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Executive Summary

This document describes a preliminary assessment of the SPN discretization in Denovo. Comparison
to existing Sn discretizations is provided for three variants of CASL AMA Problem 2. Evaluation of the
accuracy for both pin-resolved and pin-homogenized cross section processing options are studied.

1 Introduction

The Simplified PN (SPN ) approximation is a three-dimensional extension of the plane-geometry PN equa-
tions. It was originally proposed by Gelbard [1] who applied heuristic arguments to justify the approximation.
Since that time, both asymptotic [2–4] and variational [5] analyses have verified Gelbard’s approach. This
note intends to start quantifying the accuracy of the SPN discretization as implemented in Denovo in com-
parison to Denovo’s traditional discrete ordinates discretizations. It is also anticipated that SPN will not
perform well when attempting to resolve interfaces between highly di↵ering materials, so an assessment of
the pincell homogenization strategies available in Scale are also necessary.

2 Methodology

The multigroup SPNequations are given by
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where �n indicates the nth angular moment of the angular flux, ⌃n = (���s,n), and F is the fission matrix.
A standard transformation of the moment vectors is applied, i.e.
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producing a system of equations that has a very di↵usion-like appearance:
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where the new solution vector, U, represents the transformed flux moments.
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In Denovo, a finite volume approach is used to spatially discretize the SPN equations. Unlike traditional
discrete ordinates transport discretizations, with SPN it is possible to explicitly form the discretized matrices,
o↵ering numerous advantageous solver and preconditioning options. At the current time, Denovo is able
to use either Arnoldi or generalized Davidson eigensolvers in combination with a wide variety of readily
available solvers through Trilinos. In particular, Krylov subspace linear solvers in conjunction with the
algebraic multigrid package, ML, have performed exceptionally well on the types of reactor problems studied
so far.

3 Results

In order to assess the accuracy of the SPN discretization, three problems of increasing di�culty are proposed.
These problems correspond to CASL AMA problems 2A, 2E, and 2H. The geometry for all three problems
consists of a 17 ⇥ 17 array of fuel pins with 24 guide tubes and one instrumentation tube. The fuel pins
consist of 3.1% enriched UO

2

fuel, a helium gap, Zircaloy 4 cladding, and natural water moderator with 1300
ppm soluble boron. In problem 2A, all guide tubes are filled with only water. For problem 2E, twelve of the
guide tubes contain pyrex inserts. Problem 2H places B

4

C control rods into all 24 guide tube locations; the
strong absorption in the control rods causes this problem to be significantly more di�cult than the other
cases.

As a reference solution, we use the 2D bilinear discontinuous (BLD) spatial discretization of the discrete
ordinates transport equation. A QR angular quadrature with eight azimuthal and six polar angles per octant
is used for all BLD calculations. As mentioned previously, the SPN equations in Denovo are discretized with
a finite volume approach. For all problems, a problem-dependent energy collapse from a 252 group library
to 23 energy groups is performed.

Two di↵erent methods of defining materials on the Denovo mesh are investigated. The first is a standard
homogenization in which the material defined for each Denovo mesh cell is defined as a volume-weighted
average of the true materials contained in that cell. We refer to this method as “resolved” because it repro-
duces the true problem in the limit as the mesh is refined. The second approach is a pincell homogenization
approach which uses the XSDRN module in SCALE to perform a flux-weighted collapse to produce a single
material in each pincell. Because this method does not approach the true geometry, even as the mesh is
refined, we refer to this as the “homogenized” approach. In our current studies, the resolved BLD approach
with a 64⇥ 64 mesh per pincell is used as the reference solution.

Figure 1 shows the e↵ect of mesh refinement on the BLD and SP5 solutions on the computed eigenvalue
and pin power distributions, respectively. At coarse meshes, resolved BLD and SP5 perform very similarly,
but as the mesh is refined the BLD solution converges to the reference solution while the SP5 solution con-
verges, but to a di↵erent solution than BLD. When cell homogenization is enabled, BLD and SP5 produce
essentially identical results. Furthermore, the solution is essentially independent of the level of mesh refine-
ment, due to the fact that the materials in Denovo mesh cells are not changing between mesh levels. As
expected, the homogenized results do not converge to the reference solution, but the errors produced by this
approach are quite small.

Figure 2 shows the same mesh refinement study for problem 2E. Although this is a more di�cult problem,
the same general trends from the previous problem are observed, with the exception that a slightly finer
mesh is required to achieve a converged solution. Errors in the eigenvalue for the resolved SP5 solution are
higher than is desirable (around 700 pcm from the reference solution), but the pin powers are fairly accurate
for both resolved and homogenized SP5.

