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ABSTRACT 

A correction-based resonance self-shielding method is developed that allows annular 

subdivision of the fuel rod. The method performs the conventional iteration of the embedded self-

shielding method (ESSM) without subdivision of the fuel to capture the inter-pin shielding effect. 

The resultant self-shielded cross sections are modified by correction factors incorporating the 

intra-pin effects of radial variation of the shielded cross section, radial temperature distribution 

and resonance interference. A quasi-1D slowing-down equation is developed to calculate such 

correction factors. The method is implemented in the DeCART code and compared with the 

conventional ESSM and subgroup method with benchmark MCNP results. The new method 

yields substantially improved results for both spatially dependent reaction rates and eigenvalues 

for typical PWR pin cell cases with uniform and non-uniform fuel temperature profiles.   

Keywords: spatial self-shielding with non-uniform temperature; ESSM; resonance 

interference. 
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I. INTRODUCTION 

When deterministic neutron transport methods are applied to lattice or whole-core problems, 

the multi-group approximation is usually applied to the cross section treatment for the energy 

domain. Due to the complicated energy behavior of resonance cross sections, the weighting 

spectrum for collapsing multi-group cross sections is very dependent on energy and space, which 

becomes a crucial challenge when analyzing a lattice or full-core configuration. There are 

generally two groups of approaches to perform the resonance self-shielding calculation. The first 

one is to solve the slowing-down equations for the problem of interest using continuous-energy 

(CE) or ultrafine-group cross sections in order to account for these resonance phenomena. 

Because of the computational burden, slowing-down codes are restricted to local geometries such 

as pin cells or assemblies. For example, RMET21 [1] and the early version of CENTRM [2] are 

restricted to 1-D cylindrical pin cell geometry that has been converted from the square pin cell 

using the Wigner-Seitz approximation. The MERIT [3] code analyzes a 2-D pin cell calculation 

using the Method of Characteristics (MOC), which removes the possible error arising from the 

Wigner-Seitz approximation. Recently, this 2-D pin cell capability has been included in the latest 

version of CENTRM [4]. To account for the inter-pin heterogeneity, a 2-D slowing-down code 

for assembly calculation is first attempted in the GEMINEWTRN code [5]. The self-shielded 

cross sections can be accurately generated by GEMINEWTRN with regard to the spatial 

heterogeneity, but the computing time becomes an issue when the assembly-size problem is 

solved by the direct slowing-down method. Currently, solving the slowing-down equation for a 2-

D full core problem is still computationally prohibited, so the influence of neighboring assemblies 

or reflector regions on the shielded cross sections is hardly being considered by direct slowing-

down method.   

The second group of approaches for resonance self-shielding calculation utilizes pre-computed 

integral tables. Under the most circumstance, resonance integral (RI) tables are generated. To 
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compute RI tables, the slowing-down equation is solved over the range of a parameter called 

background cross section which is a measure of dilution. The Bondarenko method [6] is a 

conventional approach correlating RI and background cross section. Based on the equivalence 

theory [7], the heterogeneous self-shielding effect can be modelled by including an equivalence 

cross section into the background cross section, and variations of Bondarenko method were 

developed to treat heterogeneity [7,8]. In the past two to three decades, a powerful alternative of 

the Bondarenko method, the subgroup method [9,10] has been developed and widely 

implemented in modern lattice codes. In the subgroup approach, the detailed cross section 

behavior of each coarse energy group is replaced by its probability density representation 

preserving certain integrals. There are two groups of methodologies for determining the subgroup 

probability tables [11]. The first one is the physical probability table, in which the RI tables are 

converted into a set of subgroup levels and weights by preserving RI or effective cross section 

over different background cross sections. The second one is the mathematical probability table. 

Instead of preserving resonance integral, it preserves the cross section moments by processing the 

point-wise cross section data. Recently another promising RI table based method, the iterative 

self-shielding method [12,13] was developed by Korea Atomic Energy Research Institute 

(KAERI) and Oak Ridge National Laboratory (ORNL). ORNL entitled it the Embedded Self-

Shielding Method (ESSM) because compared to the conventional Bondarenko method in which 

the Dancoff factor is usually evaluated outside the transport calculation, ESSM provides tighter 

coupling between the neutron transport and self-shielding calculations, assuring that the 

heterogeneous self-shielding effects are consistent with the multi-group transport calculations of 

the system. 

