
vectors of the length of the SPN solution vector. Memory requirements for
Anderson acceleration are equivalent to Picard except that a small number of
addition vectors (in this study, 2) are used by the solver. For the JFNK-based
methods, the primary memory requirement is through the GMRES linear solver
used. In this study, no restarting was employed resulting in a subspace size of as
many as 80 vectors, each having the combined length of the thermal and SPN
solutions. Note that all of the GMRES linear solvers as well as the generalized
Davidson offer the possibility of using more aggressive restarting capabilities to
limit the size of the subspaces that are used, typically at a cost of performing
a small number of additional iterations to reach the same convergence criteria.
In addition to memory associated with solver subspaces, there is an additional
memory cost associated with forming the problem operators and corresponding
preconditioners. These costs, however, are consistent across every solver option
because consistent parameters and preconditioning options were used.

Figure 2 shows the convergence behavior for Picard iteration and each of
the JFNK variants. Picard iteration demonstrates the expected linear conver-
gence rate and convergence for the full JFNK is quadratic. The first modified
JFNK method follows the convergence behavior of the full JFNK for the first
few iterations before separating and ultimately converging linearly with a rate
similar to that of Picard iteration. The second modified JFNK follows the con-
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Figure 2. Nonlinear convergence behavior for Picard and JFNK methods.

vergence rate of full JFNK even more closely and although it eventually deviates
from quadratic convergence it does result in linear convergence at a very rapid
rate. It should be noted that the convergence criteria used to generate this plot
were several orders of magnitude tighter than what is typically applied to such
multiphysics problems. This was done to emphasize the pertinent convergence
features of each method.

The convergence behavior of Picard iteration as a function of damping pa-
rameter at several different power levels is shown in Figure 3. These curves
have the same general shape as the corresponding plot from Ref. [5] and con-
sistent with the behavior observed in Refs. [8, 10, 14], all of which reported
using damping factors between 0.3 and 0.6. An interesting feature of this curve
is that the convergence behavior depends on the power level, with high power
levels requiring smaller damping factors for optimal convergence.

Table 1 provides the time required to achieve a relative convergence toler-
ance of 10−4 for each solution strategy at four different power levels. The time
required for Picard iteration to converge is approximately constant for most
power levels, showing a slight upward trend at higher power levels indicative of
the stronger coupling present at high power. Anderson acceleration converges
in nearly the same time as Picard but fails to converge at higher power levels.
The Anderson failures were predominantly the result of violating bounds on
material property evaluations. Although this failure to converge appears to be
a downside for Anderson, its ability to reproduce the timing of an optimally
damped Picard iteration without any such tuning parameter of its own actu-
ally indicates that there is significant potential for Anderson acceleration or
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Figure 3. Picard convergence vs. damping parameter for different power levels.

similar methods. Due to lack of convergence at normal power levels, however,
Anderson acceleration will not be considered for the remaining studies in this
paper. We note that all three of the mappings described in Section 3.1 were
implemented, but had a negligible impact on performance. Despite the fact that
JFNK exhibits quadratic convergence behavior, the large cost per iteration due
to performing cross section processing at every linear iteration results in large
run times that are not competitive with other approaches. The first modified
JFNK method performs very well at low power levels, significantly reducing
runtimes relative to Picard iteration. At high power levels, however, the time
required for convergence greatly increases, reaching over twice the runtime of
Picard at 120% power. This behavior is easily understood by noting that the
low heat generation rate at low power results in relatively small changes in tem-
perature and therefore the effect of neglecting the temperature dependence of
cross sections is not too large, but high power levels produce large temperature
variations and a corresponding degradation due to not capturing the effects of
changes in cross sections. The second modified JFNK approach performs very
well across all power levels, resulting in the fastest time to solution for all cases
and displaying very little variation with power level from 80–100%.

Table 2 shows the time to reach convergence for each solver approach at
several different boron concentrations. The convergence behavior does not ap-
pear to be very strongly dependent on the boron concentration, the first three
solvers produced the longest runtime at 600 ppm boron while MFJNK2 had the
longest runtime at 0 ppm. For MJFNK1, there is over a factor of two difference
in the time to solution at 600 ppm versus 2000 ppm; the other solvers do not
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Power Level
Method 60% 80% 100% 120%

Picard 1296 1150 1353 1523
Anderson 1305 - - -

JFNK 6168 5958 8908 8844
MJFNK1 734 1035 1693 3164
MJFNK2 695 985 971 961

Table 1. Solver timing in seconds as function of power level.

Boron Concentration
Method 0 ppm 600 ppm 1300 ppm 2000 ppm

Picard 1370 1604 1353 1445
JFNK 8079 9200 8908 8391

MJFNK1 2743 3858 1693 1704
MJFNK2 1325 1008 971 1002

Table 2. Solver timing in seconds as function of boron concentration.

experience such strong dependence. It should be noted that for MJFNK2 a
single linear approximation to the absorption cross section is used for all boron
concentrations, indicating a high level of robustness of the approach to this
parameter.