Problem 2H presents a much more significant challenge to the solvers than the previous cases, as exhibited
in Figure 3. Achieving convergence requires a much finer mesh for the BLD discretization and the discrep-
ancies between BLD and SP5 are much more noticeable than before. Homogenized SP5 produces a much
better eigenvalue than resolved SP5, but even this solution di↵ers from the reference case by over 1000 pcm.
This result seems to indicate that in the presence of strong absorbers, the spatial homogenization of pincells
independently is not an appropriate approach and a more robust strategy that accounts for the presence
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Figure 1: Mesh Refinement Convergence for Problem 2A.
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Figure 2: Mesh Refinement Convergence for Problem 2E.
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Figure 3: Mesh Refinement Convergence for Problem 2H.

of neighboring cells (possibly by performing a full detailed 2D calculation to produce a flux spectrum for
homogenization) would be more accurate.
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Executive Summary

This document describes the Simplified PN methods implemented in Denovo.

1 Introduction

The Simplified P

N

(SP
N

) approximation is a three-dimensional extension of the plane-geometry P

N

equa-
tions. It was originally proposed by Gelbard [1] who applied heuristic arguments to justify the approximation.
Since that time, both asymptotic [2–4] and variational [5] analyses have verified Gelbard’s approach.

In this note we derive the SP
N

equations using the original method of Gelbard. The presentation closely
follows Refs. [4] and [6].

2 P
N

Equations

We begin the derivation of the planar P
N

equations from the steady-state, one-dimensional, monoenergetic
transport equation,
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with boundary conditions,
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Here, the standard definitions hold:

 (x, µ) angular flux in particles·cm�2
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(x, ⌦̂ · ⌦̂0) scattering cross section through angle µ
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q(x) isotropic source in particles·cm�3

The P

N

equations are obtained by expanding the angular flux and scattering in Legendre polynomials (this
requires spherical harmonics in two and three dimensions and non-cartesian geometry):
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where µ

0

= ⌦̂ · ⌦̂0. In what follows we shall make use of the following properties of Legendre polynomials:
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Expanding the addition theorem we obtain
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In planar geometry there is no azimuthal dependence and only m = 0 terms are required. Also, the spherical
harmonics reduce to Legendre polynomials in planar geometry,
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Combining these two equations, the addition theorem in planar geometry is
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From orthogonality we have

�

n

= 2⇡

Z
1

�1

P

n

(µ) (µ) dµ . (9)

Applying the expansions in Eqs. (3) and (4) in Eq. (1) gives
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where we have suppressed the x dependence. The P

N

equations are obtained by multiplying by P

m

(µ) and

integrating by
R
1

�1

dµ. Equation (6) is used to remove µP

n

from the derivative term. Equation (8) is used
in the scattering expansion to remove the µ

0

dependence. Orthogonality is used to remove all the remaining
Legendre polynomials. The resulting system of equations is

@

@x

h
n

2n+ 1
�

n�1

+
n+ 1

2n+ 1
�

n+1

i
+ ⌃

n

�

n

= q�

n0

, n = 0, 1, 2, . . . , N , (11)

where
⌃

n

= � � �

sn

. (12)

Equation (11) defines a system of N + 1 equations that requires closure in order to deal with the �
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term in the di↵erential operator. The common method for closing the equations is to set this term to zero,
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2.1 PN Boundary Conditions

For this work we consider 3 types of boundary conditions:

• vacuum

• isotropic flux

• reflecting

For vacuum and isotropic flux we will employ the Marshak boundary conditions. The Marshak conditions
approximately satisfy Eq. (2) at the boundary and are consistent with the P

N

approximation. The generalized
Marshak boundary condition is
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Equation (15) yields (N +1)/2 fully coupled equations at each boundary. Thus, it fully closes the N +1 P
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equations given in Eq. (11).
Once again, as an example we consider the P
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equations. The Marshak conditions on the low boundary
are derived using
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Assuming an isotropic flux on the boundary,

 

b

(µ) =
�

b

4⇡
, (18)

the P

3

Marshak boundary conditions are
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As stated above, all of the moments are coupled in the boundary conditions. For a vacuum condition, �
b

= 0.
Reflecting boundary conditions are more straightforward. The only conditions that make physical sense

in this case is to set all the odd moments to zero
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i
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In the P
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approximation this is equivalent to setting the current to zero at each boundary. From Eq. (9)
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This treatment also yields (N + 1)/2 equations on each boundary and e↵ectively closes the system.
We note that both of these boundary treatments contain asymmetric components when N 2 {even}.