Since the application of integral table based methods only involve multi-group calculation, 

these methods are much more efficient than directly solving the CE slowing-down equation for 

the specific configuration. However, integral table based methods have their own issues. First, the 
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integral tables are generally determined for each resonance isotope independently, so resonance 

interference is neglected at this step and treated afterwards at the multi-group level, e.g., using 

Bondarenko iteration as described in the WIMS code [8]. Nevertheless, it is shown in early 

research by Williams that the corrections for interference effect in the multi-group framework 

cannot resolve various conditions of the resonance overlap for a mixture of resonance isotopes 

[14]. Alternatively, efforts were made to incorporate the interference effect by extending the 

dimension of RI table or subgroup parameters using the density ratio of two resonance isotopes 

[15,16]. Difficulty for these methods occurs when the number of resonance isotopes becomes 

large, e.g. for MOX fuel or depleted fuel. An increasing size of RI table has to be determined 

depending on the number and significance of the resonance isotopes in the specific problem, 

which is practically inefficient. The second issue of integral table based method is the spatial self-

shielding within the fuel region. The Bondarenko method and ESSM primarily rely on the 

equivalence theory, which was conventionally developed for a single fuel region without 

subdivision. However, high-fidelity reactor simulations of today require a resonance self-

shielding model which is able to resolve the spatial effects within the fuel rod for multi-region 

depletion and power density calculation [17]. There have been a few efforts to develop spatially-

dependent self-shielding models [18,19,20] in the framework of the Bondarenko method. The 

multiple fuel region escape probability is calculated by either extending the rational type 

approximation or rigorous computation from the point-wise cross section data. The shielded cross 

sections are still represented in terms of resonance integral, with extra coefficients accounting for 

the spatial effects. Limitation of these models is the absence of treatment for the non-uniform 

temperature distribution throughout the fuel rod. For the conventional lattice calculation, a so 

called ‘effective temperature’ (single value) is chosen to replace the realistic temperature 

distribution in the fuel rod. Various approaches to obtain the effective temperature were discussed 

in Ref. [21]. The concept behind these approaches is to conserve the neutron absorption of a non-

uniform temperature profile with that of the effective temperature. Apparently, the effective 
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temperature model cannot be used with radially dependent temperatures if one wants to obtain 

accurate self-shielded cross sections in every sub-region of the fuel. Although the subgroup 

method reduces the dependence on equivalence theory, which leads to a better representation of 

spatial self-shielding, the lack of theoretical foundation in treating non-uniform temperature 

restricts its applicability, particularly to the direct whole core problems with thermal feedback. 

Prescriptions to this theoretical deficiency were presented in Ref. [22,23] to improve the accuracy 

of fuel temperature coefficient, but no detailed comparisons of the spatially dependent reaction 

rates with regard to the non-uniform temperature profiles were provided. Additionally, the 

problem becomes more difficult if the resonance interference effect is also considered in the 

spatially self-shielding calculations. 

 A new correction-based method [24,25] was devised to resolve the resonance interference 

effect explicitly for a mixture of resonance isotopes by utilizing ESSM and 0-D slowing-down 

calculation, respectively. However, this approach was restricted to a single fuel region. Motivated 

by the success of the correction method using the slowing-down solution, a comprehensive 

method is developed in this paper to account for all three issues i.e., resonance interference, 

spatial self-shielding, and non-uniform temperature profile. The method incorporates continuous 

energy (pointwise cross section) slowing-down model. A quasi-1D slowing-down equation is 

developed where the equivalence cross section is allowed to be energy dependent. Correction 

factors are computed by comparing the self-shielded cross sections of the subdivided fuel pallet 

with a single-region fuel pallet, using the quasi-1D slowing-down calculation to compute both 

sets of shielded cross sections. ESSM is still performed to generate the base shielded cross 

sections with single fuel regions for the global geometry. These shielded cross sections are then 

modified by the correction factors that depend on the fuel sub-regions. The theoretical foundation 

for the model will be discussed first, followed by the numerical verifications. 
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II. THEORY 

This section consists of three parts. First, the fundamentals of ESSM and associated RI tables 

are discussed, followed by the derivation of the quasi-1D slowing-down equation for efficient 

calculation of the correction factors. This section concludes with a description of how the 

correction factors are applied. 