Table 3 shows the overall timing results for three different combinations of
cross section processing and transport energy group structures, effectively modi-
fying the cost of cross section processing from relatively cheap to very expensive.
When eight group cross section processing is performed, the computational time
for most methods is dominated by the time spent in the thermal (and subchan-
nel) portions of the calculation. In this case the full JFNK approach is still
slower than Picard iteration, though it is easy to envision that improvements in
preconditioning could lead to such an approach offering an advantage relative
to Picard. However, this coarse energy group structure does not produce re-
sults with appropriate accuracy and therefore finer energy group stuctures are
needed. As the number of energy groups is increased, the time spent in cross
section processing quickly dominates the overall runtime. This is especially
dramatic in the case of 252 group cross section processing in which the time re-
quired for the full JFNK approach is more than an order of magnitude greater
than for Picard iteration. Thus, for the large numbers of energy groups typi-
cally required for accurate reactor physics calculations it is apparent that näıve
application of JFNK will result in far worse behavior than Picard iteration. By
appealing to modified JFNK approaches that avoid frequent cross section pro-
cessing, however, significant reduction in computational time relative to Picard
is possible, with around a factor of two reduction evident for MJFNK2 in the
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XSProc Groups/SPN Groups
Method 8/8 56/23 252/23

Picard 980 1353 3868
JFNK 1685 8908 51727

MJFNK1 1070 1693 3793
MJFNK2 636 971 2013

Table 3. Solver timing in seconds for different energy group structures.

Method Total SPN Thermal XSProc

Picard 980 (11) 32 (161) 851 (302) 65 (11)
JFNK 1685 (5) 34 (203) 444 (203) 1075 (203)

MJFNK1 1070 (8) 61 (371) 763 (371) 40 (8)
MJFNK2 636 (5) 34 (208) 427 (208) 30 (5)

Table 4. Timing in seconds (operator applies) by component for 8 group
XSProc, 8 group SPN .

252 group XSProc case.
In order to more thoroughly assess the merits of the different solvers, we

now examine the amount of time spent in each physics component as well as
the number of times each physics component was applied. Tables 4, 5, and
6 provide this detailed information for the same three different energy group
structures; Note that solver setup, mesh transfer, and related operations are
not included in any component and therefore the sum of the time spent in the
various physics components will sum to less than the total time.

Comparing the individual columns of these tables, we can discern exactly
where the computational gains of the modified JFNK approach are realized. In
all cases, the amount of time spent in the thermal operator and cross section
processing are greatly reduced relative to Picard but the time spent in the SPN
operator is reduced only very little or possibly increased. The reason for this
is that Picard iteration is able to utilize a generalized Davidson eigensolver
that has been demonstrated to be highly efficient for stand-alone k-eigenvalue
calculations. Multiphysics coupling involving radiation transport solvers that do
not have optimized eigensolvers or using discretizations that do not easily lend
themselves to a generalized Davidson approach would be expected to experience
more significant timing reduction in the transport portion of the calculation.

As a final note on the timing behavior of Picard iteration, we compare the
Picard solver used in this study (AMP) to the VERA core simulator multi-
physics coupling involving Denovo SPN , XSProc, and CobraTF (VERA-CS)
for the same reference configuration. The timing breakdown for the AMP and
CobraTF solutions of this problem are shown in Table 7. The discrepancy in the
SPN runtimes is due to the fact that, while both couplings used the same gen-
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Method Total SPN Thermal XSProc

Picard 1353 (11) 178 (273) 832 (298) 312 (11)
JFNK 8908 (5) 160 (258) 649 (258) 7912 (258)

MJFNK1 1693 (8) 259 (434) 898 (434) 257 (7)
MJFNK2 971 (5) 137 (228) 470 (228) 171 (5)

Table 5. Timing in seconds (operator applies) by component for 56 group
XSProc, 23 group SPN .

Method Total SPN Thermal XSProc

Picard 3868 (13) 157 (244) 939 (332) 2739 (13)
JFNK 51727 (5) 139 (228) 591 (228) 50817 (228)

MJFNK1 3793 (10) 313 (523) 1103 (523) 2049 (10)
MJFNK2 2013 (5) 133 (223) 466 (223) 1221 (5)

Table 6. Timing in seconds (operator applies) by component for 252 group
XSProc, 23 group SPN .

eralized Davidson eigensolver, different preconditioning options were selected
which results in slightly different convergence behavior. The reason that the
thermal component of the calculation is so similar even though AMP is per-
forming a 3D within-pin calculation and CobraTF is using a low order model is
that AMP is able to perform its calculation in parallel on all 289 computational
cores available for this problem whereas for this single assembly problem Co-
braTF is only able to use a single core. The similarity in convergence behavior
for Picard iteration between these different code couplings seems to suggest that
improvements resulting from JFNK-based solver in the AMP code would likely
carry over to the CobraTF-based coupling if such solvers were implemented in
that framework.

