
ABSTRACT

TAMANG, APIL. A Multilevel Method for Solving Neutron Kinetics Equations Coupled with
the Heat Transfer Equation. (Under the direction of Dmitriy Anistratov.)

A basic model for transient reactor analysis can be based on the solution of the neutron

transport and heat transfer problems in the reactor core. The solution of the neutron transport

equation gives the detailed distribution of neutrons in phase space. The solution of the heat

transfer equation gives the temperature distribution in the reactor. The heat transfer equation

is coupled to the neutron transport equation through an energy deposition source term. This

term depends on the neutron angular flux distribution. The neutron transport problem, in the

meantime, is dependent on spatial parameters that are functions of the spatial temperature

distribution. As a result, we have a nonlinearly coupled system of equations that can be numer-

ically challenging to solve. In this work, nonlinearly coupled models described by the neutron

transport and heat transfer equations are solved using an approach based on the quasidiffusion

(QD) method.

The main idea in this work is based on using equivalent low-order equations of the neutron

transport problem to do the majority of the computational work in terms of solving coupled

physics problems. The high-order (neutron transport) equation is solved to provide factors that

are required to define the low-order equations. These equations have much smaller dimension-

ality than the high-order equation they were derived from. While the latter is defined for seven

independent variables, the low-order equation based on the grey low-order quasidiffusion prob-

lem is defined only for functions of the spatial and time variables. This makes it computationally

much easier to solve. One can thus, take advantage of using the low-order equation to search

for the solutions to the coupled systems.

In this work, a multilevel scheme is developed to solve basic time-dependent reactor physics

problems in 1-D slab geometry. This scheme is based on a coupled system of the transport,

the multigroup low-order and the effective one-group (grey) low-order quasidiffusion problems.

The heat transfer problem is coupled to the grey low-order QD problem. Numerical results that

demonstrate performance of this multilevel scheme are presented. A method based on classical

nonlinear fixed-point iterations for solving the transport and heat transfer equations is also

used to solve the same set of problems. Comparative analysis are presented to demonstrate the

efficiency provided by the multilevel scheme developed for this research.
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Chapter 1

Introduction

A nuclear reactor core is a sophisticated multiphysics system governed by complex thermo-

mechanical processes within the materials present in the core. To perform a successful design

and accurate evaluation of reactor core parameters in operating conditions, it is necessary

to predict neutron densities in space and the energy spectrum with high fidelity inside the

reactor core at each moment of the core operation. The distribution of these neutron densities

is dependent on the material properties of the core, which in turn are dependent on the spatial

distribution of the temperature in the core. Reversely, the spatial distribution of temperature

at any instant of time is strongly dependent on the distribution of the neutron densities in

space and in energy at that moment. As a result we have a system where the two parameters

influence each other in quite complex ways. The goal of this project is to develop an efficient

numerical method for the solution of these kinds of problems. A multilevel method is developed

to solve the time-dependent neutron transport problems accounting for the effects from delayed

neutrons and thermal feedback. This multilevel method is based on low-order forms of the

neutron transport equation.

1.1 Brief Overview of the Methodology

The low-order form of the transport equation mentioned above is based on the quasidiffu-

sion (QD) low-order equations introduced by Goldin in 1964 [1]. The QD method consists of

multigroup low-order QD equations that are obtained by taking the zeroth and first moments

of the multigroup transport equation. These equations are further averaged over the energy

groups to obtain a low-order one-group problem. The solution to this one-group problem is the

one-group scalar flux distribution. This problem is hereby referred to as the Grey Low-Order

quasidiffusion (GLOQD) problem. In this research, the GLOQD equations are used to couple

the thermal problem to the transport problem. The motivation for doing this is based on the

1
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fact that the thermal response of the system at each spatial point is coupled to the neutron

transport problem through an energy deposition term which dependes on the integral of the

angular flux over the energy and angular variables. By using the GLOQD equations to couple to

the heat transfer equation, the coupling of two physical processes happens in a low-dimensional

space. Additionally, the low-order QD equations capture all necessary transport effects without

any approximations.

The core idea in this research is to use the groups-collapsed equation to find the correspond-

ing update of the scalar flux based on the given temperature [2, 3, 4, 5]. In doing that, much

of the computational load of finding the updated neutron and thermal response is transferred

to the grey problem instead of the high-order problem. The same idea is used in [6] to evaluate

k-eigenvalues of 1-D reactor models. In this work, the efforts of calculating the multiplication

factor is spent at the grey low-order level while the high-order transport and the multigroup

QD equations are solved only to provide better approximating factors and spectrum for the

grey problem. The approach in both these works is based on an efficient hierarchical multilevel

scheme. Next, we note some important milestones in the development of efficient computational

methods for the neutron transport problems.

1.2 Literature Review

The neutron transport problem is at the heart of mathematical modelling for each type of

nuclear reactor core. Numerical algorithms for the neutron transport problem are based on

stochastic (Monte Carlo) or deterministic methods for finding the solution. Stochastic methods

involve individual particle tracking based on probabilities of physical events such as scattering,

absorption, fission etc [7, 8]. Solutions of interests are evaluated as statistical averages of these

events. Deterministic algorithms employ the algebraic solution of the transport equation in

phase space. In any but the most simplest cases, analytic solutions for the continuous trans-

port equation do not exist or are extremely difficult to find. As a result, discretization of the

equation on spatial, angular, energy and time mesh is performed. This results in a system of

algebraic equations that is solved through iterative or direct methods. Standard problems of

reactor analysis result in large linear systems which are not amenable to direct inversion. Hence,

iterative methods must be used. The quality of the iterative method is judged by how rapidly

it converges.

The most widely used method for solving the discretized form of the transport equation

is the source iteration (SI) scheme [7]. This method is based a form of Von Neumann’s series

solution [9]. It derives its name from the fact that the solution is derived through iterations on

the scattering source. To see this, consider the time independent one-group transport equation

in a nonmultiplying media. The equation has the form:

2

CASL-U-2014-0096-000



[
~Ω · ~∇+ σt(~r)

]
ψ(~r, ~Ω) =

∫
dΩ′σs(~r, ~Ω

′ · ~Ω)ψ(~r, ~Ω′) + qext(~r, ~Ω). (1.1)

The terms,
[
~Ω · ~∇+ σt(~r)

]
account for the loss in the neutron population through streaming

and via neutron-material interactions. The terms in the right represent source in the form of

scattering and external sources, respectively. In operator notation, this transport equation can

be written as:

Lψ = Sψ + q, (1.2)

where,

Lψ ≡ ~Ω · ~∇ψ + σt(~r)ψ, (1.3)

and

Sψ ≡
∫
dΩ′σs(~r, ~Ω

′ · ~Ω)ψ(~r, ~Ω′), q ≡ qext(~r, ~Ω) (1.4)

denote the loss and scattering operators respectively. q refers to any external sources in the

medium. Mathematically, the SI scheme is expressed as follows:

Lψ(l+1) = Sψ(l) + q , l ≥ 0. (1.5)

The SI scheme has a clear physical interpretation. If we start off with a zero initial flux distribu-

tion, i.e. ψ(0) = 0, then the (l+1)th iterate term, i.e. ψ(l+1) describes all the neutrons that made

fewer than l + 1 collisions since they were emitted by the source. Hence, when the scattering

process is significant in the domain, higher numbers of source iterations are required for the

solution to converge using source iterations. The solution of a large class of practical problems

often results in prohibitively slow convergent source iterations. Hence, an efficient acceleration

scheme must be used to solve transport problems. Acceleration methods can be placed into two

broad categories: 1) linear (or synthetic) methods and 2) nonlinear methods.

1.2.1 Linear (Synthetic) Acceleration Methods

In 1963, Kopp [10] published the first work on synthetic acceleration. The main idea behind

the synthetic acceleration scheme is the use of a low-order operator to correct for the angular

flux before the next SI iteration is performed. Define ψ(l+1/2) as the result of a single source

iteration. Then,

Lψ(l+1/2) = Sψ(l) + q, l ≥ 0. (1.6)

The goal is for ψ(l+1) to be closer to ψ than is ψ(l+1/2). To accomplish this by the synthetic

method, subtract Eq. (1.6) from Eq. (1.2) to get

3
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L(ψ − ψ(l+1/2)) = S(ψ − ψ(l)) = S(ψ − ψ(l+1/2)) + S(ψ(l+1/2) − ψ(l)). (1.7)

This yields the following exact equation for the iterative error : ψ − ψ(l+1/2),

(L− S)
(
ψ − ψ(l+1/2)

)
= S

(
ψ(l+1/2) − ψ(l)

)
, (1.8)

which implies

ψ = ψ(l+1/2) + (L− S)−1S
(
ψ(l+1/2) − ψ(l)

)
. (1.9)

Eq. (1.9) expresses the solution (ψ) in terms of the previous iterate, ψ(l+1/2) and the correction,

∆ψ(l) = ψ(l+1/2) − ψ(l). The idea of synthetic acceleration [10] is to replace the operator (L −
S)−1 in Eq. (1.9) by an operator that is an approximation. It is desired that this operator be

computationally less expensive to evaluate than (L−S)−1. Let M be the approximate operator

used in place of (L− S)−1. Then Eq. (1.9) becomes:

ψ(l+1) = ψ(l+1/2) +MS∆ψ(l). (1.10)

The SI scheme Eq. (1.5) presented above is equivalent to the Richardson Iteration scheme for

solving linear systems [11, 12, 13]. The usage of linear acceleration methods is analogous to

the preconditioned Richardson’s iteration [14, 15, 11]. Different choices in M yield different

synthetic schemes of acceleration. In his work, Kopp used the diffusion equation as the low-

order operator. However, this approach led to divergent behaviors when coarse meshes were

used [16, 17, 18, 19]. In 1976, Alcouffe proposed a synthetic method based on the discrete

diffusion approximation [20, 21] and it was called the Diffusion Synthetic Acceleration (DSA).

It consisted of the discrete diffusion operator which was consistently derived from the high-

order diamond-differenced SN transport operator. It exhibited rapid convergence for all spatial

mesh thicknesses, and spawned much theoretical and experimental work in the following years.

Overview of succeeding work is summarized in [14].

Eq. (1.5) can also be recasted in the canonical form as represented by Eq. (1.11). This sets

the stage for the application of Krylov based subspace methods for particle transport problems.

(
I − L−1S

)
ψ = L−1q, (1.11)

which can be seen from the linear algebra viewpoint as equivalent to the problem,

Ãψ = b. (1.12)

Eq. (1.12) is amenable to solution by Krylov methods from linear algebra. Their benefits are
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multifold and their presence become increasingly significant [22, 23, 24]. Among others, the

benefit is in that much of the analysis and tools developed from theoretical linear algebra become

directly applicable. Additionally, it is observed that Kyrlov based methods show much improved

efficiency by even the usage of simple preconditioners [12]. Next, we present the development

of nonlinear acceleration methods for the transport problem upon which the methodology in

this research is based on.

1.2.2 Nonlinear Acceleration Methods

Like linear acceleration methods, nonlinear acceleration schemes for the transport problem also

utilize a two-step approach. The first step involves the evaluation of the high-order (transport)

problem. The second step involves the evaluation of the low-order transport model. The low-

order models are closed with the help of nonlinear factors that depend weakly on the solutions of

the transport problem. The form of the nonlinear closures adopted makes each method unique.

Nonlinear acceleration methods also result in rapid convergence of the high-order problem,

and they have the distinct advantage of not requiring to be consitently discretized with the

high-order problem for stability [25, 26].

The quasidiffusion (QD) method was proposed by Gol’din in 1964 [1]. This method involves

the solution of low-order diffusion like equations which are obtained by taking angular moments

of the original transport problem. The coefficients of the Low-Order Quasidiffusion (LOQD)

equations are nonlinear QD factors that depend weakly on the transport solution. If the QD

factors are exact, then the solution of the LOQD exactly reproduces the transport scalar flux

and current. The QD factor is equal to one-third if the angular flux is a linearly anisotropic

function. In this case, LOQD equations reduce to the diffusion equation. The iterative process

for QD method is illustrated using a simple example in 1-D slab geometry.

• Perform a transport sweep:

Lψ(l+1/2) =
σs
2
φ(l) +

q

2
, L ≡ µ ∂

∂x
+ σt. (1.13)

• Evaluate the QD factors:

E(l+1/2)(x) =

1∫
−1

µ2ψ(l+1/2)(x, µ)dµ

1∫
−1

ψ(l+1/2)(x, µ)dµ

. (1.14)

• Solve the LOQD problem:
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dJ (l+1)

dx
+ (σt − σs)φ(l+1) = q, (1.15)

d
(
E(l+1/2)φ(l+1)

)

dx
+ σtJ

(l+1) = 0, (1.16)

where φ(x) =
1∫
−1

ψ(x, µ)dµ and J(x) =
1∫
−1

µψ(x, µ)dµ are the scalar flux and current, respec-

tively. The scalar flux obtained from the low-order quasidiffusion problem is then used to find

the new estimate of ψ from Eq. (1.13).

The QD method is a member of a broader class of methods called the nonlinear projective-

iteration (NPI) methods [25]. They are also known as projected discrete ordinates (PDO)

methods [27]. One advantage offered by these nonlinear methods is the freedom of using inde-

pendent discretization schemes for the low-order equations. For multidimensional problems, it

maybe algebraically too complex to derive consistent discretizations of the low-order problems.

In this research, the high-order (transport) and low-order (QD) equations are discretized with

independent schemes.

Independent discretization can also be used advantageously to improve the accuracy of

the transport solution. By using a more accurate discretiztion of the low-order problem, the

transport problem can be evaluated to give more accurate high-order fluxes. This effect is

demonstrated in works [25, 26] etc.

Variants of the NPI (PDO) methods have been developed and used to solve different classes

of problems. In particular, QD method has been used to solve problems in radiation hydrody-

namics and neutron transport. The QD method is an efficient iterative method that results in

rapid convergence of the high-order problem. Additionally, the QD moment equations enable

one to couple the transport equation to multiphysics equations. Infact, QD based methods have

been used to couple multiphysics equations to the transport problem previously. In 1972, Gol’din

and his colleagues solved radiative transfer problems coupled to the energy balance equation

using a frequency-averaged transfer problem [28] . This averaging procedure was based on the

LOQD equations. In 1992, Anistratov and Gol’din applied this approach to solve the neutron

transport equation coupled to burnup equations for reactor analysis [29]. Following in the foot-

steps of these works, we use the LOQD equations as a key component in the developement of

a method for coupling the neutron transport equations to the equations for delayed precursors

and heat transfer.
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1.3 Organization of Thesis

In Chapter 2 of this thesis, we show the specific set of equations that are solved in this work.

The multiphysics models are identified and the appropriate equations are listed, followed by the

presentation of the details of the multilevel scheme. In chapter 3, the details of the discretizations

of the equations are presented. In chapter 4, the computational results obtained by means of this

method are presented. This is followed by the analysis of the results for each test. In chapter 5,

we present concluding remarks and offer some suggestions for future work. A list of appendixes

and bibliographic references are available at the end for further references.
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Chapter 2

Multiphysics Models and Multilevel

Methods

2.1 Multiphysics Model

The interaction of particles and matter in a nuclear reactor is described by a model that is

based on the particle transport, fluid flow and heat transfer equations [30, 31, 32]. Let us

consider physical processes characterized by a time scale such that the burnup of nuclides can

be neglected. A basic model for simulating transients can be described by the following relations:

• the multigroup neutron transport equation (detailed neutron conservation law)

1

vg

∂ψg(~r, ~Ω, t)

∂t
+ ~Ω · ~∇ψg(~r, ~Ω, t) + Σt,g(~r, t)ψg(~r, ~Ω, t) =

G∑

g′=1

∫

4π
Σs,g′→g(~r, ~Ω · ~Ω′, t)ψg′(~r, ~Ω′, t)dΩ′

+
χpg(~r, t)

4π

G∑

g′=1

(
1− βg′(~r, t)

)
νf,g′(~r, t)Σf,g′(~r, t)

∫

4π
ψg′(~r, ~Ω

′, t)dΩ′

+
1

4π

6∑

d=1

λdχ
del
d,g(~r, t)Cd(~r, t) , g = 1, ..., G ,

(2.1)

where g is the index of the energy group, vg is the group neutron velocity, ~Ω is the direction of

neutron propagation, ψg is the group angular flux, χpg is the fission spectrum of prompt neutrons,

βg is the delayed neutron fraction for the energy group g, Cd is the precursor concentration

for the precursor group d, χdeld,g is the fission spectrum of delayed neutrons for the delayed
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group d, λd is the decay constant, νf,g is the number of neutrons released per fission, Σx,g is

the macroscopic cross section of type-x which depends on nuclide density N l (l is the nuclide

index) and microscopic cross sections σl,gx as

Σx,g =
∑

l

N lσlx,g(T ) , (2.2)

• the precursor concentration balance (PCB) equations

∂Cd(~r, t)

∂t
= −λdCd(~r, t) +

G∑

g′=1

β̃d,g′(~r, t)νf,g′(~r, t)Σf,g′(~r, t)

∫

4π
ψg′(~r,Ω

′, t)dΩ′ , (2.3)

d = 1, ..., 6 ,

where β̃d,g is the delayed neutron fraction for group d and

βg =

6∑

d=1

β̃d,g , (2.4)

• the heat transfer (HT) equation for material temperature

∂

∂t
(ρcpT (x, t))− ∂

∂x

(
κ(T )

∂T (x, t)

∂x

)
= wf

G∑

g=1

Σf,g(x, t)

+1∫

−1

ψg(x, µ
′, t)dµ′ , (2.5)

where ρ, cp, and κ refer to the material density, specific heat capacity, and the heat conductivity

of the material, respectively.

