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Abstract – The nonlinear diffusion acceleration (NDA) method is an efficient and flexible transport iter-
ative scheme for solving reactor-physics problems. This paper presents a fast iterative algorithm for
solving multigroup neutron transport eigenvalue problems in one-dimensional slab geometry. The pro-
posed method is defined by a multilevel system of equations that includes multigroup and effective one-
group low-order NDA equations. The eigenvalue is evaluated in an exact projected solution space of the
smallest dimensionality. Numerical results that illustrate the performance of the new algorithm are
demonstrated.

I. INTRODUCTION

One of the common iterative approaches for solving
the transport equation is the nonlinear diffusion acceler-
ation ~NDA! method.1,2 It is an efficient algorithm for
acceleration of within-group transport iterations for
reactor-physics calculations. The NDA method is a non-
linear projection-iteration method.3 The low-order NDA
~LONDA! equations are defined for the moments of the
transport solution and consist of ~a! the particle balance
equation and ~b! the first-moment equation in a form of
a generalized Fick’s law with a special consistency term.
The high-order and low-order equations of the method
are coupled by means of an exact closure.

Let us consider the one-speed k-eigenvalue trans-
port problem for one-dimensional slab geometry with
isotropic scattering:

Lc~x, m! �
1

2 �Ss~x! �
1

k
nf ~x!Sf~x!�

� �
�1

1

c~x, m' ! dm' , ~1!

�1 � m � 1, 0 � x � X

and

Lc [ m
]c

]x
� St c , ~2!

with the following boundary conditions:

c~0, m! � c~0,�m! for m � 0 ,

c~X, m! � 0 for m � 0 . ~3!

The NDA method can be formulated in a general differ-
ential form by means of the nonlinear system of equa-
tions given by

Lc �
1

2 �Ss �
1

k
nf Sf�f , ~4!

dJ

dx
� �St � Ss �

1

k
nf Sf�f � 0 , ~5!

J � �
1

3St

df

dx
� EDf , ~6!

and

J ~0! � 0 , J ~X ! � FX f~X ! , ~7!*E-mail: anistratov@ncsu.edu
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where

ED �
1

�
�1

1

c dm
��

�1

1

mc dm �
1

3St

d

dx
��

�1

1

c dm��
~8!

is the factor that defines a nonlinear closure of the high-
order transport equation ~4! and the LONDA equations
~5! and ~6! and where

FX �

�
�1

1

mc~X, m! dm

�
�1

1

c~X, m! dm

~9!

is the boundary factor that is used to formulate the
boundary conditions for the LONDA equations. Here,
f � *�1

1 c dm is the scalar flux and J � *�1
1 mc dm is

the current. A linearization of the LONDA equations
in the vicinity of the solution leads to equations that
have a form similar to one of the low-order equations
of the first-moment method.3,4 Thus, the first-moment
method can be considered as a linear version of the
NDA method.

The system of NDA equations ~4! through ~7! can be
solved by means of the following iteration process1,2:

Lc~s�102! �
1

2 �Ss �
1

k ~s!
nf Sf�f~s! , ~10!

f~s�102! ��
�1

1

c~s�102! dm , ~11!

J ~s�102! ��
�1

1

mc~s�102! dm , ~12!

ED ~s�102! �
1

f~s�102! �J ~s�102! �
1

3St

df~s�102!

dx � ,

~13!

FX
~s�102! �

J ~s�102! ~X !

f~s�102! ~X !
, ~14!

dJ ~s�1!

dx
� �St � Ss �

1

k ~s�1!
nf Sf�f~s�1! � 0 , ~15!

J ~s�1! � �
1

3St

df~s�1!

dx
� ED ~s�102!f~s�1! , ~16!

and

J ~s�1! ~0! � 0 , J ~s�1! ~X ! � FX
~s�102! f~s�1! ~X ! .

~17!

This algorithm can be interpreted as a fixed-point itera-
tion method.5 Another way to solve the NDA equations
is to apply the Jacobian-free Newton-Krylov method.6

Usually, the NDA method is formulated directly in a
discrete form.The NDAmethod can be applied to any trans-
port discretization scheme. The spatial grids for the trans-
port equation and LONDA equations ~5! and ~6! can be
different. For example, the LONDA problem can be ap-
plied to pin-cell regions, whereas the transport equation
itself is solved on a mesh that resolves the structure inside
pin cells.2,6 Then, the discrete balance equation ~5! in each
coarse spatial cell relates the particle net leakage rate across
the pin-cell boundary with absorption and fission produc-
tion rates in the given pin cell. The discrete first-moment
equation ~6! is formulated at pin-cell interfaces. It pro-
vides a relationship between the net leakage rate at these
interfaces and the average scalar fluxes in neighboring pin
cells. In this paper, the LONDA equations are considered
on grids that are used for the transport equation.