Thus, we only consider odd sets of P
N

(SP
N

) equations.
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3 SP
N

Equations

As mentioned in § 1 the SP
N

method is based on heuristic arguments; however, several studies have performed
both asymptotic and variational analysis that have confirmed the original ad hoc approximations. In this
note, we shall apply the heuristic approximation. The reader is directed towards Refs. [2–4] for more details
on asymptotic derivations of the equations and Ref. [5] for a variational analysis of the SP

N

equations.
In the notation that follows we will employ the Einstein Summation convention in which identical indices

are implicitly summed over the range 1, . . . , 3,
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Using Eq. (25) to solve for the odd moments gives
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Equation (27) gives the (N + 1)/2 SP

N

equations. Each equation has a di↵usion-like form. The boundary
conditions are derived in the same manner, and Eq. (26) is used to remove the odd moments.
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In all that follows, we will use the SP
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where we have converted @

@x

i
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= r · a. The di↵usion-like nature of Eqs. (28) is more easily understood by
making the following change of variables:
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Using Eqs. (29) and (30) in Eq. (28) gives the following system of equations in terms of ,
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�
q �

2

3

q

8

15

q �

16

35

q

�
T

, (34)

and

A =

0

BBBBBBBB@

(⌃
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⌃
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⌃
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) (� 16
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⌃
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3

⌃
0

) ( 4
9

⌃
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+ 5

9

⌃
2

) (� 16

45

⌃
0

�

4

9

⌃
2

) ( 32

105

⌃
0

+ 8

21

⌃
2

)

( 8

15

⌃
0

) (� 16

45

⌃
0

�

4

9

⌃
2

) ( 64

225

⌃
0

+ 16

45

⌃
2

+ 9

25

⌃
4

) (� 128

525

⌃
0

�

32

105

⌃
2

�

54

175

⌃
4

)

(� 16

35

⌃
0

) ( 32

105

⌃
0

+ 8

21

⌃
2

) (� 128

525

⌃
0

�

32

105

⌃
2

�

54

175

⌃
4

) ( 256

1225

⌃
0

+ 64

245

⌃
2

+ 324

1225

⌃
4

+ 13

49

⌃
6

)

1

CCCCCCCCA

.

(35)
Equation (28) are the SP

7

equations that we will use in the remainder of this paper. This system reduces
to the SP

1

(di↵usion) equation by setting �

2

= �

4

= �

6

= 0,

�r ·

1

3⌃
1

r�

0

+ ⌃
0

�

0

= q . (36)

Equivalently, the SP

3

equations are obtained by setting �

4

= �

6

= 0 and the SP

5

equations result from
setting �

6

= 0.
The P

7

Marshak boundary conditions are obtained by carrying out the integrations in Eq. (15) using the
isotropic boundary flux condition in Eq. (18):

1

2
�

0

+ �

1

+
5

8
�

2

�

3

16
�

4

+
13

128
�

6

=
1

2
�

b

,

�

1

8
�

0

+
5

8
�

2

+ �

3

+
81

128
�

4

�

13

64
�

6

= �

1

8
�

b

,

1

16
�

0

�

25

128
�

2

+
81

128
�

4

+ �

5

+
325

512
�

6

=
1

16
�

b

,

�

5

128
�

0

+
7

64
�

2

�

105

512
�

4

+
325

512
�

6

+ �

7

= �

5

128
�

b

.

(37)

Using Eq. (11) to remove the odd-moments ({�
1

,�

3

,�

5

,�

7

}) from Eq. (37) and applying Eqs. (29) and (30)
and the SP

N

boundary approximation,

±

@

@x

! n̂ ·r ,



RNSD-00-000 -6- April 5, 2013

gives the SP

7

boundary conditions,

n̂ ·D

n

ru

n

+
4X

m=1

B

nm

u

m

= s

n

, n = 1, 2, 3, 4 . (38)

Here, u
n

and D

n

are defined in Eqs. (32) and (33). The right-hand side source, s
n

is defined

s =
�
1

2

�

b

�

1

8

�

b

1

16

�

b

�

5

128

�

b

�
T

, (39)

and B is

B =

0

BBBBBBBB@

1

2

�

1

8

1

16

�

5

128

�

1

8

7

24

�

41

384

1

16

1

16

�

41

384

407

1920

�

233

2560

�

5

128

1

16

�

233

2560

3023

17920

1

CCCCCCCCA

. (40)

Performing the same truncation as above for the SP

1

equations, the boundary conditions become

1

4
�

0

�

1

2
n̂ · J = j

in

, (41)

where

j

in = 2⇡

Z
1

0

µ

�

b

4⇡
dµ =

�

b

4
,

and
J
n

= �D

n

ru

n

. (42)

This is the standard three-dimensional di↵usion Marshak boundary condition, and Eq. (42) is Fick’s Law.
The P

N

boundary conditions for reflecting surfaces are given in Eq. (21). Applying the SP
N

approxima-
tion to these boundary conditions yields

ru

n

= 0 , n = 1, 2, 3, 4 . (43)

This implies that n̂ · J = 0 on the boundaries.
In summary, the SP

7

equations are given in Eq. (31) and yield (N+1)/2 second-order equations. The SP
7

Marshak boundary conditions are given in Eq. (38) for vacuum and isotropic boundary sources. Equation (43)
gives reflecting boundary conditions. Each boundary condition yields (N+1)/2 first-order (Robin) conditions
that closes the system of SP

N

equations.