Let us consider that all neutrons are prompt (βg = 0). Then the above equations result in

a system of equations for ψg and T which can be presented in the following operator form:

• the multigroup particle transport equation for Ψ = {ψ1(~r, ~Ω, t), ..., ψg(~r, ~Ω, t), ..., ψG(~r, ~Ω, t)}

∂Ψ

∂t
+ L[T ]Ψ = S[T ]Ψ , (2.6)

• the heat transfer equation for the material temperature T = T (~r, t)

∂T

∂t
= CT +Q[Ψ, T ] . (2.7)

The operator L in Eq. (2.6) describes particle streaming and collision. S accounts for scattering

and fission processes. C in Eq. (2.7) is the heat transfer operator. Q is the energy deposition

term.

We notice that the important features of this model are the following:
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1. The multiphysics equations are nonlinearly coupled with each other.

2. The dimensionality of the problem is dominated by the particle transport model.

3. The particle transport equation has high dimensionality. The angular flux ψg(~r,Ω, t) =

ψg(x, y, z, γ, θ, t) is a function of 7 independent variables, where γ and θ are angular

variables that determine the direction of particle motion. The dependence on energy is

represented by the energy group index.

4. The multiphysical model is characterized by multiple time and length scales.

All these details make this physical phenomenon a challenging computational problem. The

high dimensionality of the problem has the most significant effect in this regard.

We now discuss possible approaches for solving the coupled equations (2.6) and (2.7). These

equations are approximated with respect to time over the interval tj−1 ≤ t ≤ tj to get

A1Ψj + L[T j ]Ψj = S[T j ]Ψj +Aj−1
2 Ψj−1 , (2.8)

B1T
j = CT j +Q[Ψj , T j ] + Bj−1

2 T j−1 , (2.9)

where j is the index of the current time step, and discrete operators A1, A2, B1, B2 define

some time-discretization scheme. Equations (2.8) and (2.9) can be represented in the following

compact form:

xj+1 = K[xj ] + Z[xj−1] (2.10)

where xj = [ψj1, ........ψ
j
N , T

j
1 , ........T

j
N ] represents the vector of solution arising from the spatial

discretization of the system of equations on the problem domain.

Richardson Iteration.

One way to solve the nonlinear algebraic system of equations defined by Eq.(2.10) is to

apply the nonlinear Richardson iteration method, also known as the fixed-point iteration or

Picard’s iteration method [13, 33]. Assume that an estimation of the temperature (T (n)) and

angular flux (ψn) is known from the previous iteration where n is the iteration index for the

Picard iteration. Then the Picard iteration is defined by

xn+1,j = K[xn,j ] + Z[xj−1], (2.11)

where Z[xj−1] is available from the solution of the previous time-step. The operation embodied

by K involve the following composite operations:

1. Solve the high-order transport problem to calculate Ψ(n+1)

A1Ψ(n+1) + L[T (n)]Ψ(n+1) = S[T (n)]Ψ(n+1) +Aj−1
2 Ψj−1 . (2.12)

2. Solve the heat transfer problem T (n+1) that corresponds to the updated Ψ(n+1)
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B1T
(n+1) = CT (n+1) +Q[Ψ(n+1), T (n+1)] + Bj−1

2 T j−1 . (2.13)

This iteration process can converge very slowly in case of tightly coupled multiphysics phenom-

ena. We also notice that in this method the high-order transport problem is solved on every

iteration. This step itself involves iterations of the transport problem for evaluating ψ. As a

result, this approach can be computationally quite inefficient.

Newton’s Method.

Another way to solve this system of equations is to linearize the problem (2.8) and (2.9)

and apply Newton’s method [13] to compute T and Ψ. In operator notations,

x(n+1),j = x(n),j − K[x(n),j ]

J(K)[x(n),j ]
+ Z[xj−1] (2.14)

where J(K)[x
(n),j ] is the Jacobian of the discrete operator K. The Newton’s method requires

much smaller numbers of iterations as it converges quadratically to the solution.

However, either method will need to solve the high-order transport problem on every Picard

or Newton iteration. The dimension of the space where one searches for the solution to the non-

linear system of equations (2.10) is still defined by the dimensionality of the multigroup particle

transport equation (see Eqs. (2.1), (2.6)). Next, we present a way where the dimensionality of

the nonlinear system of equations can be reduced.

2.2 The Effective Low-Order Transport Problem

We now present the main idea of this project. To reduce the dimensionality of the problem, we

reformulate the system of equations (2.6) and (2.7) by means of a special effective low-order

transport (ELOT) problem for the total scalar flux: φ(~r, t) =
∑G

g=1

∫
4π ψ

gdΩ as follows,

∂φ

∂t
+ L̃[T,Ψ]φ = S̃[T,Ψ]φ (2.15)

and define the heat transfer equation with the modified energy deposition term which explicitly

uses φ,
∂T

∂t
= CT + Q̃[ψ, T ]φ . (2.16)

Note that the operators L̃ and S̃ in the ELOT problem (2.15) depend on the high-order trans-

port solution Ψ. The ELOT problem can be formulated by means of a projection operator in

a way that Eq. (2.15) is equivalent to the original transport problem (2.6). As a result, the

heat transfer equation in the form (2.16) is coupled directly to the ELOT problem (2.15) that

has the same dimensionality as Eq. (2.16). The important requirement for the definition of the
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ELOT problem is to be equivalent to the original transport problem and hence reproduce the

transport effects accurately.

The high-order transport solution that is used to define the low-order operators of the ELOT

equation (2.15) is determined from the modified high-order transport equation that is formed

by means of a prolongation operator S̃

∂Ψ

∂t
+ L[T ]Ψ = S̃[T,Ψ]φ (2.17)

where φ is explicitly used in the scattering and fission terms.

In this example, we formulated a two-level system of equations (2.15) and (2.17) for the

particle transport problem. The complete methodology developed in this research is based on a

multilevel method that uses multigroup low-order fluxes in addition to the total scalar flux, i.e.

φg(~r) =
∫

4π ψg(~r,Ω)dΩ. Note that the ELOT problem presented above is a one-group problem.

The proposed coupled equations (2.15)-(2.17) can be solved by means of the following it-

eration process on the given time step. Assume that the estimation of Ψ(s) is known from the

previous s-th iteration. We use it to form operators S̃, L̃ and Q̃ and solve the heat transfer

equation directly coupled with the ELOT problem

M1φ
(s+1) + L̃

[
T (s+1),Ψ(s)

]
φ(s+1) = S̃

[
T (s+1),Ψ(s)

]
φ(s+1) +Mj−1

2 φj−1 , (2.18)

B1T
(s+1) = CT (s+1) + Q̃

[
φ(s+1), T (s+1)

]
+ Bj−1

2 T j−1 (2.19)

to get a new estimation of the temperature T (s+1) and the total scalar flux φ(s+1). Then we

update the high-order transport solution from

A1Ψ(s+1) + L[T (s+1)]Ψ(s+1) = S̃[T (s+1),Ψ(s)]φ(s+1) +Aj−1
2 Ψj−1 (2.20)

to obtain Ψ(s+1) for the given T (s+1) and φ(s+1). Now the next iteration begins.

2.3 Mutlilevel Method

We now present the multilevel method used for solving time-dependent multigroup neutron

transport equation coupled with the equations of delayed neutrons precursors and heat transfer

equation. We consider 1-D slab geometry and the case of isotropic scattering.
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2.3.1 The High-Order Problem

The time-dependent transport equation with a transformed right-hand side (RHS) is defined as

1

vg

∂ψg
∂t

+ µ
∂ψg
∂x

+ Σt,gψg =
1

2

(
Σs,g,0 + χpg(1− β)νΣf

)
φ +

1

2

(
qχdel,g + qext,g

)
, (2.21)

g = 1, ..., G ,

with vacuum or reflective boundary conditions

ψg(0, µ, t)|µ>0 =





0 if BC is vaccum,

ψg(0,−µ, t) if BC is reflective,
(2.22)

ψg(X,µ, t)|µ<0 =





0 if BC is vaccum,

ψg(X,−µ, t) if BC is reflective,
(2.23)

where

(1− β)νΣf =

∑G
g=1(1− βg)νf,gΣf,gφg∑G

g=1 φg
, (2.24)

Σs,g,0 =

G∑
g′=1

Σs,g′→g,0φg′

G∑
g′=1

φg′

, (2.25)

and

qχdel,g =
6∑

d=1

χdeld,gλdCd . (2.26)

Here qχdel,g is the delayed neutron source in group g, and qext,g is the group external source.

Note that the right-hand side (RHS) of the transport problem is replaced by spectrum-averaged

scattering and fission cross-sections. These cross-sections are multiplied by the total scalar flux

to determine neutron production due to scattering and fission.

2.3.2 The Low-Order Problem

2.3.2.1 The Multigroup Low-Order Quasidiffusion Equations

The multigroup quasidiffusion (MLOQD) equations are obtained by taking the zeroth and first

order angular moments of the high-order transport equation. In slab geometry, this translates

to integrating Eq. (2.21) in µ with weights 1 and µ independently. We get the following set of
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equations as a result:

1

vg

∂φg
∂t

+
∂Jg
∂x

+ (Σt,g − Σs,g→g,0)φg =

g−1∑

g′=1

Σs,g′→g,0φg′ +
(
Qs,g,0 + χpg(1− β)νΣf

)
φ+ qχdel,g + qext,g , (2.27)

1

vg

∂Jg
∂t

+
∂ (Egφg)

∂x
+ Σt,gJg = 0 , (2.28)

with vacuum or reflective boundary conditions

Jg(0, t) =




CL,g(t)φg(0, t) if BC is vacuum,

0 if BC is reflective,
(2.29)

Jg(X, t) =




CR,g(t)φg(X, t) if BC is vacuum,

0 if BC is reflective,
(2.30)

where

Eg(x, t) =

∫ 1
−1 µ

2ψg(x, µ, t)dµ∫ 1
−1 ψg(x, µ, t)dµ

, (2.31)

CL,g(t) =

∫ 1
0 µψg(0, µ, t)dµ∫ 1
0 ψg(0, µ, t)dµ

, (2.32)

CR,g(t) =

∫ 0
−1 µψg(X,µ, t)dµ∫ 0
−1 ψg(X,µ, t)dµ

, (2.33)

and

Qs,g,0 =

G∑
g′=g+1

Σs,g′→g,0φg′

G∑
g=1

φg

. (2.34)

2.3.2.2 The Grey Low-Order Quasidiffusion Equations

The effective low-order transport problem discussed in section (2.2) is based on the grey (one-

group) low-order quasidiffusion (GLOQD) equations for the total scalar flux and current. They

are defined as follows:

∂

∂t

(
φ

v̄

)
+
∂J

∂x
+
(
Σa − (1− β)νΣf

)
φ = qdel + qext , (2.35)
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∂

∂t

(
J

ṽ

)
+
∂
(
Eφ
)

∂x
+ ΣtJ + ζφ = 0 , (2.36)

0 ≤ x ≤ X ,

with vacuum or reflective boundary conditions

J(0) =




C̄Lφ(0) if BC is vacuum,

0 if BC is reflective,
(2.37)

J(X) =




C̄Rφ(X) if BC is vacuum,

0 if BC is reflective,
(2.38)

where

qdel =
6∑

d=1

λdCd (2.39)

is the delayed neutron source,

qext =
G∑

g=1

qext,g , (2.40)

is the external source,

v̄ =

∑G
g=1 φg∑G
g=1

φg
vg

, (2.41)

ṽ =

∑G
g=1 |Jg|∑G
g=1

|Jg |
vg

, (2.42)

are the averaged velocities,

Σa =

∑G
g=1 Σa,gφg
∑G

g=1 φg
, (2.43)

(1− β)νΣf =

∑G
g=1(1− βg)νf,gΣf,gφg∑G

g=1 φg
, (2.44)

Σt =

∑G
g=1 Σt,g|Jg|
∑G

g=1 |Jg|
, (2.45)

E =

∑G
g=1Egφg∑G
g=1 φg

, (2.46)

C̄L =

∑G
g=1CL,gφg(0)
∑G

g=1 φg(0)
, (2.47)
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C̄R =

∑G
g=1CR,gφg(X)
∑G

g=1 φg(X)
, (2.48)

and

ζ =

G∑
g=1

(Σt,g − Σt)Jg

G∑
g=1

φg

. (2.49)

The spectrum-averaged cross sections and factors (2.41)-(2.49) are calculated by means of the

solution of the multigroup LOQD equations. The energy-averaging technique that produces

these equivalent one-group QD equations was presented by Gol’din and his colleagues [28, 34,

35, 36]. If Jg is an alternating function in the energy groups, simple averaging without taking

the absolute values of the group currents can lead to zero in the denominator in Eq. (2.45). The

expressions for Σt in Eq. (2.45) and ζ in Eq. (2.49) are formulated in a way such as to avoid

this problem, as well as obtain exact LOQD equations summed over the energy groups. To see

the latter, substitute Eq. (2.49) in Eq. (2.36). One gets

ΣtJ + ζφ = ΣtJ +
G∑

g=1

(
Σt,g − Σt

)
Jg (2.50)

=

G∑

g=1

ΣtJg (2.51)

Also note that in the event that Jg=0 in every groups, Eq. (2.45) is evaluated as follows:

Σt =

∑G
g=1 Σt,g|Jg + ε|
∑G

g=1 |Jg + ε|
, (2.52)

for an extremely small parameter, for instance, ε = 10−25.

2.3.2.3 The Equations for Precursor Concentrations and Heat Transfer

To couple the equations for precursor concentrations (2.3), and heat conduction (2.5) with the

GLOQD equations (2.35) and (2.36), we transform equivalently some terms in these equations

by means of the total scalar flux and corresponding spectrum-averaged cross-sections. As a

result, the transformed PCB equations are given by

∂Cd
∂t

= −λdCd + β̃νΣf dφ , d = 1, ..., 6 , (2.53)
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where

β̃νΣf d =

∑G
g=1 β̃d,gνf,gΣf,gφg∑G

g=1 φg
, (2.54)

and the transformed HT equation are given by

∂

∂t
(ρcpT ) +

∂W

∂x
= wfΣfφ , 0 ≤ x ≤ X , (2.55)

W = −κ∂T
∂x

, (2.56)

with Dirichlet boundary conditions

T |x=0 = TL , T |x=X = TR , (2.57)

where

Σf =

∑G
g=1 Σf,gφg∑G
g=1 φg

. (2.58)

2.4 Algorithms of the Multilevel Methods

The multilevel equations presented in the previous section is solved by a nested iterative scheme.

We refer to this as the Multilevel Projection (MP) method as it is based on series of projections

of the high-order transport problem on lower-dimensional spaces. Figure 2.1 illustrates the

flow of information and the order of solving the multilevel equations in this iterative scheme.

Algorithm 1 lists the detailed steps that are followed when problems are solved using this

method. On each time step (tj), this method consists of three iteration cycles.

• On the outer cycle, we solve the multigroup transport equation (2.21).

• On the first inner cycle, we solve the MLOQD equations ( (2.27) - (2.28) ).

• In the innermost cycle, we solve the GLOQD equations coupled with the PCB and HT

equations ( (2.35)-(2.36), (2.53), & (2.55) ).

If the neutronics boundary condition is reflective, the incoming angular fluxes are set using the

following relation:

ψj(s)g (x∗,−µm) =





φ
j(0)
g (x∗)

φj−1
g (x∗)

ψj−1
g (x∗,−µm) if s = 1,

ψ
j−1(s−1)
g (x∗,−µm) if s > 1,

(2.59)

for x∗ = 0, µm > 0 and x∗ = X, µm < 0.
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Algorithm 1: The Iteration Algorithm for the Multilevel Projection (MP) method.

j = 0

1 while tj ≤ tend do
j = j + 1 , tj = tj−1 + ∆tj

s = −1

Set φ
j,(s)
g

∣∣∣
s=0

= φ
(j−1)
g and φj,(s)

∣∣
s=0

= φ(j−1)

2 while {||1− φj,(s)/φj,(s−1)||∞ > εφ,1 or ||1− T j,(s)/T j,(s−1)||∞ > εT,1 } do
s = s+ 1
if s > 0 then for g = 1, ..., G do

In case of α-approximation, calculate α
j(s−1)
g,i = ln(φ

j,(s−1)
g,i /φj−1

g,i )/∆tj

Calculate Σ·,g(T
j,(s−1)) ,Σ

j,(s−1)
s,g,0 , (1− β)νΣf

j,(s−1)
, qχdel,g(C

j,(s−1)
d ) etc

Use Eq. (2.59) to set ψjg(0) and ψjg(X)

Solve the transport equation to calculate ψ
j,(s−1/2)
g

Calculate E
j,(s−1/2)
g etc

l = 0

3 while {||1− φj,(s,l)/φj,(s,l−1)||∞ > εφ,2 or ||1− T j,(s,l)/T j,(s,l−1)||∞ > εT,2} do
l = l + 1
for g = 1, ..., G do

Calculate Σ
j,(s,l−1)
·,g = Σ·,g(T

j,(s,l−1)) , qχdel,g(C
j,(s,l−1)
d )

Calculate Q
j,(s,l−1)
s,g,0

for g = 1, ..., G do

Solve the MLOQD equations to calculate φ
j,(s,l)
g and J

j,(s,l)
g

Calculate spectrum-averaged factors, E
j,(s,l)

, Σ
j,(s,l)
a , (1− β)νΣf

j,(s,l)
,

νΣf
j,(s,l)

, Σ
j,(s,l)
tr , ζ̄j(s,l) etc

n = 0

4 while {||φj,(s,l,n−1) − φj,(s,l,n)||∞ > (1 + εφ,3)||φj,(s,l,n)||∞ or

||T j,(s,l,n−1) − T j,(s,l,n)||∞ > (1 + εT,3)||T j,(s,l,n)||∞} do
n = n+ 1
Solve the GLOQD equations coupled with reactor kinetics and heat
equations to calculate T j,(s,l,n) and φj,(s,l,n) using Newton’s method

Calculate J j,(s,l,n)

for d = 1, ..., 6 do

Calculate C
j,(s,l)
d

φj,(s,l) = φj,(s,l,n) and T j,(s,l) = T j,(s,l,n)

φ
j,(s)
g = φ

j,(s,l)
g , φj,(s) = φj,(s,l) and T j,(s) = T j,(s,l)
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Solve the multigroup transport equation to calculate ψg.