The multigroup transport k-eigenvalue problem is
given by

m
]

]x
cg~x, m! � St, g~x!cg~x, m!

�
1

2 (
g '�1

G

Ss, g 'rg~x!�
�1

1

cg ' ~x, m! dm

�
1

2k
xg~x! (

g '�1

G

nf, g ' ~x!Sf, g ' ~x!

� �
�1

1

cg ' ~x, m! dm , ~18!

�1 � m � 1, 0 � x � X, g � 1, . . . ,G

and

cg~0, m! � cg~0,�m! for m � 0 ,

cg~X, m! � 0 for m � 0 , ~19!

where standard notations are used. The NDA method can
be used directly to solve multigroup transport problems
by applying it to the transport equation in each group. It
is defined as follows:

m
]cg

]x
� St, g cg �

1

2 (
g '�1

G

Ss, g 'rg fg '

�
xg

2k (
g '�1

G

nf, g 'Sf, g 'fg ' , ~20!

dJg

dx
� St, g fg � (

g '�1

G

Ss, g 'rg fg '

�
xg

k (
g '�1

G

nf, g 'Sf, g 'fg ' , ~21!
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Jg � �
1

3St, g

dfg

dx
� EDg fg , ~22!

Jg~0! � 0 , Jg~X ! � FX, g fg~X ! , ~23!

EDg �
1

�
�1

1

cg dm

� ��
�1

1

mcg dm �
1

3St, g

d

dx
��

�1

1

cg dm�� ,

~24!

and

FX, g �

�
�1

1

mcg~X, m! dm

�
�1

1

cg~X, m! dm

. ~25!

In this case, the multigroup LONDA equations are sim-
ilar in form to the multigroup P1 equations. The method

of power iterations3 is used to solve the multigroup
LONDA equations ~21!, ~22!, and ~23!. The estimation
of the eigenvalue is obtained as a result of solving the
multigroup LONDA problem. In this paper, to accelerate
the convergence of multigroup transport iterations, it is
proposed to formulate a one-group ~grey! low-order trans-
port problem based on the LONDA equations.7,8

The remainder of this paper is organized as follows.
In Sec. II we present the two-level NDA ~TLNDA! method
in a discrete form for solving multigroup transport prob-
lems. In Sec. III we formulate the multilevel NDA
~MLNDA! method. We present the numerical results in
Sec. IV. We conclude with a summary in Sec V.

II. THE TLNDA METHOD

The NDA method for solving the multigroup trans-
port problems is defined by a high-order multigroup prob-
lem for the transport discretization scheme and a
multigroup problem for the LONDA equations. To dis-
cretize the transport equation, we use the step character-
istic method. The multigroup high-order transport problem
is given by

mm~cm, g, j�102 � cm, g, j�102 ! � St, g, j Dxj cm, g, j �
Dxj

2 � (
g '�1

G

Ss, g 'rg, j fg ', j �
xg, j

k (
g '�1

G

nf, g ', j Sf, g ', j fg ', j� , ~26!

cm, g, j � am, g, j cm, g, j�102 � ~1 � am, g, j !cm, g, j�102 , ~27!

am, g, j �
1

tm, g, j

�
1

etm, g, j � 1
, tm, g, j �

St, g, j Dxj

mm

, ~28!

j � 1, . . . , N, m � 1, . . . , M, g � 1, . . . ,G ,

cm, g,102 � cm ', g,102 , m : mm � 0 where mm ' � �mm , ~29!

and

cm, g, N�102 � 0 , m : mm � 0 , ~30!

where cg,m, j�102 and cg,m, j are the cell-edge and cell-average group angular fluxes, respectively,

Dxj � xj�102 � xj�102 , j � 1, . . . , N , Dx0 � DxN�1 � 0 . ~31!

Now, the NDA method is applied to the discretized multigroup transport equations ~26!, ~27!, and ~28!. Let us
introduce the group scalar flux and current calculated from the group angular flux by means of quadrature sums:

Efg, j � (
m�1

M

cm, g, j wm , j � 1, . . . , N , ~32!