4 Finite Volume Discretization

The general form for the SP

7

equations is given in Eq. (31) with Marshak boundary conditions defined in
Eq. (38) and reflecting boundary conditions given by Eq. (43). Applying Fick’s Law (Eq. (42)) to Eq. (31)
gives

r · J
n

+
4X

m=1

A

nm

u

m

= Q

n

, n = 1, 2, 3, 4 . (44)

To begin the finite-volume spatial discretization, consider the three-dimensional, orthogonal, Cartesian mesh
cell illustrated in Fig. 1. Integrating over volume yields, with piece-wise constant A

nm

,

Z

V

r · J
n

dV +
4X

m=1

A

nm,ijk

u

m,ijk

V

ijk

= Q

n,ijk

V

ijk

, (45)
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n̂

x

y

z

(i + 1/2, j � 1/2, k � 1/2)
�

j

(i + 1/2, j + 1/2, k � 1/2)

�
k

(i � 1/2, j � 1/2, k + 1/2) (i � 1/2, j + 1/2, k + 1/2)

�
i

(i + 1/2, j � 1/2, k + 1/2) (i + 1/2, j + 1/2, k + 1/2)

(i � 1/2, j + 1/2, k � 1/2)(i � 1/2, j � 1/2, k � 1/2)

Figure 1: Three-dimensional, Cartesian mesh cell.

where

u

n,ijk

=
1

V

ijk

Z

V

u

n

dV , (46)

and
V

ijk

= �
i

�
j

�
k

. (47)

The Divergence Theorem gives1

Z

V

r · J
n

dV =

I
n̂ · J

n

dA =
6X

f=1

n̂
f

· J
n,f

A

f

, (48)

where f is the index over faces such that f 2 {1, ..., 6} as illustrated in Fig. 1. Applying these terms to
Eq. (45) gives the discrete balance equation for Eq. (44):

(J
n,i+1/2

� J

n,i�1/2

)�
j

�
k

+ (J
n,j+1/2

� J

n,j�1/2

)�
i

�
k

+

(J
n,k+1/2

� J

n,k�1/2

)�
i

�
j

+
4X

m=1

A

nm,ijk

u

m,ijk

V

ijk

= Q

n,ijk

V

ijk

. (49)

Here, we have written the face-edge currents with suppressed subscripts as follows:

J

n,i±1/2 jk

! J

n,i±1/2

,

J

n,i j±1/2 k

! J

n,j±1/2

,

J

n,ij k±1/2

! J

n,k±1/2

.

The same convention will be applied to all face-edge quantities.

1
Note that

ˆn = nii+ njj+ nkk is the outward normal whereas the n subscript indicates the index of the moment equation,

n 2 {1, 2, 3, 4}.
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�
l+1

ll � 1 l + 1
l � 1/2 l + 1/2

�
l�1 �

l

Figure 2: Di↵erence mesh along a single direction l 2 {i, j, k}.

�
l+1
2

l + 1/2

J+
l+1/2

J�
l+1/2

l + 1l
�

l

2

Figure 3: Illustration of continuous current at inter-cell boundaries.

Applying second-order di↵erencing to Fick’s Law, Eq. (42), in each direction as illustrated in Fig. 2 gives

J

n,l+1/2

= �D

n,l+1/2

u

n,l+1

� u

n,l

�
l+1/2

,

J

n,l�1/2

= �D

n,l�1/2

u

n,l

� u

n,l�1

�
l�1/2

,

(50)

where

�
l+1/2

=
�

l

+�
l+1

2
,

�
l�1/2

=
�

l

+�
l�1

2
,

(51)

for l = i, j, k. The true current is the first moment of the angular flux and is formally obtained only in the
case of SP

1

. However; these equations represent e↵ective currents that are mathematically indistinguishable
from the true current in higher order SP

N

expansions. Plugging Eq. (50) into Eq. (49) gives

D

n,i+1/2

�
i+1/2

(u
n,ijk

� u

n,i+1 jk

)�
j

�
k

+
D

n,i�1/2

�
i�1/2

(u
n,ijk

� u

n,i�1 jk

)�
j

�
k

+

D

n,j+1/2

�
j+1/2

(u
n,ijk

� u

n,i j+1 k

)�
i

�
k

+
D

n,j�1/2

�
j�1/2

(u
n,ijk

� u

n,i j�1 k

)�
i

�
k

+

D

n,k+1/2

�
k+1/2

(u
n,ijk

� u

n,ij k+1

)�
i

�
j

+
D

n,k�1/2

�
k�1/2

(u
n,ijk

� u

n,ij k�1

)�
i

�
j

+

4X

m=1

A

nm,ijk

u

m,ijk

V

ijk

= Q

n,ijk

V

ijk

. (52)