Calculate Eg, Cg.

Solve the GLOQD eqns. coupled with the heat and

φ(n), T (n)
N

precursor eqns. to calculate φ, J, C, T

N
ew
ton

I
tera

tion
s

converged?
φ(l), T (l)

N

Y

l=l+1

l= 0

Y

Solve the multigroup QD equations to calculate φg & Jg

Then evaluate E,Σ., ..., ζ
±

e.t.c.

φ(s), T (s)

converged?

Y

j=j+1

N

s=s+1

s= 0

START: (tj)

T
ra
n
sp
ort

I
tera

tion
s

M
L
O
Q
D
I
tera

tion
s

converged?

b

b

b

b

n=n+1

b

n= 0

s=0, l=0, n=0

Figure 2.1: Algorithm flowchart for the MP method.

The Fixed Point Iteration (FPI) scheme discussed in section 2.1 is also used to solve the test

problems. Figure 2.2 illustrates the main components of this method in a flowchart. Algorithm

2 lists the detailed steps that are followed while solving problems using this method. On each

time step (tj), this method consists of two main stages:

• For the available temperature (T j,(m)), the coupled system of multigroup transport and

PCB equation is solved by means of the multilevel QD method to obtain the transport

solutions: ψ
j,(m+1)
g and φ

j,(m+1)
g

• The transport solution is used to update the energy deposition term, and the HT equation

19

CASL-U-2014-0096-000



Solve the multigroup transport equation to calculate ψj,(m+1)
g .

Calculate Eg, Cg.

Solve the GLOQD eqns. coupled with the
precursor eqns. to calculate φ, J, C.

b

b Solve the MLOQD equations to calculate φj,(m+1)
g , J

j,(m+1)
g

b Evaluate group-averaged cross-sections and factors.

converged?
φj,(m),&T j,(m)

N

Y

m=m+1

Solve the heat transfer equation to get T
(
x, tj,(m+1)

)
.

φ(s)

converged?

Y

j=j+1

N
s=s+1

s= 0

START: (tj)

T
ra
n
sp
ort

I
tera

tion
s

b

b

s=0, l=0, m=0

M
L
O
Q
D
I
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tion
s.

b
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Evaluate Σ.,g ≡ Σ.,g

(
T j,(m)

)
.b

converged?
φ(l)

N

Y

l=l+1

l= 0

F
ix
ed
P
oin

t
I
tera

tion
s.

Figure 2.2: Algorithm flowchart for the FPI method.

is solved to calculate a new estimate of the temperature distribution, i.e. (T j,m+1).
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Algorithm 2: The Iteration Algorithm for the Fixed-Point Iteration (FPI) method.

j = 0

1 while tj ≤ tend do
j = j + 1 , tj = tj−1 + ∆tj

m = −1

Set φ
j,(m,s)
g

∣∣∣
m=0,s=0

= φ
(j−1)
g , φj,(m,s)

∣∣
m=0,s=0

= φ(j−1)

Set Cj,(m,s)
∣∣
m=0,s=0

= C(j−1) , T j,(m,s)
∣∣
m=0

= T (j−1)

Σ·,g(T
j,(s−1)) ,

while {||1− φj,(m)/φj,(m−1)||∞ > εφ,1 or ||1− T j,(m)/T j,(m−1)||∞ > εT,1} do
m=m+1
for g=1,....G do

Calculate Σ.,g

(
T j,(m−1)

)

s=-1

2 while {||1− φj,(m,s)/φj,(m,s−1)||∞ > εφ,2} do
s = s+ 1
if s > 0 then for g = 1, ..., G do

In case of α-approximation, calculate α
j(m,s−1)
g,i = ln(φ

j,(m,s−1)
g,i /φj−1

g,i )/∆tj

Calculate Σ
j,(m,s−1)
s,g,0 , (1− β)νΣf

j,(m,s−1)
, qχdel,g(C

j,(m,s−1)
d ) etc

Use Eq. (2.59) to set ψ
j,(m,s−1/2)
g (0) and ψ

j,(m,s−1)
g (X)

Solve the transport equation to calculate ψ
j,(m,s−1/2)
g

Calculate E
j,(m,s−1/2)
g etc

l = 0

3 while {||1− φj,(m,s,l)/φj,(m,s,l−1)||∞ > εφ,3 do
l = l + 1
for g = 1, ..., G do

Calculate qχdel,g(C
j,(m,s,l−1)
d ) , Q

j,(m,s,l−1)
s,g,0

for g = 1, ..., G do

Solve the MLOQD equations to calculate φ
j,(m,s,l)
g and J

j,(m,s,l)
g

Calculate spectrum-averaged factors, E
j,(m,s,l)

, Σ
j,(m,s,l)
a ,

(1− β)νΣf
j,(m,s,l)

, νΣf
j,(m,s,l)

, Σ
j,(m,s,l)
tr , ζ̄j(m,s,l) etc

Solve the GLOQD equations coupled with precursor equations to calculate
J j,(m,s,l) and φj,(m,s,l).
for d = 1, ..., 6 do

Calculate C
j,(m,s,l)
d

φj,(m,s) = φj,(m,s)

φ
j,(m)
g = φ

j,(m,s)
g , φj,(m) = φj,(m,s)

Solve the heat transfer equation to calculate T j,(m).
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Chapter 3

Discretization and Linearization

3.1 The High-Order Problem

The transport problem is discretized in angle using the method of discrete-ordinates [7, 8].

Under this discretization, the transport problem is solved for a set of discrete directions defined

by an angular quadrature set. The discrete-ordinates multigroup transport equation in 1D slab

geometry with isotropic scattering is given by

1

vg

∂ψg,m
∂t

+ µm
∂ψg,m
∂x

+ Σt,gψg = Qg, (3.1)

m = 1, ......,M,

where

Qg =
1

2

(
Σs,g,0 + χpg(1− β)νΣf

)
φ+

1

2

(
qχdel,g + qext,g

)
, (3.2)

ψg,m ≡ ψg(x, µm, t), (3.3)

(1− β)νΣf =

∑G
g=1(1− βg)νf,gΣf,gφg∑G

g=1 φg
, (3.4)

Σs,g,0 =

G∑
g′=1

Σs,g′→g,0φg′

G∑
g=1

φg

, (3.5)
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and,

qχdel,g =
6∑

d=1

χdeld,gλdCd . (3.6)

3.1.1 Method of Short Characteristics

The method of short characteristics (MSC) [37, 38, 39, 40, 41, 42] is used to discretize the

transport equation in space and time. This scheme solves the transport equation along particle

tracks. It belongs to a broad class of methods called the method of characteristics [43]. This

class of methods is used to solve hyperbolic partial differential equations. In this method, the

solutions of the partial differential equations are sought in specific directions along which the

partial derivatives are reduced to total differentials [44]. These directions are also called the

characteristics of the equation. The detailed derivation of the MSC method for one-dimensional

neutron transport equation is given below.

Consider the time-dependent discrete-ordinates neutron transport equation in 1D slab ge-

ometry for direction µm

1

vg

∂ψg,m
∂t

+ µm
∂ψm,g
∂x

+ Σt,gψg,m = Qg. (3.7)

Let s be the distance along a characteristics that represent a particle track. The equations of

characteristics are then defined by

ds = vgdt, (3.8)

ds =
dx

µm
. (3.9)

The partial differential equation (3.7) is reduced to an ordinary differential one along the char-

acteristic. The derivative along the characteristic is given by

dψg,m(s)

ds
=
∂ψg,m(x, t)

∂t

dt

ds
+
∂ψg,m(x, t)

∂x

dx

ds
. (3.10)

Using relations (3.7)-(3.10), we get the transport problem in the characteristic form:

dψm,g
ds

+ Σt,gψg,m = Qg. (3.11)

In our problem, the domain is defined on a discrete mesh in space and time (see Figure 3.1).

The solution involves sweeping the spatial domain for all angular directions for one time-step.

The sweep along the domain is performed one cell at a time in the short-characteristic method.

After the solutions are obtained for the current time-step, we march up in the space-time grid
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t0

t1

tj

tj+1

x1/2 x3/2 x5/2
xi+1/2 xN+1/2

(xi+1/2, t
j)

xi−1/2

(i,j)

Figure 3.1: Grid in space and time for time-dependent problems in 1D slab geometry.

to evaluate the solutions for the next moment of time. The entire vector of the angular flux is

needed to be stored in order to evaluate the vector of solution for the next time step using the

MSC scheme.

This constrasts with the long characteristics method, where each characteristic spans the

entire problem domain in the X-Y domain [8]. The method of long characteristics is also of-

ten simply called the method of characteristics in literature. The problem domain consists of

non-uniform material subdomains. The usage was first reported by Askew in 1972 [45]. Major

production softwares such as CASMO-5 [46] rely on this method to solve reactor-physics prob-

lems today.

Consider the solution of the transport problem using the MSC scheme in (i,j)-th cell of the

grid. The value of the angular flux is known at three of the vertices. The solution of the angular

flux at the fourth vertex involves tracing the particular characteristic which pass through this

vertex and performing an interpolation of the upstream angular flux to evaluate the solution at

the position of intersection of this characteristic with the cell face. For ∆xi =
(
xi+1/2 − xi−1/2

)

and ∆tj = tj+1 − tj , the following cases are possible (group index g dropped for brevity),

• Case 1

µm > 0,
∆xi
∆tj

≥ vgµm.

In Figure 3.2, C represents the characteristic that passes through the vertex (xi+1/2, t
j).
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x∗

(xi+1/2, t
j)

(xi+1/2, t
j−1)

(xi−1/2, t
j)

(xi−1/2, t
j−1)

C∆s

ψ∗

θm

Figure 3.2: Case 1: Track originates at bottom face, µm > 0.

The length of the segment, denoted by ∆s, is oriented at an angle θ = cos−1(µm). The

characteristic enters the cell (i,j) at point x∗, the value of which is given by

x∗ = xi+1/2 − µmvg∆tj . (3.12)

The source and cross-section over the track are approximated by the averages of their

respective values, i.e.

Σ
j−1/2
t,i =

1

2

(
Σj
t,i + Σj−1

t,i

)
. (3.13)

Q
j−1/2
i =

1

2

(
Qji +Qj−1

i

)
. (3.14)

The value of the incoming angular flux, ψ∗ at point x∗ is determined by means of the

linear interpolation of the values of the angular fluxes at the bottom vertexes of the cell,

i.e.

ψ∗ =
1

∆xi

[(
x∗ − xi−1/2

)
ψj−1
i+1/2 +

(
xi+1/2 − x∗

)
ψj−1
i−1/2

]
. (3.15)

where ψj−1
i±1/2 are available from the results of the previous time step. The value of the

angular flux at vertex (xi+1/2, t
j) is then evaluated as follows:

ψji+1/2 = ψ∗e−Σ
j−1/2
t,i ∆s +

Q
j−1/2
i

Σ
j−1/2
t,i

(
1− e−Σ

j−1/2
t,i ∆s

)
, (3.16)

where

∆s = v∆t. (3.17)
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• Case 2

µm < 0, (3.18)

∆xi
∆tj

≥ vg|µm|. (3.19)

x∗

(xi+1/2, t
j)

(xi+1/2, t
j−1)

(xi−1/2, t
j)

(xi−1/2, t
j−1)

C
∆s

ψ∗

θm
b

Figure 3.3: Case 2: Track originates at bottom face, µm < 0.

The value of the entrant angular flux at x∗ is approximated in the same manner as in

Case 1. The angular flux is to be evaluated for the vertex (xi−1/2, t
j). It is given by the

expression

ψji−1/2 = ψ∗e−Σ
j−1/2
t,i ∆s +

Q
j−1/2
i

Σ
j−1/2
t,i

(
1− e−Σ

j−1/2
t,i ∆s

)
, (3.20)

where

∆s = v∆t.

• Case 3

µm > 0, (3.21)

∆xi
∆tj

< vgµm. (3.22)

The angular flux is to be determined at (xi+1/2, t
j). This case corresponds to a situation

where the characteristic line enters the cell from the left face. The point of entry is denoted

by t∗ and the value of the entrant angular flux is linearly interpolated using the values in

the vertexes: (xi−1/2, t
j−1) and (xi−1/2, t

j). The angular flux at vertex (xi+1/2, t
j) is then
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t∗

(xi+1/2, t
j)

(xi+1/2, t
j−1)

(xi−1/2, t
j)

(xi−1/2, t
j−1)

C
∆s

ψ∗

θm

b

Figure 3.4: Case 3: Track originates from left face, µm > 0.

evaluated as follows:

ψji+1/2 = ψ∗e−Σ
j−1/2
t,i ∆s +

Q
j−1/2
i

Σ
j−1/2
t,i

(
1− e−Σ

j−1/2
t,i ∆s

)
. (3.23)

where

ψ∗ =
1

∆tj

[(
t∗ − tj−1

)
ψji−1/2 +

(
tj − t∗

)
ψji−1/2

]
, (3.24)

t∗ = tj − ∆s

vg
, (3.25)

∆s =
∆xi
µm

. (3.26)

• Case 4

µm < 0,
∆xi
∆tj

< vg|µm|.

In this case, the angular flux is to be determined for the top-left vertex at (xi−1/2, t
j).

Given the values of the angular flux at the two vertexes of the incoming face, the following

relation is used to evaluate the unknown in this case

ψji−1/2 = ψ∗e−Σ
j−1/2
t,i ∆s +

Q
j−1/2
i

Σ
j−1/2
t,i

(
1− e−Σ

j−1/2
t,i ∆s

)
, (3.27)

where
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t∗

(xi+1/2, t
j)

(xi+1/2, t
j−1)

(xi−1/2, t
j)

(xi−1/2, t
j−1)

C
∆s

ψ∗

θm
b

Figure 3.5: Case 4: Track orginates from right face, µm < 0.