Efg, 0 � (
m�1

M

cm, g,102 wm , Efg, N�1 � (
m�1

M

cm, g, N�102 wm , ~33!

and

DJg, j�102 � (
m�1

M

mm cm, g, j�102 wm , j � 1, . . . , N � 1 . ~34!
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These quantities are utilized to define the NDA consis-
tency term,

EDg, j�102 �

DJg, j�102 � Dg, j�102

~ Efg, j�1 � Efg, j !

Dxj�102

0.5~ Efg, j�1 � Efg, j !
, ~35!

where

Dxj�102 �
1

2
~Dxj � Dxj�1! , ~36!

Dg, j�102 �
1

3St, g, j�102

, ~37!

and

St, g, j�102 �
St, g, j Dxj � St, g, j�1 Dxj�1

Dxj � Dxj�1

, ~38!

and they define the boundary factor,

Fg, X �
DJg, N�102

Efg, N�1

, ~39!

that is used to formulate the low-order boundary condi-
tions. Note that in the case of anisotropic scattering, Dg

is defined by the group transport cross section. The re-
sulting multigroup LONDA equations have the follow-
ing form:

Jg, j�102 � Jg, j�102 � St, g, j Dxj fg, j

� Dxj (
g '�1

G

Ss, g 'rg, j fg ', j

� Dxj

xg, j

k (
g '�1

G

nf, g ', j Sf, g ', j fg ', j ,

~40!

j � 1, . . . , N ,

Jg, j�102 � �Dg, j�102

fg, j�1 � fg, j

Dxj�102

�
1

2
EDg, j�102~fg, j�1 � fg, j ! , ~41!

j � 0, . . . , N ,

and

Jg,102 � 0 , Jg, N�102 � Fg, X fg, N�1 , ~42!

where fg,0 and fg,N�1 are the group scalar fluxes at the
boundaries and fg, j ~ j � 1, . . . , N ! are the cell-average
scalar fluxes.

On each transport iteration, Eqs. ~40!, ~41!, and ~42!
are solved by the power iteration method with the cur-
rent estimates of the consistency term ~35! and boundary
factor ~39! to evaluate the multiplication factor and as-
sociated multigroup eigenfunction. Hereafter, we refer
to the method described above as the TLNDA method.
The iteration scheme of the TLNDA method is presented
in Algorithm 1 in the form of a pseudo code:

The version of the TLNDA method in which iterations at
level 2, namely, the multigroup low-order iterations, are
interrupted if they exceed a given number i is referred to
as TLNDA~i !. The TLNDA~i ! method is presented in
Algorithm 2:

Algorithm 2: Iteration scheme of the TLNDA~i ! method

s � 0
. . .
• Level 1: Transport iterations

1 if 7f~s! � f~s�1! 7` � ~~10rf,1! � 1!«1
or 6k ~s! � k ~s�1! 6 � ~~10rk,1! � 1!«1 then

s � s � 1
l � 0
• Level 2: Multigroup low-order iterations

Algorithm 1: Iteration scheme of the TLNDA method

s � 0
• Initialization
Set EDg

~102! � 0 and Fg, X
~102! � 0.5

Define fg
~0! and k ~0!

• Level 1: Transport iterations
1 if 7f~s! � f~s�1! 7` � ~~10rf,1! � 1!«1 or
6k ~s! � k ~s�1! 6 � ~~10rk,1! � 1!«1 then

s � s � 1
l � 0
• Level 2: Multigroup low-order iterations

2 if 7f~s, l ! � f~s, l�1! 7` � ~~10rf,2 ! � 1!«2
or 6k ~s, l ! � k ~s, l�1! 6 � ~~10rk,2 ! � 1!«2 then

l � l � 1
for g � 1 to G do

Solve the multigroup LONDAequations ~40!,
~41!, and ~42! to calculate fg

~s, l !

end
Calculate k ~s, l ! � k ~s, l�1! 7nf Sf f~s, l ! 70
7nf Sf f~s, l�1! 7

end
fg

~s! � fg
~s, l ! and k ~s! � k ~s, l !