In order to complete the derivation of the discrete equations, the cell-edge di↵usion coe�cients must be
calculated. To make the method consistent, the scalar and first derivatives must by continuous at inter-
cell boundaries. This condition implies that the e↵ective current, J, is continuous across the boundary as
illustrated in Fig. 3. Applying continuity of current at the l ± 1/2 boundaries requires

J

�
n,l±1/2

= J

+

n,l±1/2

,
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which results in the following conditions

�2D
n,l

u

n,l+1/2

� u

n,l

�
l

= �2D
n,l+1

u

n,l+1

� u

n,l+1/2

�
l+1

, (53)

�2D
n,l�1

u

n,l�1/2

� u

n,l�1

�
l�1

= �2D
n,l

u

n,l

� u

n,l�1/2

�
l

. (54)

Solving for u
n,l±1/2

gives

u

n,l+1/2

=
D

n,l+1

�
l

u

n,l+1

+D

n,l

�
l+1

u

n,l

D

n,l

�
l+1

+D

n,l+1

�
l

, (55)

u

n,l�1/2

=
D

n,l

�
l�1

u

n,l

+D

n,l�1

�
l

u

n,l�1

D

n,l�1

�
l

+D

n,l

�
l�1

. (56)

Plugging these face-edge fluxes into J

+

n,l±1/2

and setting the resulting face-edge currents equal to the discrete

currents defined in Eq. (50) yields expressions for the face-edge di↵usion coe�cients:

D

n,l+1/2

=
D

n,l+1

D

n,l

�
l

+D

n,l

D

n,l+1

�
l+1

D

n,l

�
l+1

+D

n,l+1

�
l

,

D

n,l�1/2

=
D

n,l

D

n,l�1

�
l

+D

n,l

D

n,l�1

�
l�1

D

n,l�1

�
l

+D

n,l

�
l�1

,

l = i, j, k .

(57)

Having defined face-edge di↵usion coe�cients that preserves continuity of the first derivative (e↵ective)
at inter-cell boundaries, the complete discrete SP

N

equations can be formulated. Plugging Eq. (57) into
Eq. (52) gives

� C

+

n,i

u

n,i+1 jk

� C

�
n,i

u

n,i�1 jk

� C

+

n,j

u

n,i j+1 k

� C

�
n,j

u

n,i j�1 k

� C

+

n,k

u

n,ij k+1

� C

�
n,k

u

n,ij k�1

�

4X

m=1

⇥
A

nm,ijk

+ (C+

m,i

+ C

�
m,i

+ C

+

m,j

+ C

�
m,j

+ C

+

m,k

+ C

�
m,k

)�
nm

⇤
u

m,ijk

= Q

n,ijk

, n = 1, 2, 3, 4 . (58)

The matrix C couples the angular moments, u, in space and is defined

C

+

n,l

=
2D

n,l+1

D

n,l

�
l

(D
n,l

�
l+1

+D

n,l+1

�
l

)
,

C

�
n,l

=
2D

n,l

D

n,l�1

�
l

(D
n,l�1

�
l

+D

n,l

�
l�1

)
,

l = i, j, k .

(59)

Equation (58) is the discrete SP

7

equation. For all N > 1 the equation couples all of the angular moments
through A.

All that remains to complete the discrete description of the problem is to incorporate the boundary
conditions given in Eqs. (38) and (43). Using Fick’s Law (42) in Eq. (38) gives

�n̂ · J
n

+
4X

m=1

B

nm

u

m

= s

n

, n = 1, 2, 3, 4 . (60)

At the low and high boundaries this yields

J

n,1/2

= s

n,1

�

4X

m=1

B

nm

u

m,1/2

, Low Boundary , (61)

J

n,L+1/2

=
4X

m=1

B

nm

u

m,L+1/2

� s

n,L

, High Boundary , (62)
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where l 2 [1, L] is the range of cells in each direction such that l = 1/2 is the low-edge boundary and
l = L+ 1/2 is the high-edge boundary. Also, we have suppressed the complimentary directional subscripts.
As before Eq. (42) is discretized at the boundaries yielding

J

n,1/2

= �2D
n,1

u

n,1

� u

n,1/2

�
1

, (63)

J

n,L+1/2

= �2D
n,L

u

n,L+1/2

� u

n,L

�
L

. (64)