ψ∗ =
1

∆tj

[(
t∗ − tj−1

)
ψji+1/2 +

(
tj − t∗

)
ψj−1
i+1/2

]
, (3.28)

t∗ =
1

vgµm
∆xi + tj , (3.29)

∆s =
∆xi
|µm|

. (3.30)

The MSC method results in the determination of the groupwise cell-edge angular fluxes
(
ψjg,m,i+1/2

)

for a given moment of time (tj). To proceed with solving the MLOQD equations, it is necessary

to determine the cell-averaged QD factors (Eg) for each cell in the spatial domain. This is done

by first evaluating the cell-average angular flux as follows:

ψjm,g,i = ωjm,iψ
j
m,g,i−1/2 + (1− ωjm,g,i)ψ

j
m,g,i+1/2 , (3.31)

m = 1, .....,M,

where

ωjm,g,i =
1

τ jm,g,i
− 1

eτ
j
m,g,i − 1

, (3.32)

i = 1, ....., N, µm > 0,

ωjm,g,i =
1

τ jm,g,i
− e−τ

j
m,g,i

1− eτ
j
m,g,i

, (3.33)

i = 1, ....., N, µm < 0,

and

τ jm,g,i =
Σ
j−1/2
t,g,i ∆xi

|µm|
. (3.34)
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The cell-averaged QD factors are then evaluated as

Ejg,i =

M∑
m=1

µ2
mψ

j
m,g,iwm

M∑
m=1

ψjm,g,iwm

(3.35)

3.1.2 α -Approximation for Time-Dependent Transport

The α− approximation for the time-dependent transport equation [5, 47, 48] is based on the

assumption that the angular flux depends on time as follows:

ψ(x, µ, t) = ψ̃(x, µ)eαt . (3.36)

This leads to the following approximation of the derivative term for tj−1 < t < tj :

∂ψm,g,i
∂t

≈ αjg,iψ
j
m,g,i . (3.37)

The rate of change in time, αg,i, is estimated by the corresponding rate of change of the group

scalar flux in the given spatial cell:

αg,i =
1

φg,i

dφg,i
dt

=
d ln(φg,i)

dt
, (3.38)

where φg,i is obtained from the solution of the MLOQD problem. Eq. (3.38) is evaluated for a

given time-step as follows,

αjg,i =

ln

(
φjg,i

φj−1
g,i

)

∆tj
. (3.39)

Using Eqs. (3.36) and (3.39) to approximate the time-derivative term in Eq. (3.1) and integrating

the continuous transport problem over the i-th spatial cell, we get the following detailed balance

equation for the cell:

∆xi
vg

αjg,iψ
j
m,g,i + µm(ψjm,g,i+1/2 − ψ

j
m,g,i−1/2) + Σj

t,g,iψ
j
m,g,i∆xi = Qjm,g,i∆xi , (3.40)

where ψjm,g,i±1/2 denotes the cell-edge fluxes, and ψjm,g,i denotes the cell-average angular flux

in the i-th cell. The cell-average angular flux for the i-th cell is defined as

ψjm,g,i =
1

∆xi

∫ i+1/2

xi−1/2

ψm,g(x, t
j)dx . (3.41)
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Rearranging Eq. (3.40), we get

µm(ψjm,g,i+1/2 − ψ
j
m,g,i−1/2) + (Σj

t,g,i +
αjg,i
vg

)ψjm,g,i∆xi = Qjm,g,i∆xi . (3.42)

Thus, on each time step (tj), one needs to solve the high-order transport equation of the form

µm(ψjm,g,i+1/2 − ψ
j
m,g,i−1/2) + Σ̃j

t,g,iψ
j
m,g,i∆xi = Qjm,g,i∆xi , (3.43)

Σ̃j
t,g,i =





Σj
t,g,i +

αj
g,i

vg
, if Σj

t,g,i +
αj
g,i

vg
> δα ,

δα , if Σj
t,g,i +

αj
g,i

vg
≤ δα ,

(3.44)

where δα is a given parameter (for example, δα=10−4).

The system of equations, Eq. (3.42) is solved using the method of step-characteristics (SC)

[49]. This method is second order accurate in slab geometry and yields positive cell-average and

cell-edges fluxes for positive source and boundary terms. Using the SC scheme, the expression

for the flux exiting the i-th cell is evaluated as follows. For µm ≷ 0,

ψm,g,i±1/2 = ψm,g,i∓1/2e
∓Σ̃t,g,i∆xi/|µm| +

(
1− e∓Σ̃t,g∆xi/|µm|

) Qg,i

Σ̃t,g,i

. (3.45)

and the cell-average flux is evaluated as

ψm,g,i = ωm,g,iψm,g,i−1/2 + (1− ωm,g,i)ψm,g,i+1/2 , (3.46)

where

ωm,g,i =
1

τm,g,i
− 1

eτm,g,i − 1
, (3.47)

i = 1, ..., N , g = 1, ..., G , µm > 0 ,

ωjm,g,i =
1

τm,g,i
− e−τm,g,i

1− e−τm,g,i
, (3.48)

i = 1, ..., N , g = 1, ..., G , µm < 0 ,

τm,g,i =
Σ̃t,g,i∆xi
µm

. (3.49)

Note that the storage of the vector of angular flux is not required in this scheme. The vector of

scalar flux from the previous time step is used to evaluate the solution of the transport problem

for the current time step.
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3.2 The Low-Order Equations

3.2.1 The Multigroup Low-Order QD Equations

The low-order quasidiffusion equations are discretized in space using a finite volume (FV)

scheme [6, 25]. The balance equation given by Eq. (2.27) is integrated over the i-th spatial

interval, i.e. xi−1/2 ≤ x ≤ xi+1/2. The first-moment equation given by Eq. (2.28) is integrated

around the node xi+1/2 over xi ≤ x ≤ xi+1, where xi and xi+1 are midpoints of cells adjacent

to xi+1/2. This results in the following,

∆xi
vg

dφg,i
dt

+ Jg,i+1/2 − Jg,i−1/2 + (Σt,g,i − Σs,g→g,0,i)φg,i∆xi =

∆xi

g−1∑

g′=1

Σs,g′→g,0,iφg′,i +
(
Qs,g,0,i + χg,i(1− β)νΣf,i

)
φi∆xi +

(
qχdel,g,i + qext,g,i

)
∆xi , (3.50)

i = 1, ..., N ,

∆xi+1/2

vg

dJg,i+1/2

dt
+ Eg,i+1φg,i+1 − Eg,iφg,i + Σt,g,i+1/2∆xi+1/2Jg,i+1/2 = 0 , (3.51)

i = 0, ..., N ,

where

∆xi+1/2 =
1

2
(∆xi + ∆xi+1) , (3.52)

∆x0 = 0, ∆xN+1/2 = 0 , (3.53)

φg,i =
M∑

m=1

ψg,m,iwm, Jg,i+1/2 =
M∑

m=1

µmψg,m,i+1/2wm , (3.54)

Eg,i =

M∑
m=1

µ2
mψg,m,iwm

M∑
m=1

ψg,m,iwm

, Qs,g,0,i =

G∑
g′=g+1

Σs,g′→gφg′,i

G∑
g′=1

φg′,i

, (3.55)
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(1− β)νΣf,i =

G∑
g=1

(1− βg) νf,g,iΣf,g,iφg,i

G∑
g=1

φg,i

, (3.56)

Σt,g,i+1/2 =
Σt,g,i∆xi + Σt,g,i+1∆xi+1

∆xi + ∆xi+1
. (3.57)

The equations (3.50) and (3.51) are discretized in time by means of the fully implicit scheme.

This gives us

∆xi
vg

[
φjg,i − φ

j−1
g,i

∆tj

]
+ J jg,i+1/2 − J

j
g,i−1/2 + (Σj

t,g,i − Σj
s,g→g,0,i)∆xiφ

j
g,i =

∆xi

g−1∑

g′=1

Σj
s,g′→g,0,iφ

j
g′,i + ∆xi

(
Qjs,g,0,i + χjg,i(1− β)νΣf

j

i

)
φji +

(
qχ,jdel,g,i + qjext,g,i

)
∆xi , (3.58)

∆xi+1/2

vg

[
J jg,i+1/2 − J

j−1
g,i+1/2

∆tj

]
+

Ejg,i+1φ
j
g,i+1 − E

j
g,iφ

j
g,i + Σj

t,g,i+1/2∆xi+1/2J
j
g,i+1/2 = 0 . (3.59)

Rearrangement gives

J jg,i+1/2 − J
j
g,i−1/2 +

(
Σj
t,g,i − Σj

s,g→g,0,i +
1

∆tjvg

)
∆xiφ

j
g,i =

∆xi

g−1∑

g′=1

Σj
s,g′→g,0,iφ

j
g′,i + ∆xi

(
Qjs,g,0,i + χjg,i(1− β)νΣf

j

i

)
φji +

(
q̂χ,jdel,g,i + qjext,g,i

)
∆xi

+
φj−1
g,i ∆xi

vg∆tj
, (3.60)

Ejg,i+1φ
j
g,i+1 − Ejg,iφ

j
g,i +

(
Σj
t,g,i+1/2 +

1

vg∆tj

)
∆xi+1/2J

j
g,i+1/2 =

J j−1
g,i+1/2∆xi+1/2

vg∆tj
. (3.61)
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Thus, on each time step (tj) the discretized multigroup LOQD equations are defined by

J jg,i+1/2 − J
j
g,i−1/2 +

(
Σj
t,g,i − Σj

s,g→g,0,i +
1

vg∆tj

)
∆xiφ

j
g,i = ∆xi

g−1∑

g′=1

Σj
s,g′→g,0,iφ

j
g′,i

+ ∆xi
(
Qjs,g,0,i + χjg,i(1− β)νΣf

j

i

)
φji +

(
qχ,jdel,g,i + qjext,g,i

)
∆xi + Bj−1

g,i , (3.62)

i = 1, ..., Ni ,

Ejg,i+1φ
j
g,i+1 − Ejg,iφ

j
g,i +

(
Σj
t,g,i+1/2 +

1

vg∆tj

)
∆xi+1/2J

j
g,i+1/2 = Gj−1

g,i+1/2 , (3.63)

i = 0, ..., Ni ,

J jg,1/2 = Bj
L,gφ

j
g,0 , (3.64)

J jg,Ni+1/2 = Bj
R,gφ

j
g,Ni+1 , (3.65)

where,

Bj−1
g,i =

φj−1
g,i ∆xi

vg∆tj
, (3.66)

Gj−1
g,i+1/2 =

J j−1
g,i+1/2∆xi+1/2

vg∆tj
. (3.67)

3.2.2 The Grey Low-order QD equation

To derive the discretized form of the grey balance equation (2.35), we sum Eq. (3.62) over the

groups and introduce various averaged cross sections to get

J ji+1/2− J
j
i−1/2 +

(
Σ
j
a,i − (1− β)νΣf,i

j
+

1

∆tjvji

)
φji∆xi =

(
qjdel,i + qjext,i

)
∆xi +Bj−1

i , (3.68)

i = 1, ........, Ni,
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where

Bj−1
i =

G∑

g=1

Bj−1
g,i , vji =

G∑
g=1

φg,i

G∑
g=1

φg,i
vg

, (3.69)

Σ
j
a,i =

G∑
g=1

(
Σj
t,g,i − Σj

s,g,i

)
φjg,i

G∑
g=1

φjg,i

. (3.70)

The discretization of the grey first moment equation (2.36) is obtained by summing Eq. (3.63)

over the groups. This gives us

E
j
i+1φ

j
i+1 − E

j
iφ
j
i + ∆xi+1/2

G∑

g=1

(
Σj
t,g,i+1/2 +

1

vg∆tj

)
J jg,i+1/2 =

G∑

g=1

Gj−1
g,i+1/2. (3.71)

We define

ṽji+1/2 =

∑G
g=1 |J

j
g,i+1/2|

∑G
g=1

|Jj
g,i+1/2

|
vg

(3.72)

and averaged total cross-section

Σ
j
t,i+1/2 =

∑G
g=1 Σj

t,g,i+1/2|J
j
g,i+1/2|∑G

g=1 |J
j
g,i+1/2|

(3.73)

to obtain

E
j
i+1φ

j
i+1 − E

j
iφ
j
i +

(
Σ
j
t,i+1/2 +

1

ṽji+1/2∆tj

)
J ji+1/2∆xi+1/2

+ ∆xi+1/2

G∑

g=1

(
Σj
t,g,i+1/2 − Σ

j
t,i+1/2 +

1

∆tj

[
1

vg
− 1

ṽji+1/2

])
J jg,i+1/2 = Ḡj−1

i+1/2 , (3.74)

where

Ḡj−1
i+1/2 =

G∑

g=1

Gj−1
g,i+1/2. (3.75)
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We now define

ζ̄+,j
i+1/2 =





γj
i+1/2∑G

g=1 φ
j
g,i+1

, if γji+1/2 > 0

0 , if γi+1/2 ≤ 0
, ζ̄−,ji+1/2 =





0 , if γi+1/2 > 0
|γj

i+1/2
|∑G

g=1 φ
j
g,i

, if γji+1/2 ≤ 0
, (3.76)

γji+1/2 =
G∑

g=1

(
Σj
t,g,i+1/2 − Σ

j
t,i+1/2 +

1

∆tj

[
1

vg
− 1

ṽji+1/2

])
J jg,i+1/2 , (3.77)

and have

(
E
j
i+1 + ζ̄+,j

i+1/2∆xi+1/2

)
φji+1 −

(
E
j
i + ζ̄−.ji+1/2∆xi+1/2

)
φji

+
(

Σ
j
t,i+1/2 +

1

ṽji+1/2∆tj

)
J ji+1/2∆xi+1/2 = Ḡj−1

i+1/2 . (3.78)

Note that the discrete equations (3.68) and (3.78) are algebraically consistent with the dis-

cretized multigroup LOQD equations. As a result, on each time step one needs to solve the

following set of the discretized GLOQD equations:

J ji+1/2 − J
j
i−1/2 +

(
Σ
j
a,i − (1− β)νΣf

j

i +
1

∆tj v̄ji

)
φji∆xi = (qjdel,i + qjext,i)∆xi + B̄j−1

i , (3.79)

i = 1, ..., Ni ,

(
E
j
i+1 + ζ̄+,j

i+1/2∆xi+1/2

)
φji+1 −

(
E
j
i + ζ̄−.ji+1/2∆xi+1/2

)
φji

+ Σ̃j
J,i+1/2J

j
i+1/2∆xi+1/2 = Ḡj−1

i+1/2 , (3.80)

i = 0, ..., Ni ,

J j1/2 = C̄jLφ
j
0 , (3.81)

J jNi+1/2 = C̄jRφ
j
Ni+1 , (3.82)

where

Σ̃j
J,i+1/2 = Σ

j
t,i+1/2 +

1

ṽji+1/2∆tj
. (3.83)
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We now use (3.80) to eliminate currents in Eqs. (3.79) to obtain

−
[
E
j
i−1 + ζ̄−,ji−1/2∆xi−1/2

Σ̃j
J,i−1/2∆xi−1/2

]
φji−1

+

[
E
j
i + ζ̄+,j

i−1/2∆xi−1/2

Σ̃j
J,i−1/2∆xi−1/2

+
E
j
i + ζ̄−,ji+1/2∆xi+1/2

Σ̃j
J,i+1/2∆xi+1/2

+
(

Σ
j
a,i − (1− β)νΣf

j

i +
1

∆tj v̄ji

)
∆xi

]
φji

−
[
E
j
i+1 + ζ̄+,j

i+1/2∆xi+1/2

Σ̃j
J,i+1/2∆xi+1/2

]
φji+1 = (qjdel,i+q

j
ext,i)∆xi+B̄

j−1
i +

Ḡj−1
i−1/2

Σ̃j
J,i−1/2∆xi−1/2

−
Ḡj−1
i+1/2

Σ̃j
J,i+1/2∆xi+1/2

,

i = 1, ..., Ni , (3.84)

[
E
j
0 + ζ̄−,j1/2 ∆x1/2

Σ̃j
J,1/2∆x1/2

− B̄j
L

]
φj0 −

[
E
j
1 + ζ̄+,j

1/2 ∆x1/2

Σ̃j
J,1/2∆x1/2

]
φj1 = −

Ḡj−1
1/2

Σ̃j
J,1/2∆x1/2

, (3.85)

−
[
E
j
Ni

+ ζ̄−,jNi+1/2∆xNi+1/2

Σ̃j
J,Ni+1/2∆xNi+1/2

]
φjNi

+

[
E
j
Ni+1 + ζ̄+,j

Ni+1/2∆xNi+1/2

Σ̃j
J,Ni+1/2∆xNi+1/2

+ B̄j
R

]
φjNi+1 =

Ḡj−1
Ni+1/2

Σ̃j
J,Ni+1/2∆xNi+1/2

. (3.86)

3.2.3 Equations for Precursor Concentrations

We approximate the equations for precursor concentration balance (PCB) by means of the fully

implicit time-discretization scheme to obtain

1

∆tj

(
Cjd,i − C

j−1
d,i

)
=

(
−λdCjd,i + β̃νΣf

j

d,iφ
j
i

)
, (3.87)

As a result we have

Cjd,i =
[
1 + λd∆t

j
]−1

Cj−1
d,i + ∆tj β̃νΣf

j

d,iφ
j
i . (3.88)

The delayed neutron source term in Eq. (3.79) is expressed using Eq. (3.88) to get the following:

qjdel,i =

6∑

d=1

λdC
j
d,i = ∆tj

[〈
β̃νΣf

〉j
i
φji

]
+ C̄j−1

i , (3.89)

where
〈
β̃νΣf

〉j
i

=

6∑

d=1

λdβ̃νΣf

j

d,i

1 + λd∆tj
, (3.90)
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C̄j−1
i =

6∑

d=1

λd
1 + λd∆tj

Cj−1
d,i . (3.91)

Note that

〈
β̃νΣf

〉j
i

=
6∑

d=1

λd
1 + λd∆tj

[∑G
g=1 β̃

j
d,g,iν

j
f,g,iΣ

j
f,g,iφ

j
g,i∑G

g=1 φ
j
g,i

]
=

∑G
g=1 β̂

j
g,iν

j
f,g,iΣ

j
f,g,iφ

j
g,i∑G

g=1 φ
j
g,i

, (3.92)

where

β̂jg,i =

6∑

d=1

λdβ̃
j
d,g,i

1 + λd∆tj
. (3.93)

We now substitute Eq. (3.89) into Eq. (3.79) and have

J ji+1/2 − J
j
i−1/2 +

(
Σ
j
a,i − (1− β)νΣf

j

i +
1

∆tj v̄ji

)
φji∆xi =

(〈
β̃νΣf

〉j
i

∆tjφji + C̄j−1
i + qjext,i

)
∆xi + B̄j−1

i . (3.94)

This leads to

J ji+1/2 − J
j
i−1/2 +

(
Σ
j
a,i − (1− β)νΣf

j

i −∆tj
〈
β̃νΣf

〉j
i

+
1

∆tj v̄ji

)
φji∆xi =

qjext,i∆xi + B̂j−1
i , (3.95)

where

B̂j−1 = B̄j−1
i +

(
C̄j−1
i

)
∆xi , (3.96)

and as a result we have the following equations for the total scalar fluxes:

−
[
E
j
i−1 + ζ̄−.ji−1/2∆xi−1/2

Σ̃j
J,i−1/2∆xi−1/2

]
φji−1 +

[
E
j
i + ζ̄+,j

i−1/2∆xi−1/2

Σ̃j
J,i−1/2∆xi−1/2

+
E
j
i + ζ̄−.ji+1/2∆xi+1/2

Σ̃j
J,i+1/2∆xi+1/2

+

(
Σ
j
a,i − (1− β)νΣf

j

i −∆tj
〈
β̃νΣf

〉j
i

+
1

∆tj v̄ji

)
∆xi

]
φji

−
[
E
j
i+1 + ζ̄+,j

i+1/2∆xi+1/2

Σ̃j
J,i+1/2∆xi+1/2

]
φji+1 = qjext,i∆xi + B̂j−1

i +
Ḡj−1
i−1/2

Σ̃j
J,i−1/2∆xi−1/2

−
Ḡj−1
i+1/2

Σ̃j
J,i+1/2∆xi+1/2

,

i = 1, ..., Ni , (3.97)
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[
E
j
0 + ζ̄−,j1/2 ∆x1/2

Σ̃j
J,1/2∆x1/2

− B̄j
L

]
φj0 −

[
E
j
1 + ζ̄+,j

1/2 ∆x1/2

Σ̃j
J,1/2∆x1/2

]
φj1 = −

Ḡj−1
1/2

Σ̃j
J,1/2∆x1/2

, (3.98)

−
[
E
j
Ni

+ ζ̄−,jNi+1/2∆xNi+1/2

Σ̃j
J,Ni+1/2∆xNi+1/2

]
φjNi

+

[
E
j
Ni+1 + ζ̄+,j

Ni+1/2∆xNi+1/2

Σ̃j
J,Ni+1/2∆xNi+1/2

+ B̄j
R

]
φjNi+1 =

Ḡj−1
Ni+1/2

Σ̃j
J,Ni+1/2∆xNi+1/2

. (3.99)

3.2.4 The Heat Transfer Equation

We use a finite-volume discretization to approximate the HT equations (2.55)-(2.57). As a

result, we get

∆xiρi
d(cp,iTi)

dt
+Wi+1/2 −Wi−1/2 = wf,iΣf,iφi∆xi , i = 1, ..., Ni , (3.100)

Wi−1/2
∆xi

2
= −κi(Ti − Ti−1/2) , (3.101)

Wi+1/2
∆xi

2
= −κi(Ti+1/2 − Ti) , (3.102)

i = 1, ..., Ni ,

T1/2 = TL , TNi+1/2 = TR . (3.103)

We discretize Eq. (3.100) in time using the fully implicit scheme to get

∆xiρi
∆tj

(
cjp,iT

j
i − c

j−1
p,i T

j−1
i

)
+
(
W j
i+1/2 −W

j
i−1/2

)
= wjf,iΣ

j
f,iφ

j
i∆xi, (3.104)

i = 1, ..., Ni .

The equation (3.104) is reduced to the form:

∆xiρi
∆tj

cjp,iT
j
i +W j

i+1/2 −W
j
i−1/2 = wjf,iΣ

j
f,iφ

j
i∆xi + F̄ j−1

i , (3.105)

where

F̄ j−1 =
∆xiρi
∆tj

cj−1
p,i T

j−1
i . (3.106)
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From Eq. (3.101) and Eq. (3.102), we derive the equations for the cell-edge heat fluxes in terms

of cell-averaged temperatures to get

W j
i+1/2 = −

κ̂ji+1/2

∆xi+1/2
(T ji+1 − T

j
i ) , (3.107)

where

κ̂ji+1/2 =
κjiκ

j
i+1(∆xi + ∆xi+1)

κji∆xi+1 + κji+1∆xi
, (3.108)

i = 0, ..., Ni ,

and,

∆x0 = 0, ∆xNi+1 = 0, (3.109)

T0 = T1/2, TNi+1 = TNi+1/2, (3.110)

κ0 = κ1, κNi+1 = κNi . (3.111)

Eliminating heat fluxes from Eq. (3.105) by means of Eq. (3.107), we get the following system

of equations for T ji :

−
[ κ̂ji−1/2

∆xi−1/2

]
T ji−1 +

[ κ̂ji+1/2

∆xi+1/2
+

κ̂ji−1/2

∆xi−1/2
+

∆xiρi
∆tj

cjp,i

]
T ji

−
[ κ̂ji+1/2

∆xi+1/2

]
T ji+1 = wjf,iΣ

j
f,iφ

j
i∆xi + F̄ j−1

i , (3.112)

i = 1, ...Ni .

The boundary conditions (3.103) give extra two equations

T j0 = T jL , T jNi+1 = T jR . (3.113)

3.2.5 Newton’s Method for Solving Nonlinear Equations

We reduced the system of discretized equations for GLOQD, and HT to a system of nonlinear

equations for the cell-average total scalar fluxes and cell-average temperatures. The nonlinear
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system is given by

−
[ κ̂ji−1/2

∆xi−1/2

]
T ji−1 +

[ κ̂ji+1/2

∆xi+1/2
+

κ̂ji−1/2

∆xi−1/2
+

∆xiρi
∆tj

cjp,i

]
T ji

−
[ κ̂ji+1/2

∆xi+1/2

]
T ji+1 = wjf,iΣ

j
f,iφ

j
i∆xi + F̄ j−1

i , i = 1, ..., Ni , (3.114)

T j0 = T jL , T jNi+1 = T jR , (3.115)

− aji−1/2φ
j
i−1 +

(
bji−1/2 + aji+1/2 + zji

)
φji − b

j
i+1/2φ

j
i+1 = dji + qjext,i∆xi + B̂j−1

i , (3.116)

i = 0, ..., Ni + 1 ,

where

aji+1/2 =
E
j
i + ζ̄−.ji+1/2∆xi+1/2

Σ
j
t,i+1/2∆xi+1/2

, i = 0, ..., Ni , (3.117)

aj−1/2 = 0 , (3.118)

bji+1/2 =
E
j
i+1 + ζ̄+,j

i+1/2∆xi+1/2

Σ
j
t,i+1/2∆xi+1/2

, i = 0, ..., Ni , (3.119)

bjNi+3/2 = 0 , (3.120)

zji =

(
Σ
j
a,i − (1− β)νΣf

j

i −∆tj
〈
β̃νΣf

〉j
i

+
1

∆tj v̄ji

)
∆xi , i = 1, ..., Ni , (3.121)

zj0 = −B̄j
L , zjNi+1 = B̄j

R , (3.122)

dji =
Ḡj−1
i−1/2

Σ̃j
J,i−1/2∆xi−1/2

−
Ḡj−1
i+1/2

Σ̃j
J,i+1/2∆xi+1/2

, i = 1, ..., Ni , (3.123)

dj0 = −
Ḡj−1

1/2

Σ̃j
J,1/2∆x1/2

, djNi+1 =
Ḡj−1
Ni+1/2

Σ̃j
J,Ni+1/2∆xNi+1/2

, (3.124)

qjext,0 = qjext,Ni+1 = 0 , B̂j−1
0 = B̂j−1

Ni+1 = 0 . (3.125)

Note that

Σ
j
a,i =

∑G
g=1 Σj

a,g,iφ
j
g,i∑G

g=1 φ
j
g,i

, (3.126)
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(1− β)νΣf
j

i =

∑G
g=1(1− βjg)νjf,g,iΣ

j
f,g,iφ

j
g,i∑G

g=1 φ
j
g,i

, (3.127)

Σ
j
f,i =

∑G
g=1 Σj

f,g,iφ
j
g,i∑G

g=1 φ
j
g,i

, (3.128)

〈
β̃νΣf

〉j
i

=

∑G
g=1 β̂

j
,g,iν

j
f,g,iΣ

j
f,g,iφ

j
g,i∑G

g=1 φ
j
g,i

, (3.129)

Σ
j
t,i+1/2 =

∑G
g=1 Σj

t,g,i+1/2|J
j
g,i+1/2|∑G

g=1 |J
j
g,i+1/2|

, (3.130)

v̄i =

∑G
g=1 φg,i∑G
g=1

φg,i
vg

, (3.131)

ṽji+1/2 =

∑G
g=1 |J

j
g,i+1/2|

∑G
g=1

|Jj
g,i+1/2

|
vg

, (3.132)

Σj
·,g,i =

∑

l

σ·,g(T
j
i )N l

i , (3.133)

E
j
i =

∑G
g=1E

j
g,iφ

j
g,i∑G

g=1 φ
j
g,i

, (3.134)

κ̂ji+1/2 = κ̂
(
κ(T ji ),κ(T ji+1)

)
, (3.135)

cjp,i = cp(T
j
i ) . (3.136)

The resulting system of nonlinear algebraic equations (3.114) and (3.116) for primary unknowns

is expressed in matrix notation as

A(u) = qA , u = (φh, Th) , (3.137)

where

φh = (φj0, φ
j
1, ..., φ

j
Ni+1)T , Th = (T j0 , T

j
1 , ..., T

j
Ni+1)T , (3.138)

A(u) =

(
A1(Th)Th −A2(Th)φh

A3(Th)φh

)
(3.139)

The equation (3.139) is now solved by means of the Newton’s method [13].

J (u(n−1))δu(n−1) = −A(u(n−1)) + qA , u(n−1) = (φ
(n−1)
h , T

(n−1)
h ) , (3.140)
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u(n) = u(n−1) + δu(n−1) , (3.141)

where J is the Jacobian of A. Next, we derive an approximation to the Jacobian for the

nonlinear system (3.114)-(3.116).

The superscript j indicating the current time step is omitted for the brevity of notations.

Assume that u(n) = (φ
(n)
h , T

(n)
h ) (Eq. (3.138)) is an estimation of the solution u = (φh, Th) of the

nonlinear equations (3.114)-(3.116). Eqs. (3.114)-(3.116) are linearized about this approximate

solution u(n). Let

T
(n+1)
i = T

(n)
i + ∆T

(n)
i , (3.142)

φ
(n+1)
i = φ

(n)
i + ∆φ

(n)
i , (3.143)

where ∆T
(n)
i and ∆φ

(n)
i are small. We remind that

κ̂i+1/2 = κ̂
(
κi,κi+1

)
=

κiκi+1(∆xi + ∆xi+1)

κi∆xi+1 + κi+1∆xi
, (3.144)

where

κi = κ(Ti) , (3.145)

and introduce the following notation:

κ̂(n+1)
i+1/2

def
= κ̂i+1/2(T (n+1)) . (3.146)

Using Eq. (3.142), we have

κ̂(n+1)
i+1/2 = κ̂i+1/2

(
T (n) + ∆T (n)

)
= κ̂(n)

i+1/2 + δκ̂(n)
i+1/2 , (3.147)

where is δκ̂(n)
i+1/2 is the resulting variation of κ̂i+1/2. Taking into account Eq. (3.144), we notice

that

δκ̂(n)
i+1/2 ≈

∂(κ̂i+1/2)

∂(κi)

(
dκ
dT

)(n)

i

∆T
(n)
i +

∂(κ̂i+1/2)

∂(κi+1)

(
dκ
dT

)(n)

i+1

∆T
(n)
i+1 , (3.148)

where (
dκ
dT

)(n)

i

=
dκ
dT

∣∣∣∣
T=T

(n)
i

. (3.149)

We now introduce the following notations

(
dκ̂
dT

)−(n)

i+1/2

=
∂(κ̂i+1/2)

∂(κi)

(
dκ
dT

)(n)

i

,

(
dκ̂
dT

)+(n)

i+1/2

=
∂(κ̂i+1/2)

∂(κi+1)

(
dκ
dT

)(s)

i+1

, (3.150)
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and have

δκ̂(n)
i+1/2 =

(
dκ̂
dT

)−(n)

i+1/2

∆T
(n)
i +

(
dκ̂
dT

)+(n)

i+1/2

∆T
(n)
i+1 . (3.151)

We perform necessary differentiation and obtain

(
dκ̂
dT

)−(n)

i+1/2

=

(
κ̂(n)
i+1/2

)2
∆xi

(
κ(n)
i

)2
(∆xi + ∆xi+1)

(
dκ
dT

)(n)

i

, (3.152)

(
dκ̂
dT

)+(n)

i+1/2

=

(
κ̂(n)
i+1/2

)2
∆xi+1

(
κ(n)
i+1

)2
(∆xi + ∆xi+1)

(
dκ
dT

)(n)

i+1

. (3.153)

We now expand other quantities as well keeping only first-order terms

c
(n+1)
p,i = c

(n)
p,i +

(
dcp
dT

)(n)

i

∆T
(n)
i + o(∆T (n)) , (3.154)

Σ
(n+1)
f,i = Σ

(n)
f,i +

(
dΣf

dT

)(n)

i

∆T
(n)
i + o(∆T (n)) . (3.155)

Inserting Eqs. (3.142), (3.143), (3.151), (3.154), and (3.155) into (3.114) yeilds

− 1

∆xi−1/2

(
κ̂(n)
i−1/2 + δκ̂(n)

i−1/2

)(
T

(n)
i−1 + ∆T

(n)
i−1

)

+

[
1

∆xi+1/2

(
κ̂(n)
i+1/2 + δκ̂(n)

i+1/2

)
+

1

∆xi−1/2

(
κ̂(n)
i−1/2 + δκ̂(n)

i−1/2

)

+
∆xiρi
∆tj

(
c

(n)
p,i +

(
dcp
dT

)(n)

i

∆T
(n)
i

)](
T

(n)
i + ∆T

(n)
i

)

− 1

∆xi+1/2

(
κ̂(n)
i+1/2 + δκ̂(n)

i+1/2

)(
T

(n)
i+1 + ∆T

(n)
i+1

)
=

wjf,i

(
Σ

(n)
f,i +

(
dΣf

dT

)(n)

i

∆T
(n)
i

)(
φ

(n)
i + ∆φ

(n)
i

)
∆xi + F̄ j−1 . (3.156)

The boundary conditions (3.115) lead to

T
(n)
0 + ∆T

(n)
0 = T jL , T

(n)
Ni+1 + ∆T

(n)
Ni+1 = T jR . (3.157)

Assuming that the iteration errors ∆T
(n)
i and ∆φ

(n)
i are small and neglecting their products,
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one obtains the following linearized equations:

− 1

∆xi−1/2

[
κ̂(n)
i−1/2 +

(
T

(n)
i−1 − T

(n)
i

)(dκ̂
dT

)−(n)

i−1/2

]
∆T

(n)
i−1

+

[
1

∆xi−1/2

{
κ̂(n)
i−1/2+

(
T

(n)
i −T

(n)
i−1

)(dκ̂
dT

)+(n)

i−1/2

}
+

1

∆xi+1/2

{
κ̂(n)
i+1/2+

(
T

(n)
i −T

(n)
i+1

)(dκ̂
dT

)−(n)

i+1/2

}

+
∆xiρi
∆tj

(
c

(n)
p,i + T

(n)
i

(
dcp
dT

)(n)

i

)
− wf,i

(
dΣf

dT

)(n)

i

φ
(n)
i ∆xi

]
∆T

(n)
i

− 1

∆xi+1/2

[
κ̂(n)
i+1/2 +

(
T

(n)
i+1 − T

(n)
i

)(dκ̂
dT

)+(n)

i+1/2

]
∆T

(n)
i+1 − wf,iΣ

(n)
f,i ∆xi∆φ

(n)
i = R(n)

heat,i ,

(3.158)

where

R(n)
heat,i =

κ̂(n)
i−1/2

∆xi−1/2
T

(n)
i−1 −

[ κ̂(n)
i+1/2

∆xi+1/2
+

κ̂(n)
i−1/2

∆xi−1/2
+

∆xiρi
∆tj

c
(n)
p,i

]
T

(n)
i +

κ̂(n)
i+1/2

∆xi+1/2
T

(n)
i+1

+ wf,iΣ
(n)
f,i φ

(n)
i ∆xi + F̄ j−1 . (3.159)

The equations at the boundaries are the following:

∆T
(n)
0 = 0 , ∆T

(n)
Ni+1 = 0 . (3.160)

The next step is to linearize the equations (3.116). We define

a
(n+1)
i−1/2 = a

(n)
i−1/2 + δa

(n)
i−1/2 , (3.161)

b
(n+1)
i−1/2 = b

(n)
i−1/2 + δb

(n)
i−1/2 , (3.162)

d
(n+1)
i = d

(n)
i + δd

(n)
i , (3.163)

z
(n+1)
i = z

(n)
i + δz

(n)
i . (3.164)
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The equations (3.116) lead to

−
(
a

(n)
i−1/2 + δa

(n)
i−1/2

)(
φ

(n)
i−1 + ∆φ

(n)
i−1

)

+

(
b
(n)
i−1/2 + δb

(n)
i−1/2 + a

(n)
i+1/2 + δa

(n)
i+1/2 + z

(n)
i + δz

(n)
i

)(
φ

(n)
i + ∆φ

(n)
i

)

−
(
b
(n)
i+1/2 + δb

(n)
i+1/2

)(
φ

(n)
i+1 + ∆φ

(n)
i+1

)
= d

(n)
i + δd

(n)
i + qext,i∆xi + B̂j−1 , (3.165)

We assume that variations in coefficients ai−1/2, bi−1/2, di are very small and neglect δa
(n)
i−1/2,

δb
(n)
i−1/2, and δd

(n)
i to obtain

− a(n)
i−1/2

(
φ

(n)
i−1 + ∆φ

(n)
i−1

)
+

(
b
(n)
i−1/2 + a

(n)
i+1/2 + z

(n)
i + δz

(n)
i

)(
φ

(n)
i + ∆φ

(n)
i

)

− b(n)
i+1/2

(
φ

(n)
i+1 + ∆φ

(n)
i+1

)
= d

(n)
i + qext,i∆xi + B̂j−1 . (3.166)

Note that this assumption gives rise to an approximation of the Jacobian. Neglecting the terms

of order two and higher, we derive the linearized equations of the following form:

− a(n)
i−1/2∆φ

(n)
i−1 +

(
b
(n)
i−1/2 + a

(n)
i+1/2 + z

(n)
i

)
∆φ

(n)
i

− b(n)
i+1/2∆φ

(n)
i+1 + φ

(n)
i

(
dz

dT

)(n)

i

∆T
(n)
i = R(n)

GLOQD,i . (3.167)

where

R(n)
GLOQD,i = a

(n)
i−1/2φ

(n)
i−1 −

(
b
(n)
i−1/2 + a

(n)
i+1/2 + z

(n)
i

)
φ

(n)
i + b

(n)
i+1/2φ

(n)
i+1 + d

(n)
i

+ qext,i∆xi + B̂j−1 , (3.168)

(
dz

dT

)(n)

i

=

((
dΣa,i

dT

)(n)

i

−
(
d

dT

[
(1− β)νΣf

])(n)

i

−∆tj
(
d

dT

[〈
β̃νΣf

〉])(n)

i

)
∆xi .