• Transport sweep
for g �1 to G do

Solve the transport equation ~26! to calculate
cg

~s�102!

end
for g �1 to G do

Calculate EDg
~s�102! and Fg, X

~s�102!

end
end
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We note that there exists another family of two-level
methods for solving transport problems, which is based
on a LONDA problem applied on coarse spatial grids
and involves elements of homogenization.2

III. THE MLNDA METHOD

We now formulate a new algorithm that is based on
the idea of the NDA method and employs effective one-
group ~grey! LONDA equations for the total scalar flux
f and current J to accelerate multigroup low-order iter-
ations as well as transport iterations. To couple these
LONDA equations with equations of higher dimension-
ality, namely,

1. the multigroup LONDA equations for the group
scalar flux and currents

2. the multigroup equations for the group angular
flux,

and to close exactly the complete system of equations,
the right sides of these multigroup equations are written
in terms of the total scalar flux. The high-order multi-
group transport equation for the group angular flux has
the following form:

mm~cm, g, j�102 � cm, g, j�102 ! � St, j Dxj cm, g, j

�
Dxj

2 � OSs, g, j �
xg, j

k
Tnf, j OSf, j�fj ~43!

and

cm, g, j � am, g, j cm, g, j�102 � ~1 � am, g, j !cm, g, j�102 ,

~44!

where the average cross sections are given by

OSs, g, j �

(
g '�1

G

Ss, g 'rg, j fg ', j

(
g '�1

G

fg ', j

, ~45!

OSf, j �

(
g '�1

G

Sf, g ', j fg ', j

(
g '�1

G

fg ', j

, ~46!

and

Tnf, j �

(
g '�1

G

nf, g ', j Sf, g ', j fg ', j

(
g '�1

G

Sf, g ', j fg ', j

. ~47!

The multigroup LONDA equations for fg and Jg are de-
fined as

Jg, j�102 � Jg, j�102 � ~St, g, j � Ss, grg, j !Dxj fg, j

� Dxj (
g '�1

g�1

Ss, g 'rg, j fg ', j

� Dxj�Bup, g, j �
xg, j

k
Tnf, j OSf, j�fj , ~48!

j � 1, . . . , N ,

Jg, j�102 � �Dg, j�102

fg, j�1 � fg, j

Dxj�102

�
1

2
EDg, j�102~fg, j�1 � fg, j ! , ~49!

j � 0, . . . , N ,

and

Jg,102 � 0 , Jg, N�102 � Fg, X fg, N�1 , ~50!

where

Bup, g, j �

(
g '�g�1

G

Ss, g 'rg, j fg ', j

(
g '�1

G

fg ', j

~51!

is the factor that forms the group upscattering term. To
derive the effective one-group LONDA equations, we
sum Eqs. ~40!, ~41!, and ~42! over groups and obtain

Jj�102 � Jj�102 � Dxj (
g�1

G

~St, g, j � Ss, g, j !fg, j

�
Dxj

k (
g�1

G

nf, g, j Sf, g, j fg, j , ~52!

Jg, j�102 � �
1

Dxj�102

� � (
g�1

G

Dg, j�102
� fg, j�1 � (

g�1

G

Dg, j�102
� fg, j� ,

~53!

2 if l � i and $7f~s, l ! � f~s, l�1! 7` �
~~10rf,2 ! � 1!«2 or 6k ~s, l ! � k ~s, l�1! 6 �
~~10rk,2 ! � 1!«2 %

then
l � l � 1
. . .

end
fg

~s! � fg
~s, l ! and k ~s! � k ~s, l !

. . .
end
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and

J102 � 0 , JN�102 � (
g�1

G

Fg, X fg, N�1 , ~54!

where

Dg, j�102
6 � Dg, j�102 7

1

2
EDg, j�102 Dxj�102 . ~55!

Equation ~52! leads to the effective one-group balance
equation:

Jj�102 � Jj�102 � OSa, j Dxj fj �
1

k
Tnf, j OSf, j Dxj fj ,

j � 1, . . . , N , ~56!

where

OSa, j �
(
g�1

G

Sa, g, j fg, j

(
g�1

G

fg, j

. ~57!

The resulting discrete one-group first-moment NDA equa-
tion is defined by

Jj�102 � �
1

Dxj�102

~ PDj�102
� fj�1 � PDj�102

� fj ! , ~58!

where we introduce the group-averaged factors

PDj�102
� �

(
g�1

G

Dg, j�102
� fg, j�1

(
g�1

G

fg, j�1

~59!

and

PDj�102
� �

(
g�1

G

Dg, j�102
� fg, j

(
g�1

G

fg, j

. ~60!

Equations ~54! give rise to the following boundary con-
ditions for the LONDA equations ~56! and ~58!:

J102 � 0 , JN�102 � FX fN�1 , ~61!

where

FX �

(
g�1

G

Fg, X fg, N�1

(
g�1

G

fg, N�1

. ~62!