Because all of the moments are coupled at the boundary, it is necessary to include the edge-fluxes in the
solution vector. Thus, we require additional equations at the boundary to close the system. Equating the
current equations at the low and high boundaries gives

4X

m=1

⇣
B

nm

+
2D

n,1

�
1

�

nm

⌘
u

m,1/2

�

2D
n,1

�
1

u

n,1

= s

n

, Low Boundary , (65)

4X

m=1

⇣
B

nm

+
2D

n,L

�
L

�

nm

⌘
u

m,L+1/2

�

2D
n,L

�
L

u

n,L

= s

n

, High Boundary . (66)

For boundaries described by Marshak conditions, Eqs. (63) and (64) are used in Eq. (49) for the edge-currents
and Eqs. (65) and (66) provide the additional equations for the edge-fluxes.

Reflecting boundary conditions for the SP

7

equations are given in Eq. (43). These imply that

J

n,1/2

= 0 , (67)

J

n,L+1/2

= 0 . (68)

These boundary currents are used to close Eq. (49) on reflecting boundary faces.

5 Multigroup SP
N

The derivation of the SP
7

equations and the accompanying finite volume discretization has been for energy-
independent or, equivalently, one-group problems. To include energy dependence we apply the multigroup
approximation [7] to Eq. (1):,

µ

@ 

g(x, µ)

@x

+ �

g(x) g(x, µ) =
GX

g

0
=0

Z

4⇡

�

gg

0

s

(x, ⌦̂ · ⌦̂0) g

0
(x,⌦0) d⌦0 +

q

g(x)

4⇡
, (69)

where g = 0, 1, . . . , G is the energy group index for N
g

total groups. Applying the P

N

method described in
§ 2 and then making the SP

N

approximation gives multigroup analogs of Eqs. (24) and (25)

@

@x

i

h
n

2n+ 1
�

g

n�1,i

+
n+ 1

2n+ 1
�

g

n+1,i

i
+
X

g

0

(�g

�

gg

0
� �

gg

0

sn

)�g
0

n

= q

g

�

n0

, n = 0, 2, 4, . . . , N , (70)

@

@x

i

h
n

2n+ 1
�

g

n�1

+
n+ 1

2n+ 1
�

g

n+1

i
+
X

g

0

(�g

�

gg

0
� �

gg

0

sn

)�g
0

n,i

= 0 , n = 1, 3, 5, . . . , N . (71)

Defining

�
n

=
�
�

0

n

�

1

n

. . . �

G

n

�
T

, (72)

�
n,i

=
�
�

0

n,i

�

1

n,i

. . . �

G

n,i

�
T

, (73)

q =
�
q

0

q

1

. . . q

G

�
T

, (74)
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and

⌃
n

=

0

BBBBBBBBB@

(�0

� �

00

sn

) ��

01

sn

. . . ��

0G

sn

��

10

sn

(�1

� �

11

sn

) . . . ��

1G

sn

...
...

. . .
...

��

G0

sn

��

G1

sn

. . . (�G

� �

GG

sn

)

1

CCCCCCCCCA

. (75)

Thus, �
n

and �
n,i

are (N
g

⇥ 1) vectors and ⌃ is a (N
g

⇥N

g

) matrix. Solving Eq. (71) for �
n,i

and plugging
into Eq. (70) gives the multigroup SP

N

equations

�

@

@x

i


n

2n+ 1
(⌃�1

n�1

)
@

@x

i

⇣
n� 1

2n� 1
�

n�2

+
n

2n� 1
�

n

⌘
+

n+ 1

2n+ 1
(⌃�1

n+1

)
@

@x

i

⇣
n+ 1

2n+ 3
�

n

+
n+ 2

2n+ 3
�

n+2

⌘�
+

⌃
n

�
n

= q�
n0

, m = 0, 2, . . . , N . (76)

Equation (76) is identical in form to the monoenergetic SP

N

equations in (27) with the exception that
unknowns are vectors of length N

g

and the cross sections are (N
g

⇥N

g

) matrices.
Now, we make the same algebraic transforms as Eqs. (29) and (30) to define U

n

,

U
1

= �
0

+ 2�
2

, U
2

= 3�
2

+ 4�
4

, U
3

= 5�
4

+ 6�
6

, U
4

= 7�
6

. (77)

The e↵ective di↵usion coe�cients in the multigroup problem are (N
g

⇥N

g

) matrices and are defined

D
1

=
1

3
⌃�1

1

, D
2

=
1

7
⌃�1

3

, D
3

=
1

11
⌃�1

5

, D
4

=
1

15
⌃�1

7

. (78)

The source is a (N
g

⇥ 1) column vector for each moment,

Q
1

= q , Q
2

= �

2

3
q , Q

3

=
8

15
q , Q

4

= �

16

35
q . (79)