(3.169)

The system of linearized equations (3.158) and (3.168) is solved for ∆T
(n)
i and ∆φ

(n)
i .
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Chapter 4

Numerical Results

In the previous chapters, the details of the methodology were described. In this section, we

proceed to show the performance of the methodology and present numerical results of model

transient problems. The first test is a single fuel pin problem with reflective boundary con-

ditions, two group neutron cross sections, and six groups for the delayed neutron precursor

concentrations. The second test is a transient problem in a quarter core model of a BWR

assembly.

In order to model the evolution of a transient process of any one of these systems, the

corresponding k-eigenvalue problem is solved to obtain the initial configuration [36]. The initial

flux distributions are normalized such that the average power density

P =
1

Lcore
=

∫

Lcore

∫

E

wf (x)Σf (x,E)φ(x,E)dE dx = P0, (4.1)

for an initial power P0

(
Wcm−2

)
. The initial precursor concentrations and thermal flux distri-

bution are evaluated by solving the steady-state equations using the power-normalized neutron

flux values. A transient is then induced in the system by changing the absorption cross sections

at certain region(s) within the problem domain. This process simulates the removal of control

material in these regions.

In each of these tests, the performance of the method is measured by studying the number

of iterations that are required at each level for some chosen instants of time. Results will be

presented for the number of iterations that are required for various time step sizes and various

stages of the transient. Results of the convergence order obtained with temporal refinements will

also be shown. The performance of the multilevel method using method of short characteristics

and α- approximation for time-discretization of transport will be analyzed. The results of these

numerical experiments are compared with the results from the fixed-point iteration method to
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show the properties of the multilevel methodology.

The multilevel methodology has three different iteration cycles (nested iterations) at which

the problem is solved in at each time step. Convergence of the high-order and low-order multi-

group QD solutions is determined by means of the following convergence criteria:

||1− φ(k−1)

φ(k)
||∞ < εk

where k = s, n. The values of the parameter εk used to determine convergence for the different

levels are,

• For the high-order transport equation, εs = 10−6

• For the multigroup low-order QD equations, εn = 10−7

The Newton’s iterations are converged using the following condition for convergence:

||φk − φ(k−1)||∞ <
(

1.0 + ||φ(k)||∞
)
εk (4.2)

where εl = 10−4. Eq. (4.2) ensures that the magnitudes of the fluxes do not affect convergence

determination because of cancellation errors due to finite arithmetic.

4.1 Test 1: Transient in A Fuel Pin

A fuel pin is an elementary unit of any reactor core. A typical fuel pin consists of fissile material

at the core surrounded by gap and cladding material. In this test, the pin-cell comprises of fissile

material surrounded by a moderating material at either sides. The details of this configuration

are shown in Figure 4.1. The boundary conditions for the neutron flux are set to be reflective at

both ends. The fuel material in the pin is subject to Doppler broadening which is an important

effect of physics of interaction. In the fuel, the Doppler effect is modelled with the following

relation [50, 32],

Σa,1(T, t) = Σa,1(T0, t)
[
1 + γ

√
T (x, t) + 273−

√
T0 + 273

]

where, γ is the Doppler constant for fuel material and is evaluated to be 7.471 × 10−3 for

the pin (see Appendix A). T (x, t) is measured in degrees Celcius (oC). T0 is the reference

temperature evaluated at t = 0 s. A transient is introduced in the system by decreasing the

thermal absorption cross-section of the fuel over a very short period of time. This models, to

some extent, a fast removal of the control material from the reactor and causes the power of
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the reactor to increase. The thermal absorption cross-section is evaluated using the following

relation:

Σa,2(T, t) = Σa,2(T0, 0)×





(
1− 0.02 t

tfinal

)
, if t ≤ tfinal,

0.08, if t > tfinal.

Here, tfinal represents the point in time when removal of the control material is stopped. In

this test, we choose that time to be 10−2 seconds. The choice of this time is made to model a

rapid insertion of positive reactivity.

The temperature distribution is another important part in this problem. In order to formu-

late the heat conduction problem the boundary conditions have to be specified as well. In this

test, the temperatures at the boundaries are set to be fixed at 5000C. This value is chosen to

reflect the approximate boundary temperature of the moderator in real core operations. The

heat transfer coefficient (κ) of the moderator is taken to be that of water, and it is set to be

a constant through the whole process. The heat transfer coefficient of the fuel is determined

using the thermal conductivity integral for U02 [31]. It is modeled as a function of temperature

as follows:

κf (T ) =
38.24

402.4 + T
+ 6.126× 10−13(T + 273)3 W

cmK
. (4.3)

4.1.1 Evolution of Solutions

Figures 4.3 and 4.4 show the evolution of the average power and temperature in the fuel pin.

As the control material is removed from the fuel region of the pin, the neutron flux and conse-

quently the average power increase exponentially in the pin. The rapid increase in the neutron

flux also results in the rapid buildup of the delayed neutron precursor concentrations in the

fuel. This buildup is sustained until the power peak is reached. As the neutron flux decreases

after the peak, the average concentration of the precursors stays almost steady. This is be-

cause the average characteristic life span of the precursors is much longer than the time scales

characterizing the rapid change in neutron population in the pin. After some tens of seconds

following the power peak, a decline in the magnitude of precursor concentrations is observed.

This is caused by the precursors decaying to release neutrons back into the system. This results

in a slight increase of the total neutron flux in the system. After about 200 seconds from the

beginning of the transient, the power, delayed precursor concentrations, and the temperature

stabilize.

Figure 4.2 shows the scaled magnitudes of the average power, temperature and precursor

concentration in the pin. The peak average temperature is about 1.5 times initial steady-state

temperature. From Figure 4.4, it is seen that the average temperature increases rapidly in
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Figure 4.1: Model UO2 fuel pin cell in Test
1

1 0 - 4 1 0 - 3 1 0 - 2 1 0 - 1 1 0 0 1 0 1 1 0 2 1 0 3
1 0 - 1
1 0 0
1 0 1
1 0 2
1 0 3
1 0 4
1 0 5
1 0 6
1 0 7
1 0 8
1 0 9

1 0 1 0
1 0 1 1
1 0 1 2  T a v g ( t )

 C a v g ( t )
 P a v g ( t )

Sc
ale

d M
ag

nit
ud

es

t  ( s e c )

Figure 4.2: Test 1: Scaled average power,
total precursor concentration, and temper-
ature as functions of time.
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Figure 4.3: Test 1: Evolution of Pavg.
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Figure 4.4: Test 1: Evolution of Tavg.

the first few seconds followed by a rapid decline to give it a pulse shape. The increase in

temperature is driven by the exponential growth of power in the first stage of the transient. As

the temperature rises, the absorption cross-section in the first group also increases. This is the

effect of Doppler broadening outlined in Eq. (4.1). When the temperature of the fuel is high

enough, the fuel becomes subcritical and the total neutron flux will decrease. This occurs at

around 0.1 seconds in the pin under the given circumstances. The average temperature in the

pin is 528oC at this instant. Detailed look at the spatial distribution of the temperature in the

pin reveals that the average temperature of the fuel is close to being 560oC at that instant of

time. At its maximum, the average temperature in the fuel pin is about 1200oC. The maximum

average temperature in the fuel region is around 1300oC, with the centerline temperature of

1500oC at this instant. The average temperature in the pin steadies out about 200 seconds after

the initiation of the transient. The average steady-state temperature of the pin is approximately
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1000oC.
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Figure 4.5: Test 1: Fast scalar flux as a function of space and time.
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Figure 4.6: Test 1: Thermal scalar flux as a function of space and time.

Figure 4.5 and Figure 4.6 show the spatial distribution of the group fluxes in the fuel pin

at various moments of time. As the control material is removed, the magnitudes of the fluxes

increase while the shapes of the fluxes stay relatively similar. The fast (first) group flux is

raised in the fuel region because of fission neutrons in the fuel. The thermal flux level is slightly

raised in the moderator region. This is expected because fast neutrons are slowed down in the
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moderator. As the temperature rises in the fuel, the fast group absorption cross section increases

due to Doppler effect. This causes the total power and group fluxes to decrease in the pin.

Figure 4.7 shows the group QD factors in the pin at various instants of time. In 1-D slab

geometry, the QD factor Eg is the average value of µ2 over the angular domain (−1 ≤ µ ≤ 1)

with the angular flux as an averaging function. The diffusion theory assumes that the angular

flux is a linear function of the angular variable. In this case, Eg = 1
3 and ∂Eg

∂x = 0. The degree

of transport effects is characterized by the deviation of the QD factor Eg from its diffusion

value, i.e., 1
3 , and by the magnitude of its spatial derivative. In the domain of the fuel pin,

the transport effects are expected to be most pronounced at the edges, the fuel-moderator

interfaces, and in the fuel. These effects are reflected in the plots of the group QD factors. The

QD factors are most different from the diffusion value at the edges and the center of the pin,

while in the fuel-moderator interfaces the spatial derivative is of the largest magnitude within

the entire domain.
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Figure 4.7: Test 1: Quasidiffusion factors (Eg) as functions of space and time.

In the QD method, the QD factors define the closure between the high-order (transport)

problem and the low-order QD equations. It is seen that the values of QD factors do not change

significantly over the course of time for the given problem. In the data whose plots are given in

Figure 4.7, the group QD factors change by less than a percent through the entire period with

reference to the values at t = 0. The first group QD factors change by a maximum of about

0.003% over the entire course of the evolution with reference to values at t = 0. The second

group QD factors change by a maximum of about 0.055% over the course of the evolution with

reference to values at t = 0. Recall that the group QD factors are evaluated as averages of µ2
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Figure 4.8: Test 1: E(x,t).
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Figure 4.9: Test 1: P(x,t).

with ψg(x, µ, t) as the averaging spectrum. From this result we infer that in this test, although

the magnitudes of the angular flux may grow and fall significantly in time, the angular flux

does not change much with respect to angle in the pin.

Figures 4.9 and 4.10 show the spatial distribution of the power and temperature in the fuel

pin at various instants of time, respectively. All fission events in Test 1 occur only in the thermal

group. As a result, the spatial shape of the power follows the spatial shape of the thermal scalar

flux in the fuel region of the pin. The spatial shape of the temperature in the fuel pin is slightly

more intricate. The initial temperature distribution is found by solving the steady-state heat

transfer equation with the steady-state flux (Eq. (2.5)). The temperatures at the boundaries

are fixed to be 500oC through the entire process. We start off with a reactor operating at very

low power (10−6W/cm2). As the control material is removed and neutron fluxes increase in the

system, the temperature initially acquires the spatial shape of the power distribution in the fuel

region of the pin. The spatial shape of the temperature distribution is slightly concave which

also characterizes the spatial shape of the power distribution in the pin. Over the course of the

evolution, the spatial shape of the temperature distribution in the fuel resembles more like that

of a parabolic function. The spatial shape of the temperature is linear in the moderator. This

happens because the moderator does not have any local heat sources in its domain. The heat

produced in the fuel is conducted to the edges of the pin.

4.1.2 Iteration Tables

Table 4.1 lists the numbers of iterations required for solving the problem by means of the MP

method. The iteration counts are reported for various instants of time representing states when

the total flux in the system changes at different rates. Recall that αj(x) =
Log(φ(x)j)−Log(φ(x)j−1)

∆tj

approximates the rate of change of the flux at the given instant of time and position. Table 4.2
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Figure 4.10: Test 1: Temperature as a function of space and time in the fuel pin.

shows the maximum of these values over the spatial domain (αmax) for some moments of time.

This table shows the comparative rates of change of flux in the system for the given time

instants. They were generated using ∆t = 2× 10−4 s.

We notice that the numbers of transport iterations depend on the rate of change of physics

in the system and the size of time-steps used. The total flux in the system changes rapidly in the

first few fractions of a second. These instants of time are marked by relatively high number of

transport iterations. The high numbers of transport iterations required is a result of significant

changes in the fuel cross-sections at these moments. This is caused by the insertion of positive

reactivity and the nonlinear dependence of the absorption cross-sections on temperature. When

the insertion of reactivity is stopped (for t > 10−2 s), it is observed that fewer transport

iterations are required at these stages of the transient.

The number of transport iterations is affected by the size of the time step because the time

step is related to the resulting change in the solution during a unit advancement in time. The

smaller the size of the step, the fewer the iterations required. Likewise, more transport iterations

are required for larger time step sizes since more changes in the system have to be resolved then.

The numbers of multigroup QD iterations required per transport solve remain fairly constant

with different ∆t. In this problem, about 3-4 multigroup QD iterations are required. They are

also similar for various instants of time in this test. It takes about 1 to 2 Newton’s iterations

per multigroup QD iteration to solve this problem. Next, the problem is solved using the α-

approximation scheme for the time-dependent transport equation. We refer to this as the MPα

method.

From Table 4.3, it is seen that the MPα method requires fewer numbers of transport iter-

ations for most instants of time than the MP method. For t ≤ 10−2 s, this method requires
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Table 4.1: Test 1: Numbers of iterations for MP Method.

∆t t Ntransp. Nmgqd Nnewton
Nmgqd

Ntransp

Nnewton
Ntransp

Nnewton
Nmgqd

1.00E-03 5 19 23 3.80 4.60 1.21
2.00E-04 5.00E-03 5 19 21 3.80 4.20 1.11

1.00E-02 7 27 32 3.86 4.57 1.19
2.00E-02 5 18 20 3.60 4.00 1.11
5.00E-02 1 7 9 7.00 9.00 1.29
1.00E-01 1 8 10 8.00 10.00 1.25
1.00E+00 1 5 6 5.00 6.00 1.20
1.00E+01 1 4 4 4.00 4.00 1.00

1.00E-03 3 13 15 4.33 5.00 1.15
1.00E-04 5.00E-03 3 13 15 4.33 5.00 1.15

1.00E-02 5 18 20 3.60 4.00 1.11
2.00E-02 3 10 12 3.33 4.00 1.20
5.00E-02 1 6 8 6.00 8.00 1.33
1.00E-01 1 6 8 6.00 8.00 1.33
1.00E+00 1 5 5 5.00 5.00 1.00
1.00E+01 1 4 4 4.00 4.00 1.00

1.00E-03 3 9 10 3.00 3.33 1.11
5.00E-05 5.00E-03 3 10 11 3.33 3.67 1.10

1.00E-02 3 11 13 3.67 4.33 1.18
2.00E-02 1 6 8 6.00 8.00 1.33
5.00E-02 1 6 8 6.00 8.00 1.33
1.00E-01 1 6 7 6.00 7.00 1.17
1.00E+00 1 4 4 4.00 4.00 1.00
1.00E+01 1 4 4 4.00 4.00 1.00

Table 4.2: Test 1: (α)max using ∆t = 2× 10−4s

t0 (α)max
1× 10−3 9.286917E+01

5× 10−3 1.781087E+02

1× 10−2 4.744266E+02

2× 10−2 2.202258E+02

5× 10−2 2.046172E+02

1× 10−1 1.739615E+02

1× 10+0 4.771138E-01

1× 10+1 9.116764E-02
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Table 4.3: Test 1: Numbers of iterations for MPα Method.