Thus, the effective one-group LONDA problem is de-
fined by Eqs. ~56!, ~58!, and ~61!. The MLNDA method is
based on Eqs. ~43!, ~44!, ~48!, ~49!, ~50!, ~56!, ~58!, and
~61!. The iterative scheme for solving the system of equa-
tions of the MLNDA method is shown in Algorithm 3:

We also consider a modification of the MLNDA method
in which the number of iterations at level 2 is not allowed

Algorithm 3: Iteration scheme of the MLNDA method

s � 0
• Initialization
Set EDg

~102! � 0 and Fg, X
~102! � 0.5

Define fg
~0! and k ~0!

• Level 1: Transport iterations
1 if 7f~s! � f~s�1! 7`� ~~10rf,1! �1!«1

or 6k ~s! � k ~s�1! 6� ~~10rk,1! �1!«1 then
s � s �1
l � 0
• Level 2: Multigroup low-order iterations

2 if 7f~s, l ! � f~s, l�1! 7`� ~~10rf,2 ! �1!«2
or 6k ~s, l ! � k ~s, l�1! 6� ~~10rk,2 ! �1!«2 then

l � l �1
for g �1 to G do

Calculate Bup, g
~s, l�1!

end
for g �1 to G do

Solve the multigroup LONDAequations ~48!,
~49!, and ~50! to calculate fg

~s, l !

end
for g �1 to G do

Calculate OSa
~s, l ! , OSf

~s, l ! , Tnf
~s, l ! , PD6~s�102, l ! ,

FX
~s�102, l !

end
n � 0
• Level 3: Newton’s iterations

3 if 7f~s, l, n! � f~s, l, n�1! 7`� «3
or 6k ~s, l, n! � k ~s, l, n�1! 6� «3 then

n � n �1
Solve the one-group LONDAequations ~56!,
~58!, and ~61! to calculate k ~s, l, n! and f~s, l, n!

end
f~s, l ! � f~s, l, n! and k ~s, l ! � k ~s, l, n!

end
fg

~s! � fg
~s, l ! , f~s! � f~s, l ! and k ~s! � k ~s, l !

OSf
~s! � OSf

~s, l ! , Tnf
~s! � Tnf

~s, l !

Calculate OSs, g
~s!

• Transport sweep
for g �1 to G do

Solve the transport equation ~43! to calculate
cg

~s�102!

end
for g �1 to G do

Calculate EDg
~s�102! and Fg, X

~s�102!

end
end
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to exceed a given value i . We refer to this method as
MLNDA~i !. The iteration scheme for the MLNDA~i !
method is presented in Algorithm 4:

In the proposed method, the eigenvalue estimate is
calculated as a solution of the one-group LONDA equa-
tions ~56!, ~58!, and ~61!, and hence, it is evaluated in
the subspace of the lowest dimensionality. Note that this
is the exact projected solution subspace, because all clo-
sure relations defined to derive the equations of the
MLNDA method are exact. The one-group NDA prob-
lem is treated as the generalized eigenvalue problem in
which the vector of unknowns ?u is formed by the grid
function of the total scalar flux :f and eigenvalue.9 This
leads to the system of nonlinear equations defined by

F~ ?u! � 0 , ?u � ~ :f, l! , l �
1

k
~63!

and

F~ ?u! � �
L ?u � lP ?u

B ?u
N ?u � 1

� , ~64!

where L, P, and B are the loss, production, and bound-
ary condition operators of the effective one-group
LONDA equations and N is a normalization operator.
The Newton’s method is applied to solve the general-

ized eigenvalue problem ~63!. Thus, the one-group
LONDA equations are solved by means of the follow-
ing iteration process:

J~ ?u ~n�1! !d ?u ~n�1! � �F~ ?u ~n�1! ! ,

?u ~n�1! � ~ :f~n�1!, l~n�1! ! ~65!

and

?u ~n! � ?u ~n�1! � d ?u ~n�1! , ~66!

where J is the Jacobian of F.
The effective one-group LONDA problem ~56!, ~58!,

and ~61! can also be directly coupled to the multigroup
high-order transport problem ~43! and ~44! to accelerate
the transport iterations. This leads to another two-level
iteration method. We refer to this method as the grey
NDA ~GNDA! method. The iterative scheme of the GNDA
method is shown in Algorithm 5:

IV. NUMERICAL RESULTS

To demonstrate the performance of the proposed
multilevel iterative algorithms, we consider a test

Algorithm 4: Iteration scheme of the MLNDA~i ! method

s � 0
. . .
• Level 1: Transport iterations

1 if 7f~s! � f~s�1! 7` � ~~10rf,1! � 1!«1
or 6k ~s! � k ~s�1! 6 � ~~10rk,1! � 1!«1 then

s � s � 1
l � 0
• Level 2: Multigroup low-order iterations

2 if l � i and $7f~s, l ! � f~s, l�1! 7` �
~~10rf,2 ! � 1!«2 or 6k ~s, l ! � k ~s, l�1! 6 �
~~10rk,2 ! � 1!«2 %

then
l � l � 1
. . .
n � 0
• Level 3: Newton’s iterations

3 if 7f~s, l, n! � f~s, l, n�1! 7` � «3
or 6k ~s, l, n! � k ~s, l, n�1! 6 � «3 then

n � n � 1
. . .
f~s, l ! � f~s, l, n! and k ~s, l ! � k ~s, l, n!

end
fg

~s! � fg
~s, l ! , f~s! � f~s, l ! and k ~s! � k ~s, l !

. . .
end

end

Algorithm 5: Iteration scheme of the GNDA method

s � 0
• Initialization
Set EDg

~102! � 0 and Fg, X
~102! � 0.5

Define fg
~102! , Jg

~102! and k ~0!

• Level 1: Transport iterations
1 if 7f~s! � f~s�1! 7` � ~~10rf,1! � 1!«1

or 6k ~s! � k ~s�1! 6 � ~~10rk,1! � 1!«1 then
s � s � 1
for g � 1 to G do

Calculate OSs, g
~s�102! , OSa

~s�102! , OSf
~s�102! , Tnf

~s�102! ,
PD6~s�102! , FX

~s�102! using fg
~s�102! and

Jg
~s�102!

end
n � 0
• Level 2: Newton’s iterations

2 if 7f~s, n! � f~s, n�1! 7` � «3
or 6k ~s, n! � k ~s, n�1! 6 � «3 then

n � n � 1
Solve the one-group LONDA equations ~56!,
~58!, and ~61! to calculate k ~s, n! and f~s, n!

end
f~s! � f~s, n! and k ~s! � k ~s, n!

• Transport sweep
for g � 1 to G do

Solve the transport equation ~43! to calculate
cg

~s�102!

end
for g � 1 to G do

Calculate fg
~s�102! , Jg

~s�102! , EDg
~s�102! and

Fg, X
~s�102!

end
end
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consisting of three regions of equal size ~0 � x � 3H !
~Ref. 8!. This is a one-dimensional version of the seven-
group C5G7 benchmark.10 The left region is a mixed
oxide assembly. The middle region is a UO2 assembly.
The right region is a reflector. The left boundary is re-
flective. The right boundary is vacuum. The assembly
width H is 21.42 cm. There are 17 pin cells in an assem-
bly. The spatial and angular meshes are uniform with
Dx � 0.09 cm and Dm � 0.2, respectively. We use the
following convergence criteria3,11 for level 1:

7f~s! � f~s�1! 7` � � 1

rf,1
~s!

� 1�«1

and

6k ~s! � k ~s�1! 6 � � 1

rk,1
~s!

� 1�«1 , ~67!

where

rf,1
~s! �

7f~s! � f~s�1! 7`
7f~s�1! � f~s�2! 7`

and

rk,1
~s! �

6k ~s! � k ~s�1! 6

6k ~s�1! � k ~s�2! 6
~68!

are estimates of the spectral radius of the transport iter-
ations by means of data available at the s’th iteration.
The criteria for level 2 are similar to those at level 1:

7f~s, l ! � f~s, l�1! 7` � � 1

rf, 2
~s, l !

� 1�«2

and

6k ~s, l ! � k ~s, l�1! 6 � � 1

rk, 2
~s, l !

� 1�«2 , ~69!

where rf, 2
~s, l ! and rk, 2

~s, l ! are estimates of the spectral radius
of iterations at level 2 at a particular transport iteration:

rf, 2
~s, l ! �

7f~s, l ! � f~s, l�1! 7`
7f~s, l�1! � f~s, l�2! 7`

and

rk, 2
~s, l ! �

6k ~s, l ! � k ~s, l�1! 6

6k ~s, l�1! � k ~s, l�2! 6
. ~70!