The resulting multigroup SP

7

equations are

�r · D
n

rU
n

+
4X

m=1

A
nm

U
m

= Q
n

, n = 1, 2, 3, 4 , (80)

where each A
nm

is a (N
g

⇥N

g

) block matrix. The e↵ective Fick’s Law for these equations is

J
n

= �D
n

rU
n

, (81)

where J is a (N
g

⇥ 1) vector.
Applying the same discretization from § 4 to Eq. (80) gives the multigroup equivalent of Eq. (49):

(J
n,i+1/2

� J
n,i�1/2

)�
j

�
k

+ (J
n,j+1/2

� J
n,j�1/2

)�
i

�
k

+

(J
n,k+1/2

� J
n,k�1/2

)�
i

�
j

+
4X

m=1

A
nm,ijk

U
m,ijk

V

ijk

= Q
n,ijk

V

ijk

. (82)

Discretizing Fick’s Law gives

J
n,l+1/2

= �

1

�
l+1/2

D
n,l+1/2

(U
n,l+1

� U
n,l

) ,

J
n,l�1/2

= �

1

�
l�1/2

D
n,l�1/2

(U
n,l

� U
n,l�1

) ,
(83)
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Using the same technique to solve for the edge di↵usion terms, but recognizing that these are (N
g

⇥ N

g

)
matrices in the multigroup problem, yields an analog to Eq. (57):

D
n,l+1/2

�
l+1/2

(U
n,l+1

� U
n,l

) = 2D
n,l+1

(�
l

D
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+�
l+1

D
n,l

)�1D
n,l

(U
n,l+1

� U
n,l

) ,

D
n,l�1/2

�
l�1/2

(U
n,l

� U
n,l�1

) = 2D
n,l

(�
l

D
n,l�1

+�
l�1

D
n,l

)�1D
n,l�1

(U
n,l

� U
n,l�1

) .

(84)

Applying these terms in Eq. (82) and (83) gives the multigroup analog to Eq. (58):

� C+

n,i

U
n,i+1 jk

� C�
n,i

U
n,i�1 jk

� C+

n,j

U
n,i j+1 k

� C�
n,j

U
n,i j�1 k

� C+

n,k

U
n,ij k+1

� C�
n,k

U
n,ij k�1

�

4X

m=1

⇥
A

nm,ijk

+ (C+

m,i

+ C�
m,i

+ C+

m,j

+ C�
m,j

+ C+

m,k

+ C�
m,k

)�
nm

⇤
U

m,ijk

= Q
n,ijk

, n = 1, 2, 3, 4 , (85)

where

C+

n,l

=
2

�
l

D
n,l+1

(�
l

D
n,l+1

+�
l+1

D
n,l

)�1D
n,l

,

C�
n,l

=
2

�
l

D
n,l

(�
l

D
n,l�1

+�
l�1

D
n,l

)�1D
n,l�1

,

l = i, j, k .

(86)

Recall that all terms in A notation are N

g

-dimensioned matrices or vectors. Thus, we have

(N
g

⇥N

g

)(N
g

⇥ 1) = (N
g

⇥ 1) .

The multigroup Marshak boundary conditions, following Eq. (38) are

�n̂ · J
n

+
4X

m=1

B
nm

U
m

= S
n

, (87)

where the B
nm

are (N
g

⇥N

g

) diagonal matrices with B

nm

from Eq. (40) on the diagonal and,

s =
�
�

0

b

�

1

b

. . . �

G

b

�
T

, (88)

and

S
1

=
1

2
s , S

2

= �

1

8
s , S

3

=
1

16
s , S

4

= �

5

128
s . (89)

Following the process that lead to Eqs. (65) and (66) using the multigroup formulation gives

4X

m=1

⇣
B
nm

+
2

�
1

D
n,1

�

nm

⌘
U

m,1/2

�

2

�
1

D
n,1

U
n,1

= S
n

, Low Boundary , (90)

4X

m=1

⇣
B
nm

+
2

�
L

D
n,L

�

nm

⌘
U

m,L+1/2

�

2

�
L

D
n,L

U
n,L

= S
n

, High Boundary . (91)

At the problem boundaries, the following equations provide the edge currents in Eq. (82)

J
n,1/2

= �

2

�
1

D
n,1

(U
n,1

� U
n,1/2

) , Low Boundary , (92)

J
n,L+1/2

= �

2

�
L

D
n,L

(U
n,L+1/2

� U
n,L

) , High Boundary . (93)
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Likewise, reflecting boundary conditions are imposed in the following:

J
n,1/2

= 0 , Low Boundary , (94)

J
n,L+1/2

= 0 , High Boundary , (95)

which get used in Eq. (85) at reflecting boundaries.
Applying these conditions at the boundaries gives

C�
n,1

=
2

�2

1

D
n,1

, Low Boundary ,

C+

n,L

=
2

�2

l

D
n,L

, High Boundary ,

l = i, j, k .