∆t t Ntransp. Nmgqd Nnewton
Nmgqd

Ntransp

Nnewton
Ntransp

Nnewton
Nmgqd

1.00E-03 2 10 12 5.00 6.00 1.20
2.00E-04 5.00E-03 2 10 12 5.00 6.00 1.20

1.00E-02 2 11 14 5.50 7.00 1.27
2.00E-02 1 7 9 7.00 9.00 1.29
5.00E-02 1 7 9 7.00 9.00 1.29
1.00E-01 1 7 9 7.00 9.00 1.29
1.00E+00 1 5 6 5.00 6.00 1.20
1.00E+01 1 4 4 4.00 4.00 1.00

1.00E-03 2 9 11 4.50 5.50 1.22
1.00E-04 5.00E-03 2 9 11 4.50 5.50 1.22

1.00E-02 2 10 12 5.00 6.00 1.20
2.00E-02 1 6 8 6.00 8.00 1.33
5.00E-02 1 6 8 6.00 8.00 1.33
1.00E-01 1 6 8 6.00 8.00 1.33
1.00E+00 1 5 5 5.00 5.00 1.00
1.00E+01 1 4 4 4.00 4.00 1.00

1.00E-03 2 8 9 4.00 4.50 1.12
5.00E-05 5.00E-03 2 9 10 4.50 5.00 1.11

1.00E-02 2 9 11 4.50 5.50 1.22
2.00E-02 1 6 8 6.00 8.00 1.33
5.00E-02 1 6 8 6.00 8.00 1.33
1.00E-01 1 6 7 6.00 7.00 1.17
1.00E+00 1 4 4 4.00 4.00 1.00
1.00E+01 1 4 4 4.00 4.00 1.00

only two transport iterations. For t > 10−2 s, this method requires only one transport iteration

for all sizes of time-steps used. The numbers of multigroup iterations required per transport

iteration for this method is slightly larger than those for the MP method. It is about 5 multi-

group iterations per transport iteration. For moments of time when the system is comparatively

much relaxed (i.e. t = 1.0 s and t = 10.0 s) the numbers of transport, multigroup and newton’s

iterations required are identical for both these methods.

Next, we analyze the quality of the solutions obtained using α-approximation by comparing

the results with those computed by means of the original system of equations that uses time-

dependent high-order transport. For that matter, we evaluate the relative differences in the

average power and temperature obtained using these methods at each moment of time and plot

them.

Figure 4.11 shows the relative differences in the solutions obtained by the two methods. The
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Figure 4.11: Test 1: Relative differences in solutions.

relative differences for the power and the precursor concentration stay under 0.1 % through the

entire period of evolution. The relative differences in the temperature stay under 0.2 % through

the entire process. These differences are at their maximums at around 0.1s in time, which also

corresponds to the moment of peak values for the power and the precursor concentration.

4.1.3 Convergence in Time

Tables 4.4 - 4.7 show the estimated rate (δf(∆t)) of convergence of the solutions at two in-

stants of time using the MP and MPα methods. The values are evaluated using the following

expression:

δf(∆t) =
‖ f(4∆t)− f(2∆t) ‖∞
‖ f(2∆t)− f(∆t) ‖∞

, (4.4)

where f stands for the solutions: φ, T , and C. The spatial mesh is kept unchanged in these

sets of experiments.

Table 4.4: Test 1: Rate of Temporal Con-
vergence for MP method in L∞ norm at
t = 0.1s.

∆t δφ(∆t) δT (∆t) δC(∆t)

1.×10−4 1.90 1.78 1.80

5.×10−5 1.96 1.89 1.90

2.5×10−5 1.98 1.94 1.95

1.25×10−5 1.99 1.97 1.97

Table 4.5: Test 1: Rate of Temporal Con-
vergence for MP method in L∞ norm at
t = 1 s.

∆t δφ(∆t) δT (∆t) δC(∆t)

1.×10−4 1.82 1.76 1.77

5.×10−5 1.91 1.88 1.88

2.5×10−5 1.96 1.94 1.94

1.25×10−5 1.98 1.97 1.97

The rates of convergence are presented for both the MP and MPα schemes. From these

results, we see that as the size of the time-step is refined by a factor of two, the error is also

reduced approximately to a half. As smaller time steps are considered, the factor by which the
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Table 4.6: Test 1: Rate of Temporal Con-
vergence for MPα method in L∞ norm at
t = 0.1 s.

∆t δφ(∆t) δT (∆t) δC(∆t)

1.×10−4 1.90 1.78 1.80

5.×10−5 1.96 1.89 1.90

2.5×10−5 1.98 1.94 1.95

1.25×10−5 1.99 1.97 1.97

Table 4.7: Test 1: Rate of Temporal Con-
vergence for MPα method in L∞ norm at
t = 1s.

∆t δφ(∆t) δT (∆t) δC(∆t)

1.×10−4 1.82 1.76 1.77

5.×10−5 1.91 1.88 1.88

2.5×10−5 1.96 1.94 1.94

1.25×10−5 1.98 1.97 1.97

error decreases becomes closer to being 2. This shows us that both the methods give first-order

convergence in time.

Figure 4.12 shows the rates at which the errors in the solutions decrease with refinement of

the time-steps. As can be seen from the plots, the rates of reduction in the errors of the solutions

for the MPα scheme are very close to the rates of reduction in the errors of the solutions for

the MP scheme.
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Figure 4.12: Test 1: Rate of decrease of error with refinement of time-step. size

4.1.4 Results with the Fixed Point Iteration Method

In this section, we present the tables of iterations required in case of the FPI method. The results

are presented for the short-characteristics discretization (FPI) and the α-approximation (FPIα)

of the time-dependent transport equation in Table 4.8 and Table 4.9, respectively. The results

show that the MP method requires fewer transport (#S) iterations than the FPI method in
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Table 4.8: Test 1: Iterations for FPI Method.

∆t t #S #L #T #L
S

1.00E-03 6 21 2 3.50
2.00E-04 5.00E-03 6 21 2 3.50

1.00E-02 8 29 2 3.62
2.00E-02 6 19 2 3.17
5.00E-02 2 8 2 4.00
1.00E-01 8 25 3 3.12
1.00E+00 8 21 3 2.62
1.00E+01 4 11 3 2.75

1.00E-03 4 15 2 3.75
1.00E-04 5.00E-03 4 15 2 3.75

1.00E-02 6 19 2 3.17
2.00E-02 4 11 2 2.75
5.00E-02 2 7 2 3.50
1.00E-01 6 18 3 3.00
1.00E+00 4 12 3 3.00
1.00E+01 2 6 2 3.00

Table 4.9: Test 1: Iterations for FPIα Method.

∆t t #S #L #T #L
S

1.00E-03 3 12 2 4.00
2.00E-04 5.00E-03 3 12 2 4.00

1.00E-02 3 13 2 4.33
2.00E-02 2 8 2 4.00
5.00E-02 2 8 2 4.00
1.00E-01 10 31 3 3.10
1.00E+00 6 16 3 2.67
1.00E+01 4 10 3 2.50

1.00E-03 3 11 2 3.67
1.00E-04 5.00E-03 3 11 2 3.67

1.00E-02 3 12 2 4.00
2.00E-02 2 7 2 3.50
5.00E-02 2 7 2 3.50
1.00E-01 6 19 3 3.17
1.00E+00 4 11 3 2.75
1.00E+01 2 6 2 3.00

each and every instance. The advantage is more distinct when more fixed-point iterations (#T)

are required. For instance, using ∆t = 10−4 s, the MP method requires only a single transport

iteration at t=1.0 s. The FPI method requires 4 iterations of the transport and 3 fixed-point
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iterations at this moment. For the same moment in time, 8 iterations of the transport and 3

fixed-point iterations are required using ∆t = 2.10−4 s. The MP method still requires only a

single transport iteration.

Table 4.9 presents iterations required for the MPα and the FPIα method. The results for

efficiency are consistent with that for the comparisons made between the MP and the FPI

methods. The MPα methods require fewer iterations of the transport problem than with the

FPIα method for each instance. The reduction is especially significant for t=0.1 s and t=1.0 s

when more fixed-point iterations are required to solve the problem. While only a single transport

iteration is required using the MPα method, as many as 10 transport iterations are required

using the FPIα method.

4.2 Test 2: Transient in a Model BWR Reactor System

The following test is based on the BWR benchmark problem from the Argonne Benchmark

Problem book [51]. This test models a transient in a reactor system. Figure 4.13 shows dimen-

sions of the regions that make up the problem domain in this test. Each region is marked with

the material type that fills the region. Detailed cross-section data and other parameters of this

test are presented in Appendix A.2.

x = 0cm x = 15cm x = 75cm x = 105cm x = 135cm x = 165cm

2 1 2 3 5

Figure 4.13: Material configuration in Test 2.

The problem is defined with two-group neutron cross sections and two-group delayed neutron

data. The heat buildup is adiabatic and has the following form:

∂T (x, t)

∂t
= α(Σf,1φ1(x, t) + Σf,2φ2(x, t)). (4.5)

The boundary conditions for temperature are given by the following:

∂T (x, t)

∂x
|x=0 = 0, (4.6)

∂T (x, t)

∂x
|x=L = 0. (4.7)
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The Doppler effect is modeled in the first group as follows:

Σa,1(t) = Σa,1(0)
[
1 + γ

√
T (x, t) + 273−

√
T0 + 273

]
. (4.8)

The initial temperature distribution is set to be 27oC in the entire problem domain. A transient

is induced in the problem by linearly decreasing the thermal absorption cross-section in material

3 over a period of 2 seconds.

Σa,2(t) = Σa,2(t0)





(1− 0.0606184t) t ≤ 2,

0.8787631 t > 2.
(4.9)

By doing this, we simulate the removal of control material from the domain.

4.2.1 Evolution of Solutions

Figure 4.14 demonstrates the evolution of average power in the system during the course of the

evolution of the system following the start of the removal of control material. The evolution of

the average temperature in the system is shown in Figure 4.15. Figure 4.16 shows the scaled

magnitudes of the average power, temperature, and precursor concentration in the domain as

a function of time. The power in the system increases rapidly until the first second into the

transient process. The temperature and precursor concentrations also increase rapidly upto that

moment. Between 1 and 2 s, the temperature is high enough such that the Doppler broadening of

the thermal absorption cross-section causes the fuel to become subcritical, and the power drops

precipitously. It is seen in Figure 4.16 that the average temperature and precursor concentrations

in the problem steady out following the drop in power. However, as more reactivity is being

inserted, the power increases in the system. The removal of the control material is stopped at

t=2 s. The power drops rapdily following this moment in time.
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Figure 4.14: Test 2: Evolution of average
power.
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Figure 4.15: Test 2: Evolution of average
temperature.
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Figure 4.16: Test 2: Scaled average power,
temperature, and total precursor concen-
trations.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0

0

1 x 1 0 - 6

2 x 1 0 - 6

3 x 1 0 - 6

4 x 1 0 - 6

5 x 1 0 - 6

P (
x,t

)

x  ( c m )

 t = 2 . 0 0 0 E - 0 2
 t = 4 . 0 0 0 E - 0 2
 t = 2 . 0 0 0 E - 0 1
 t = 4 . 0 0 0 E - 0 1

Figure 4.17: Test 2: Power as a function
of space and time.

While the power decreases steeply, the concentration of the precursors remains a constant.

As it was discussed also in Test 1, this is because the precursors decay slower over time than

the rates at which the neutron population change in the domain. As the power drops steeply

after the second peak, we notice that at around t = 8 s, the power profile becomes relatively

stable. This is because of the decay events of the precursors resulting in delayed neutrons that

add to the neutron population in the system.

The average temperature keeps increasing steadily in this test unlike in the previous test.

This is because in this problem heat is not lost through conduction, a consequence of its being an

adiabatic system. As a consequence, the absorption cross-section modeled by doppler broadening

continues to increase at a small rate. This results in neutron population loss, and so we see that

the power is at a state of decline even at 100 seconds after the transient was initiated.
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Figures 4.18 - 4.27 show how various parameters of the problem evolve as a function of space

and time. The control material is removed from material 3. We notice that the magnitudes of the

group fluxes in this region change more than in other parts of the domain. We see in Figure 4.20

that the temperature distribution also increase the most in and around the region occupied by

material 3. The spatial shape of the temperature show discontinuities at material interfaces. The

reason behind this is that no heat is conducted between materials (a consequence of adiabtic

heat buildup), and thus the temperatures at either sides of an interface remain different.

The thermal flux has a peak in the reflector region since the moderator in the reflector region

slows down fast neutrons (see Figure 4.23). We also see that the fast group flux is depressed in

this region. The plots of the fast group flux as a function of space are presented in Figure 4.22.

In Figure 4.18, we see that the total neutron flux is higher in material 2 (fuel without control

material) than in material 1 (fuel with control material). Figures 4.24 and 4.25 show the plots

of the fast and slow group currents as a function of space respectively. Figure 4.21 show the

plot of the total current as a function of space for this test.
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Figure 4.18: Test 2: Total scalar flux as a
function of space and time.
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Figure 4.19: Test 2: Spectrum-averaged
QD factors as a function of space and time.
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Figure 4.20: Test 2: Temperature as a
function of space and time.
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Figure 4.21: Test 2: J (total current) as a
function of space for t=2s.
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Figure 4.22: Test 2: Fast (Group-1) flux as
a function of space and time.
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Figure 4.23: Test 2: Thermal (Group-2)
flux as a function of space and time.
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Figure 4.24: Test 2: Group-1 current
(J1(x, t)) as a function of space for two in-
stants of time.
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Figure 4.25: Test 2: Group-2 current
(J2(x, t)) as a function of space for two in-
stants of time.

Figures 4.26 and 4.27 demonstrate the group quasidiffusion factors on the domain for various

moments of time. It is seen that the QD factors differ from the diffusion value of 1
3 in the reflector

as well as at the vacuum boundary. At the material interfaces, the group QD factors change

sharply that indicate transport effects. Over the course of the evolution, detailed analysis shows

that the first group QD factors change by a maximum of 0.46%, and the second group QD factors

change by a maximum of 0.13%. These maximum differences are seen in the interfacial regions

of material 3 and material 5.
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Figure 4.26: Test 2: Fast (Group-1) group
quasidiffusion factors as a function of space
and time.
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Figure 4.27: Test 2: Thermal (Group-2)
group quasidiffusion factors as a function
of space and time.
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4.2.2 Iteration Tables

Table 4.10 lists the numbers of iterations required to solve this test using the MP method. The

numbers of iterations are listed for 8 independent instants of time when the system undergoes

change at various rates. At t = 0.8 s and t = 1.0 s, the average power in the system increases

rapidly. Between t = 1.0 s and t = 2.0 s, the average power displays rapid increase and decrease

over quite short periods of time. The first peak is attained at t = 1.2 s. The power attains a

second local maximum at t = 2.0 s. At instants t = 5.0 s and t = 10.0 s, the average power,

precursor concentrations and temperature in the system are at relaxation.

For all time-steps studied, the highest numbers of transport iterations are required for

t = 1.2 s when the system is at its most rapid state of change. The least numbers of transport

iterations are seen for t = 10.0 s when the system is at relaxation. This behavior is consistent

with the results of Test 1. Additionally, with the refinement of time-step sizes, the number of

transport iterations required at each instant of time is reduced.

The average numbers of multigroup QD iterations required per transport iteration vary with

time. It is seen that approximately 6 multigroup QD iterations per transport sweep is required

for moment until t = 1.2 s. These values jump to approximately 20 and 15 for t = 1.8 s and

t = 2.0 s, respectively. The average numbers of multigroup QD iterations fall to values between

10 and 6 after t = 2.0 s.

The average numbers of Newton’s iterations required per transport sweep also vary with

time. Upwards of 20 and 10 average numbers of Newton’s solve per transport sweep are seen

for t = 1.8 s and t = 2.0 s, respectively. Next, we look at the numbers of iterations required for

this test using the MPα method.

Table 4.11 lists the numbers of iterations required to solve this test using the MPα method.

This method shows similar behavior in terms of the correlation between the numbers of trans-

port iterations required and the rate of change of physics in the system at a given instant of

time. Also, as time-steps are refined, the required iteration numbers decrease. Fewer numbers

of transport iterations are required using the MPα method than the MP method. However,

slightly larger numbers of multigroup QD iterations per transport sweep and average numbers

of Newton’s iterations per multigroup QD solve are seen for this method. Next, we present

analysis on the quality of the solutions obtained by these methods.

Figure 4.28 shows the relative differences in the solutions obtained by means of the α-

approximation compared to the solution of the complete system of equations that includes

time-dependent high-order transport equation. The solutions are compared using the same spa-

tial mesh and size of the time-step. The particular value of time-step used for this comparison

was dt = 1.10−4 s. As it was seen for Test 1, the largest differences are observed at moments of

time when the rate of change is relatively rapid. In this test, the physics in the system changes
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Table 4.10: Test 2: Numbers of iterations for MP method.