The convergence criterion for the Newton’s itera-
tions at level 3 is defined as

7 ?u ~n! � ?u ~n�1! 7` � «3 . ~71!

The parameters for convergence criteria at various levels
of iterations are «1 �10�8, «2 �10�9, and «3 �10�5. The
eigenfunction is normalized such that the average value
of the total scalar flux in the given spatial domain is
equal to 1. The initial guess is defined by fg

~0! � const
and k ~0! � 1.

The total numbers of iterations for the TLNDA,
MLNDA, and GNDA methods at each level are listed in
Table I. The GNDA method converges slowly. The rea-
son is that it does not use the multigroup NDA problem.
The numbers of transport iterations for the TLNDA and
MLNDA methods are equal to each other. They con-
verge in ten iterations. Both methods have the same
convergence histories. In Figs. 1 and 2 we plot the con-
vergence histories in terms of differences of eigen-
values and eigenfunctions on successive transport
~level 1! iterations. The `-norm is used to compare
estimates of eigenfunctions. The results presented in

TABLE I

Total Number of Iterations

Level

1 2 3

Iterations
~Index!

Transport
Iterations,

s

Multigroup
Low-Order
Iterations,

l

Newton’s
Iterations,

n

TLNDA 10 373 —
MLNDA 10 85 116
GNDA 89 — 171

Fig. 1. Convergence histories of the eigenvalue versus the
number of the transport iteration.
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Table I show that the MLNDA method reduces the total
number of the multigroup low-order iterations by a fac-
tor of ;4.4 in comparison with the TLNDA method.
Thus, the effective one-group LONDA problem in the
MLNDA method accelerates the multigroup low-order
iterations. Note that the MLNDA method has certain
additional computational costs associated with solving
the effective one-group low-order problem. However,
the amount of iterations at level 3 will not change with
increase in number of groups in a problem.

Tables II and III show the number of multigroup
low-order iterations on each transport iteration. The num-
ber of these iterations gradually decreases for both meth-
ods. On the first iteration ~s � 1!, the TLNDA method

executed 73 multigroup low-order iterations, whereas the
MLNDA method had just 17 iterations of that kind. Fig-
ures 3 and 4 present the iteration history of differences
in estimations of eigenvalue and eigenfunction on the
first transport iteration. Note that for s � 1, EDg

102 � 0
~see Algorithm 3!. Thus, in this case the multigroup
LONDA equations are equivalent to the multigroup dif-
fusion equation. The presented details for s � 1 demon-
strate the efficiency of the effective one-group NDA
equations in solving the eigenvalue problem of the multi-
group diffusion equation. It reduces the number of multi-
group low-order iterations by a factor of 4.3. Iteration
histories for two various transport iterations ~s � 2 and
4! for both methods are presented in Figs. 5 through 8,

Fig. 2. Convergence histories of the eigenfunction in the
`-norm versus the number of the transport iteration.

TABLE II

Number of Inner Iterations for the TLNDA Method

Transport iteration, s 1 2 3 4 5 6 7 8 9 10
Number of multigroup

low-order iterations, l
73 62 56 47 40 32 25 19 12 7

TABLE III

Number of Nested Iterations for the MLNDA Method

Transport iteration, s 1 2 3 4 5 6 7 8 9 10
Number of multigroup

low-order iterations, l
17 14 13 11 9 7 6 3 3 2

Number of Newton’s
iterations, n

29 22 18 14 11 8 6 3 3 2

Fig. 3. 6k ~s, l ! � k ~s, l�1! 6 for s � 1 versus the number of
the multigroup low-order iteration l.
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Fig. 4. 7f~s, l ! � f~s, l�1! 7` for s � 1 versus the number
of the multigroup low-order iteration l.

Fig. 5. 6k ~s, l ! � k ~s, l�1! 6 for s � 2 versus the number of
the multigroup low-order iteration l.

Fig. 6. 7f~s, l ! � f~s, l�1! 7` for s � 2 versus the number
of the multigroup low-order iteration l.

Fig. 7. 6k ~s, l ! � k ~s, l�1! 6 for s � 4 versus the number of
the multigroup low-order iteration l.

Fig. 8. 7f~s, l ! � f~s, l�1! 7` for s � 4 versus the number
of the multigroup low-order iteration l.