(96)

where U
n,l�1

! U
n,1/2

and U
n,l+1

! U
n,L+1/2

at the low and high boundaries, respectively. Equations (90)
and (91) provide the additional equations for the the edge fluxes and are used to close the system. On
reflecting boundaries we have

C�
n,1

= 0 , Low Boundary ,

C+

n,L

= 0 , High Boundary ,

l = i, j, k .

(97)

No additional equations are required to close the system because the edge fluxes vanish.

6 Eigenvalue Form

The eigenvalue form of the 1-D transport equation, Eq. (69), is

µ

@ 

g(x, µ)

@x
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f
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(x,⌦0) d⌦0

. (98)

Expanding the eigenvalue term using the Eq. (3) and applying the orthogonalization property in Eq. (5)
yields
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(99)

The eigenvalue form of the P
N

equations proceeds by using this term for the source term in Eq. (10). Applying
the SP

N

approximation described in §§ 3 and 5 to the resulting multigroup, eigenvalue P

N

equations gives
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, m = 0, 2, . . . , N . (100)
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The fission matrix, F is defined

F =

0
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. (101)

Converting the state unknowns from � ! U via Eq. (77) gives the following eigensystem,

�r · D
n

rU
n

+
4X

m=1

A
nm

U
m

=
1

k

4X

m=1

F
nm

U
nm

, n = 1, 2, 3, 4 , (102)

where
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7 Adjoint Form

The adjoint form of the 1-D transport equation, Eq. (69), is
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where  † g is the adjoint flux for group g. Likewise, the adjoint form of Eq. (98) is
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. (105)

Applying the P

N

approximation to Eq. (104) gives
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Following the steps in §§ 3 and 5, the adjoint SP
N

equations are
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Using Eq. (108) to solve for the �

† g
n,i

terms and substituting into Eq. (108) gives
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where

�†
n

=
�
�

† 0
n

�

† 1
n

. . . �

†G
n

�
T

, (110)

�†
n,i

=
⇣
�

† 0
n,i

�

† 1
n,i

. . . �

†G
n,i

⌘
T

, (111)

q† =
�
q

† 0
q

† 1
. . . q

†G�T
, (112)

and

⌃†
n

=

0

BBBBBBBBB@

(�0

� �

00

sn

) ��

10

sn

. . . ��

G0

sn

��

01

sn

(�1

� �

11

sn

) . . . ��

G1

sn

...
...

. . .
...

��

0G

sn

��

1G

sn

. . . (�G

� �

GG

sn

)

1

CCCCCCCCCA

. (113)

Equations (109) through (113) constitute the adjoint, multigroup SP

N

equations.
Equation (109) is identical in form to Eq. (76); thus, all of the machinery that was derived to solve the

multigroup SP

N

equations in § 5, starting with Eq. (77), can be used to solve the adjoint SP

N

equations.
The only requirements to convert the forward solver to an adjoint solver are:

1. use an adjoint external source (response)

2. take the transpose of the all of the cross section matrices because

⌃†
n

= ⌃T

n

. (114)

For eigenvalue equations the fission matrix must be transposed as well because F† = FT ,
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All other aspects of solving the adjoint eigenvalue form of the SP

N

equations follows from § 6.

8 Matrix System

The multigroup SP

N

equations have dimension N

g

⇥ N

m

⇥ N

c

where N

m

= (N + 1)/2 is the number of
moment equations and N

c

is the number of spatial cells. The solution vector u can be ordered in multiple
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ways. As we shall show, the ordering that minimizes the bandwidth of the matrix is to order u in groups-
moments-cells,

u =
�
u

0

u

1

. . . u

m�1

u

m

u

m+1

. . . u

M

�
T

, (116)

with
m = g +N

g

(n+ cN

m

) , (117)

where g is the group, n is the moment-equation, and c is the cell.
The matrix system described in Eq. (85) is

Au = Q . (118)

Consider an example SP
3

matrix that results from a 4⇥4⇥4 grid with 2 groups and all reflecting boundary
conditions. The total number of unknowns is 256. There 4 equations in cell 0,
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Vacuum and source boundary conditions must be coupled over all equations as indicated by Eq. (87); thus
the size of the matrix will be augmented by N

b

⇥N

g

⇥N

m

unknowns where N

b

is the number of boundary
cells over all faces. The sparsity plot for a 4 ⇥ 4 ⇥ 4 grid with isotropic flux boundary conditions on each
face is shown in Fig. 4
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