∆t t Ntransp. Nmgqd Nnewton
Nmgqd

Ntransp

Nnewton
Ntransp

Nnewton
Nmgqd

8.00E-01 6 34 38 5.67 6.33 1.12
8.00E-03 1.00E+00 7 47 54 6.71 7.71 1.15

1.20E+00 7 45 55 6.43 7.86 1.22
1.80E+00 3 81 93 27.00 31.00 1.15
2.00E+00 3 35 40 11.67 13.33 1.14
3.00E+00 3 14 17 4.67 5.67 1.21
5.00E+00 1 9 11 9.00 11.00 1.22
1.00E+01 1 6 7 6.00 7.00 1.17

8.00E-01 5 27 31 5.40 6.20 1.15
4.00E-03 1.00E+00 6 34 39 5.67 6.50 1.15

1.20E+00 7 44 53 6.29 7.57 1.20
1.80E+00 3 66 74 22.00 24.67 1.12
2.00E+00 2 28 32 14.00 16.00 1.14
3.00E+00 1 10 13 10.00 13.00 1.30
5.00E+00 1 8 10 8.00 10.00 1.25
1.00E+01 1 6 7 6.00 7.00 1.17

8.00E-01 4 21 24 5.25 6.00 1.14
2.00E-03 1.00E+00 5 28 32 5.60 6.40 1.14

1.20E+00 6 34 38 5.67 6.33 1.12
1.80E+00 3 47 51 15.67 17.00 1.09
2.00E+00 2 24 27 12.00 13.50 1.12
3.00E+00 1 10 12 10.00 12.00 1.20
5.00E+00 1 8 10 8.00 10.00 1.25
1.00E+01 1 6 6 6.00 6.00 1.00

8.00E-01 3 15 18 5.00 6.00 1.20
1.00E-03 1.00E+00 3 19 23 6.33 7.67 1.21

1.20E+00 5 27 31 5.40 6.20 1.15
1.80E+00 2 34 37 17.00 18.50 1.09
2.00E+00 2 20 23 10.00 11.50 1.15
3.00E+00 1 8 10 8.00 10.00 1.25
5.00E+00 1 7 8 7.00 8.00 1.14
1.00E+01 1 6 6 6.00 6.00 1.00

most rapidly over the time interval: 1 s < t < 2 s. The maximum relative difference in the

average power is about 0.05% and this value is attained at t = 1.2 s. At other moments of time,

the relative differences in the average power stay under 10−4 %. The same trend is observed for

both the relative differences in average precursor concentration and the average temperature.

For both these solutions, the largest differeces are observed between t = 1 s and t = 2 s when
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Table 4.11: Test 2: Numbers of iterations for MPα method.

∆t t Ntransp. Nmgqd Nnewton
Nmgqd

Ntransp

Nnewton
Ntransp

Nnewton
Nmgqd

8.00E-01 3 22 26 7.33 8.67 1.18
8.00E-03 1.00E+00 3 28 33 9.33 11.00 1.18

1.20E+00 3 28 36 9.33 12.00 1.29
1.80E+00 4 86 98 21.50 24.50 1.14
2.00E+00 4 38 43 9.50 10.75 1.13
3.00E+00 1 11 14 11.00 14.00 1.27
5.00E+00 1 9 11 9.00 11.00 1.22
1.00E+01 1 6 7 6.00 7.00 1.17

8.00E-01 3 19 23 6.33 7.67 1.21
4.00E-03 1.00E+00 3 23 28 7.67 9.33 1.22

1.20E+00 3 23 30 7.67 10.00 1.30
1.80E+00 3 67 75 22.33 25.00 1.12
2.00E+00 3 31 35 10.33 11.67 1.13
3.00E+00 1 10 13 10.00 13.00 1.30
5.00E+00 1 8 10 8.00 10.00 1.25
1.00E+01 1 6 7 6.00 7.00 1.17

8.00E-01 2 16 19 8.00 9.50 1.19
2.00E-03 1.00E+00 2 19 23 9.50 11.50 1.21

1.20E+00 3 18 21 6.00 7.00 1.17
1.80E+00 2 47 51 23.50 25.50 1.09
2.00E+00 2 25 28 12.50 14.00 1.12
3.00E+00 1 10 12 10.00 12.00 1.20
5.00E+00 1 8 10 8.00 10.00 1.25
1.00E+01 1 6 6 6.00 6.00 1.00

8.00E-01 2 13 16 6.50 8.00 1.23
1.00E-03 1.00E+00 2 16 20 8.00 10.00 1.25

1.20E+00 3 16 20 5.33 6.67 1.25
1.80E+00 2 35 38 17.50 19.00 1.09
2.00E+00 2 20 23 10.00 11.50 1.15
3.00E+00 1 8 10 8.00 10.00 1.25
5.00E+00 1 7 8 7.00 8.00 1.14
1.00E+01 1 6 6 6.00 6.00 1.00

the relative differences are about 0.05%. For most other periods during the evolution, the rela-

tive differences in the solutions are less than 10−4 %.
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Figure 4.28: Test 2: Relative differences in average power, precursor concentration and tem-
perature.

4.2.3 Convergence in Time

Tables 4.12 - 4.13 show the estimated rates of temporal convergence using the MP method

for t = 1 s and t = 2 s, respectively. Tables 4.14 - 4.15 show the estimated rates of temporal

convergence using the MPα method for the same instants of time, respectively. It can be seen

from the tables that both the methods converge identically for each instant of time. Also, the

convergence is of order 1.

Table 4.12: Test 2: Rate of Temporal Con-
vergence for MP method in L∞ norm at
t=1 s.

∆t δφ(∆t) δT (∆t) δC(∆t)

1.×10−4 2.05 2.05 2.05

5.×10−5 2.02 2.02 2.02

2.5×10−5 2.01 2.01 2.01

1.25×10−5 2.01 2.01 2.01

Table 4.13: Test 2: Rate of Temporal Con-
vergence for MP method in L∞ norm at
t=2 s.

∆t δφ(∆t) δT (∆t) δC(∆t)

1.×10−4 1.78 2.02 1.92

5.×10−5 1.89 2.02 1.96

2.5×10−5 1.95 2.01 1.98

1.25×10−5 1.97 2.00 1.99

Table 4.14: Test 2: Rate of Temporal Con-
vergence for MPα method in L∞ norm at
t=1 s.

∆t δφ(∆t) δT (∆t) δC(∆t)

1.×10−4 2.05 2.05 2.05

5.×10−5 2.02 2.02 2.02

2.5×10−5 2.01 2.01 2.01

1.25×10−5 2.01 2.01 2.01

Table 4.15: Test 2: Rate of Temporal Con-
vergence for MPα method in L∞ norm at
t=2 s.

∆t δφ(∆t) δT (∆t) δC(∆t)

1.×10−4 1.78 2.02 1.92

5.×10−5 1.89 2.02 1.96

2.5×10−5 1.95 2.01 1.98

1.25×10−5 1.97 2.00 1.99
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Figures 4.29 - 4.31 show the rate of decrease of errors in the total flux, temperature and

precursor concentration with refinement of ∆t. We observe that the errors decrease when time-

step is refined for each method.
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Figure 4.29: Test 2: Rate of decrease of errors in total flux (φ) with refinement of time-step
sizes for t = 1 s and t = 2 s respectively.
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Figure 4.30: Test 2: Rate of decrease of errors in temperature (T ) with refinement of time-step
sizes for t = 1 s and t = 2 s respectively.
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Figure 4.31: Test 2: Rate of decrease of errors in total precursor concentration (C) with re-
finement of time-step sizes for t = 2 s.

4.2.4 Results with the Fixed Point Iteration Method.

Table 4.16 show the iterations required at various levels using the FPI method. The results

clearly show that the MP method requires much fewer numbers of transport (#S) iterations.

The differences are more pronounced at moments when more fixed-point iterations (#T) are

required. For instance, at t = 1.2 s, 6 fixed-point iterations are required using the FPI method

and ∆t=8.10−3 s. In the meantime, a total of 27 transport iterations are required at this

moment. The MP method requires only 7 transport iterations to solve the problem at the given

instant using the same time-step. We notice a reduction in the numbers of transport iterations

by a factor of about 4 using the MP method.

Similarly, for t = 1.8 s, 21 iterations of the transport equation are required using the FPI

method and ∆t=8.10−3 s. The MP method requires 3 transport iterations at this instant of

time. This represents a reduction in the numbers of transport iterations by a factor of 7.

Table 4.17 shows the iterations required using the FPIα method. Similar correlations that

were drawn for the MP and FPI methods are seen. Significantly fewer numbers of transport

iterations are required using the MPα method than the FPIα method. The difference is more

remarkable during moments of time when more fixed-point iterations are required to solve the

problem. Note that there is no variation in the numbers fixed-point iterations required between

the FPI and the FPIα methods. This is as expected because these two methods vary only in

how the transport problem is solved, and that does not affect the convergence of temperature

at any instant of time.
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Table 4.16: Test 2: Iterations for FPI Method.

∆t t #S #L #T #L
S

8.00E-01 7 44 2 6.29
8.00E-03 1.00E+00 10 62 3 6.20

1.20E+00 27 153 6 5.67
1.80E+00 21 212 5 10.10
2.00E+00 21 141 5 6.71
3.00E+00 14 62 4 4.43
5.00E+00 8 40 3 5.00
1.00E+01 8 30 3 3.75

8.00E-01 6 35 2 5.83
4.00E-03 1.00E+00 7 45 2 6.43

1.20E+00 24 133 5 5.54
1.80E+00 16 146 4 9.12
2.00E+00 14 97 4 6.93
3.00E+00 10 46 3 4.60
5.00E+00 8 32 3 4.00
1.00E+01 4 18 3 4.50

Table 4.17: Test 2: Iterations for FPIα Method.

∆t t #S #L #T #L
S

8.00E-01 4 26 2 6.50
8.00E-03 1.00E+00 6 34 3 5.67

1.20E+00 27 160 6 5.93
1.80E+00 22 221 5 10.05
2.00E+00 22 145 5 6.59
3.00E+00 11 52 4 4.73
5.00E+00 7 33 3 4.71
1.00E+01 7 25 3 3.57

8.00E-01 4 23 2 5.75
4.00E-03 1.00E+00 4 26 2 6.50

1.20E+00 24 138 5 5.75
1.80E+00 15 149 4 9.93
2.00E+00 15 97 4 6.47
3.00E+00 8 38 3 4.75
5.00E+00 6 27 3 4.50
1.00E+01 6 19 3 3.17
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Chapter 5

Discussion

This thesis presents the application of the multilevel scheme based on low-order quasidiffusion

equations to solve a particular class of multiphysics problems from reactor physics. The system

of equations (and the method) can be interpreted as nonlinear multigrid method in phase

space. Results arising out of this research suggest that this scheme has the potential to be more

efficient than conventional methods for solving problems discussed in this work. In this chapter,

we discuss the main resulting conclusions out of this work, as well as potential avenues for

future work in both the theoretical and applied numerical aspects of the method.

5.1 Main Conclusions

The multilevel scheme studied in this work provides a new stage in the development of nonlin-

ear multilevel methods for solving reactor physics problems. We developed a method based on

multilevel projection (MP) for solving a particular class of coupled system of equations. We com-

pared the performance of the multilevel method with the conventional iteration method based

on fixed point iterations (FPI) of the coupled equations. Secondly, we used the α- approximation

(MPα , FPIα ) to solve the time-dependent transport problem. This is an approximate method

based on low-order scalar flux. We compared the performance and quality of the solutions ob-

tained with α- approximation to the solutions obtained with short-characteristic discretization

of the transport equation. The relative efficiency of each method is determined on the basis of

the numbers of transport iterations required to solve the problem at any given moment of time.

For any given method, the numbers of transport iterations required are seen to depend on

the rate of change of physics of the system and the size of the time-steps used to solve the

problem. This is not entirely unexpected. When the physics change more rapidly in the system,

higher numbers of transport iterations are required because there are more changes to resolve at

these instants. Likewise, larger time-steps may require larger numbers of transport iterations.
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This is also as expected because when the time-steps are larger, the solutions at successive

moments of time are further apart.

It was demonstrated that the MP method is more efficient at solving the concerned prob-

lems than the FPI method. This conclusion is based on the results from both the test problems.

The gain in efficiency with the MP method is more significant at moments of time when the

temperature change is rapid. At these instances, the MP method resolve the effects of tem-

perature iterations in the innermost cycle so that the transport problem needs to be evaluated

minimal numbers of times. In the FPI approach, the effects of temperature are resolved through

iterations of the heat transfer and the transport problem. As a result, more transport iterations

are required.

The computational efficiency of the MP method stem from the following features. First, the

MLOQD equations are dependent on nonlinear factors (Eg) which are stable quantities that

weakly depend on the high-order solution, i.e. angular flux. Secondly, the GLOQD equations

serve as a filter in removing error modes from the multigroup spectrum and lead to fast con-

vergence of the multigroup spectrum. The Newton’s method also leads to rapidly convergent

search of the solutions for the nonlinear coupled system of equations in the innermost cycle of

the MP method. All of these features contribute to the increased efficiency of the MP method.

It was observed that the solutions produced by the MP and MPα method differ by less

than 0.05% at all times. The relative differences in the solution are comparatively larger during

periods when the system changes rapidly. During most periods of the evolution of the system,

the relative differences in the solution stay below 10−4%. It is also observed that both these

methods converge with first-order accuracy. Additionally, we observed that the MPα method

required fewer or equal transport iterations than the MP method for solving the transport

problem. This is seen despite the fact that the α- approximation method introduces extra

nonlinearity in the time-dependent transport problem. Our results show that at least when the

presented multilevel method is used to solve the given problems, the extra nonlinearity does

not give rise to increased transport iterations of the MP method.

5.2 Future Work

The results obtained in this work establishes a foundation for many directions of further re-

search. Naturally, the next step would be to apply the proposed methodology on multidimen-

sional problems. The solution of multidimensional transport problems are much more compli-

cated and computationally strenuous. The application of the MP method could greatly reduce

the computational costs involved by lowering the numbers of transport iterations required for

solving multidimensional multiphysics reactor problems.

In the presented work, the nonlinear grey low-order problem for total scalar flux and temper-
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ature distribution is solved by Newton’s method. Nonlinear methods such as JFNK [13, 52, 53]

are very efficient and applicable for solving problems of this kind. These methods could be used

to explore the benefits offered by the multilevel scheme when larger time-steps are used. Ada-

pative time-stepping could be used so that at moments of fast transient, important features of

the solutions are captured. Additionally, higher-order temporal discretization schemes for time-

dependent system of equations can be developed. The α- approximation for time-dependent

transport is shown to exhibit first order convergence in time. An interesting question to explore

is whether it exhibits second or higher temporal convergence orders.

The multilevel projection method developed in this research has shown to be an effective

method for solving multiphysics problems of reactor physics. It shows obvious gain in effi-

ciencies over conventional approach of solving the same class of problems. Based on the results

obtained in this research, application of this methodology on more complex problems is strongly

encouraged.
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Appendix A

Cross-sections and Materials Data

A.1 Test 1

Test 1 is a two group problem. The group velocities are: v1 = 4.683 × 106 cm/s and v2 =

5.636× 106 cm/s. The material cross-sections are listed in the tables below.

Table A.1: Cross-sections data for fuel.

g 1 2

Σt,g 0.2 1.0

Σs,0,1→g 0.0185 0.015

Σs,0,2→g 0.0 0.8

Σf,g 0.0 0.1

νf,g 0.0 2.0

χf,g 1.0 0.0

Table A.2: Cross-sections data for moder-
ator.

g 1 2

Σt,g 0.2 1.1

Σs,0,1→g 0.017 0.03

Σs,0,2→g 0.0 1.1

Σf,g 0.0 0.0

νf,g 0.0 0.0

χf,g 0.0 0.0

Table A.3: Data for the delayed neutron precursor equations.

d λd(s
−1) βd

1 0.0124 0.0002145

2 0.0305 0.0014235

3 0.1110 0.0012740

4 0.3010 0.0025675

5 1.1300 0.0007475

6 3.0000 0.0002730
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All neutrons born as a result of the decay of the precursors are assumed to be in the first

group. Hence, χdelayed1 = 1.0 and χdelayed2 = 0.0. In Table A.3, λd represents the decay constant

of the precursors of group d. βd represents the fraction of all fission events that result in the

production of precursors of the group ’d’.

A.2 Test-2

Test 2 is a two group problem. The mean number of neutrons per fission, νf=2.43. The group

velocities are: v1 = 3.107 cm s−1 and v2 = 3.105 cm s−1. Also, χdelayed1 = 1.0 and χdelayed2 = 0.0.

The data for feedback model is as follows:

α = 3.83× 10−11 oK cm3 : conversion factor,

γ = 2.034× 10−3 oK1/2 : feedback constant,

ε = 3.204× 10−11 W (fission−1) : energy conversion factor.

The group cross-sections for each material type are given in Table A.4. These values have

the units in cm−1.

Table A.4: Initial Two-Group Constants

Material index Material description Group i Σt Σa νΣf Σs,0,i→j
1 Fuel 1 1 0.7968 0.008252 0.004602 0.0

with rod 2 4.7393 0.1003 0.1091 0.02533

2 Fuel 1 with- 1 0.7886 0.007181 0.004609 0.0
out rod 2 5.2576 0.07047 0.08675 0.02767

3 Fuel 2 1 0.7943 0.008002 0.004663 0.0
with rod 2 4.7824 0.08344 0.1021 0.02617

4 Fuel 2 with- 1 0.7943 0.008002 0.004663 0.0
out rod 2 4.7824 0.0073324 0.1021 0.02617

5 Moderator 1 0.7955 0.0006034 0.0 0.0
2 6.2814 0.01911 0.0 0.04754

Table A.5: Delayed Neutron Data for Test-2

Group (d) λd βd
1 0.00654 0.0054

2 1.35 0.001087
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