Fig. 9. rk, 2
~s, l ! and rf, 2

~s, l ! for the TLNDA method at s � 1
versus the number of the multigroup low-order iteration l.
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which show differences in convergence behavior of the
MLNDA and TLNDA methods at level 2. Note that the
TLNDA method employs a linear method of power iter-
ations for solving the multigroup NDA equations. In the
MLNDA method the iteration process at this level is a
nonlinear one. Figures 9 through 12 present rk, 2

~s, l ! and
rf, 2

~s, l ! during iterations at level 2 for s � 1 and 4. These
data enable one to estimate approximately the spectral
radii of the multigroup low-order iterations. The analysis
of convergence at all transport iterations shows that in

the given test the spectral radius of the multigroup low-
order iterations of the TLNDA method is approximately
0.75. The spectral radius of the MLNDA method is ap-
proximately 0.27.

We now present the results obtained with the TLN-
DA~i ! and MLNDA~i ! methods. On each transport iter-
ation, the number of the multigroup low-order iterations
is not allowed to be larger than a given value i . The
number of iterations for the TLNDA~i ! method is listed
in Table IV. The convergence histories of transport iter-
ations are presented in Figs. 13 and 14. We notice that in
the case where i � 6, the obtained numbers of transport
iterations are greater than those of the TLNDA method.
If i � 7, then the amount of transport iterations is the
same as in the case where the multigroup low-order iter-
ations are converged at each transport iteration. The total

Fig. 10. rk, 2
~s, l ! and rf, 2

~s, l ! for the MLNDA method at s � 1
versus the number of the multigroup low-order iteration l.

Fig. 11. rk, 2
~s, l ! and rf, 2

~s, l ! for the TLNDA method at s � 4
versus the number of the multigroup low-order iteration l.

Fig. 12. rk, 2
~s, l ! and rf, 2

~s, l ! for the MLNDA method at s � 4
versus the number of the multigroup low-order iteration l.

TABLE IV

Total Number of Iterations for the TLNDA~i ! Method

Iterations
~Index!

Transport
Iterations,

s

Multigroup
Low-Order
Iterations,

l

TLNDA~1! 66 66
TLNDA~2! 33 66
TLNDA~3! 22 66
TLNDA~4! 17 68
TLNDA~5! 14 70
TLNDA~6! 11 66
TLNDA~7! 10 70
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number of multigroup low-order iterations of the
TLNDA~7! method is less by a factor of 5.3 compared to
the TLNDA method. The results for the MLNDA~i !
method are shown in Table V. Figures 15 and 16 demon-

strate the convergence histories. This method needs to
execute a maximum of two multigroup iterations to match
the number of transport iterations of the MLNDA method.
Moreover, the MLNDA~2! method reduces the number
of multigroup low-order iterations at the same time by a
factor of 3.5.

V. CONCLUSIONS

New computational methods for solving the multi-
group transport equation have been developed. They are
multilevel iterative algorithms based on the NDA method.

Fig. 13. Convergence histories of the eigenvalue versus
the number of the transport iteration for the TLNDA~i ! method.

Fig. 14. 7f~s! � f~s�1! 7` versus the number of the trans-
port iteration for the TLNDA~i ! method.

TABLE V

Total Number of Iterations for the MLNDA~i ! Method

Iterations
~Index!

Transport
Iterations,

s

Multigroup
Low-Order
Iterations,

l

Newton’s
Iterations,

n

MLNDA~1! 14 14 27
MLNDA~2! 10 20 37

Fig. 15. Convergence histories of the eigenvalue versus
the number of the transport iteration for the MLNDA~i ! method.

Fig. 16. 7f~s! � f~s�1! 7` versus the number of the trans-
port iteration for the MLNDA~i ! method.
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A key element of the new methods is the effective one-
group LONDAproblem. It is an equivalent transport eigen-
value problem in an exact solution subspace. On each
transport iteration, this problem is used to estimate the
eigenvalue. The one-group NDA eigenvalue problem is
treated as a generalized eigenvalue problem. The New-
ton’s method is applied to solve it. The spatial discret-
ization of the one-group LONDA equations is consistent
with the discretization of the multigroup LONDA equa-
tions. The numerical results demonstrated that the
effective one-group problem accelerates multigroup low-
order iterations that involve solution of the multigroup
NDA equations. The proposed method can be used to
solve various types of eigenvalue problems for the neu-
tron transport equation as well as multidimensional prob-
lems. It can also be applied to the multigroup NDA
equations on a spatial grid different from the one used
for the multigroup transport equation to develop a multi-
level coarse-mesh transport acceleration.
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