From this study, we find that MJFNK2 can have a significant impact on
runtime efficiency. A logical question is whether these assumptions can be easily
applied to the Picard coupling. It is entirely possible to do this, but can be
very dangerous. Newton-based methods can check consistent residuals of the
monolithic system (Eq. (13)) to determine convergence of the global coupled
system. In all of the Newton-based methods above, the exact cross sections were

Method Total SPN Thermal XSProc

AMP 1353 (11) 178 (273) 832 (298) 312 (11)
VERA-CS 1352 (10) 257 (267) 768 (1663) 294 (10)

Table 7. Timing in seconds (operator applies) by component for AMP and
CobraTF coupling.
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always computed (no approximations) for the residual norms that determine
convergence. In the case of typical black-box Picard coupling, there is no access
to a residual (consistent or lagged) and the only way to determine convergence
is to look for stagnation of response quantities (e.g. leading eignevalue) or
data transfer values (e.g. temperature and power) between iterations. If an
approximation is used in the black-box iterations, stagnation won’t necessarily
be due to convergence but could also be due to these missing terms. The result
will be a code that claims convergence but is very far from a consistent solution.
Users unfamiliar with this approximation could easily try to run VERA on
problems where the approximation is not valid and get false convergence, leading
to very inaccurate results. This could be very embarrassing to CASL. The only
way to use the approximation effectively would be to apply the approximation
far from the solution and then once the Picard iteration thinks it is converged,
stop using the approximation and perform at least two more Picard iterations
with full cross section processing to see the true change. Most likely the code
would take more iterations, but a good percentage might be done with the
cheaper approximations. This procedure could also have significant impact on
robusness of the Picard method as well. We have not tried this to date, but it
would be a good follow on experiment in the next PoR.

5 Conclusions

In this study we have provided an assessment of several different nonlinear
solvers for use in problems involving coupled neutronics and thermal hydraulics.
In particular, comparisons of damped Picard iteration, Anderson acceleration,
and Jacobian-free Newton-Krylov have been performed. Because a näıve imple-
mentation of JFNK results in performing a very large number of cross section
processing steps, two modified variants of JFNK have been introduced which
only require processing cross sections at each nonlinear iteration. Numerical
results on CASL AMA Problem 6 indicate that:

• if on-the-fly generation of cross sections represents a large portion of the
runtime of a calculation then a direct JFNK implementation results in a
prohibitively large number of cross section processing steps,

• approximations to the nonlinear operator that avoid cross section process-
ing can largely preserve the fast convergence rate of JFNK without the
overhead,

• computational savings of 1.4-2 relative to Picard iteration with Newton-
like methods are possible, and

• for the core simulator problems in CASL the Newton-like methods offer
robust convergence behavior that does not depend on the selection and
optimization of a damping parameter.
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6 Future Work

Several areas for future work are suggested by this study. First, the precon-
ditioners used in this study are exclusively block diagonal, utilizing precondi-
tioners targeted at different physics components separately. The development
of preconditioners that incorporated additional coupling terms could offer sig-
nificant reduction in the number of linear iterations required at each nonlinear
iteration and therefore reduce the overall computational time.

Another area of interest is in improvements to the Anderson acceleration
approach. It has been observed that at low power levels Anderson acceleration
converges about as well as Picard iteration when Picard uses an optimum damp-
ing parameter. At higher power levels, Anderson acceleration failed to converge
primarily due to violating material property bounds. Further work on relating
the mixing parameter in Anderson acceleration to the Picard damping param-
eter may produce improved convergence at these higher powers. Additionally,
adding a Newton-based globalization (line search) to the fixed-point mapping
in the Anderson solver could achieve a robust solution, although the current
theory doesn’t necessarily guarantee the mapping is a descent direction.

The application of the JFNK2 approximation to the Picard solver should
also be explored. As discussed in the previous section, significant attention
should be paid to stopping criteria.

Additional areas for extension of this research lie in development of critical
boron search capabilities as well as application of methods to alternate reactor
designs. Whereas performing a boron search with Picard iteration typically re-
quires iterating to an eigenvalue of 1, JFNK-based approaches allow the problem
to be recast such that the boron concentration replaces the eigenvalue in the
solution vector making it possible to converge directly to the critical boron con-
centration without ever computing an eigenvalue. The only complication to this
approach is that modified JFNK approaches (i.e. MFJNK2 in this study) would
likely need to approximate derivatives of cross sections with respect to boron
concentration in addition to the current fuel temperature derivatives. Similarly,
application of these methods to reactor designs other than PWR’s may require
addressing additional derivative terms. For instance, with the large moderator
density variations seen in a BWR it is likely that the MFJNK2 approach would
need to account for cross section derivatives with respect to moderator density.
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