 

II.A. ESSM and RI tables 

ESSM is fundamentally a variation of the extensively used Bondarenko method [12,13]. It 

evaluates the equivalence cross section by performing iterations between the calculation of the 

self-shielded cross sections and the fixed-source transport problem for the geometry and 

composition of interest, typically a 2-D plane of the core and reflector. The subgroup approach 

also uses 2-D fixed-source transport solutions to evaluate the subgroup-level dependent 

equivalence cross sections. Thus ESSM avoids the complicated generation of subgroup levels and 

weights, although this is only done once for a given library. Next, the ESSM and associated RI 

tables are consistently derived. 

Generally, the goal of resonance calculation is to evaluate multi-group self-shielded cross 

section ,x gσ  for resonance isotopes at reaction channel x in energy group g with group width gu∆ ,  

, ( ) ( ) ( , ) ( , )
g g

x g xu u
r u r u du r u duσ σ φ φ

∆ ∆
= ∫ ∫                                            (1) 

where ( , )r uφ  is the neutron flux at spatial location r for lethargy u. For the best accuracy of the 

resonance energy range, the weighting flux ( , )r uφ  in Eq. (1) should be the solution of the 

neutron slowing-down equation for the specific problem being analyzed. Denote F as fuel 

material and M as a material other than fuel (cladding, coolant, etc.). Assuming a single fuel 
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region without subdivision, the collision probability form of the slowing-down equation is given 

as 

, ( ) ( ) ( ) ( ) ( ) ( )F t F F F F F F J J F J
J M

V u u V P u Q u V P u Q uφ → →
∈

Σ = + ∑                          (2)  

where FV , , ( )t F uΣ and ( )F uφ  are the volume, total cross section and scalar flux of the fuel, 

respectively. ( )F FP u→ and ( )J FP u→  are the first flight collision probabilities from fuel to fuel 

and from material J to fuel. The source term ( )FQ u can be explicitly written as  

'

, ,( ) ( ') ( ') '
1iso

u uu

F s F iso Fu
iso iso

eQ u u u du
e

φ
α

−

−
= Σ

−∑∫                                      (3) 

where isoε and isoα are the maximum lethargy gain and the fractional energy loss when a neutron 

scatters off isotope iso, and , ,s F isoΣ is the scattering cross section of isotope iso in the fuel. As in 

the resonance energy range, three major assumptions underpin Eq. (3): (a) the scattering source is 

isotropic in the center-of-mass system, and includes only s-wave elastic reactions; (b) up-

scattering is neglected; and (c) the direct fission source is neglected. To proceed, the Intermediate 

Resonance (IR) approximation [26] is applied to the fuel material to obtain 

   (4) 

where , ,p F isoΣ denotes the potential scattering cross section and isoλ is the IR factor, where the 

notation is then simplified by dropping the isotope index. The scattering source for materials 

other than fuel can be written in a similar form as Eq. (3), but with the Narrow Resonance (NR) 

approximation, 

( ),( )J p JQ u J M= Σ ∈                                                      (5) 
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Substitution of Eqs. (4) and (5) into Eq. (2) for ( )FQ u and ( )JQ u yields 

, , , ,( ) ( ) ( ) (1 ) ( ) ( ) ( )F t F F F F F F p F F s F F J J F p J
J M

V u u V P u u u V P uφ λ λ φ→ →
∈

 Σ = Σ + − Σ + Σ  ∑    (6) 

Assuming , ,( )t J p JuΣ = Σ for the non-fuel materials and using the reciprocity relation, 

, ,( ) ( ) ( ) ( )X X Y t X Y Y X t YV P u u V P u u→ →Σ = Σ , Eq. (6) can be transformed into 

( ), , , ,( ) ( ) 1 ( ) (1 ) ( ) ( ) ( ) ( )t F F esc F p F F s F F t F escu u P u u u u P uφ λ λ φ Σ = − Σ + − Σ + Σ           (7) 

where the escape probability is defined as ( ) ( )esc F J
J M

P u P u→
∈

= ∑ . Based on the conventional 

equivalence theory, the escape probability can be written as a single-term rational form 

,

( )
( )

e
esc

t F e

P u
u
Σ

=
Σ + Σ

                                                          (8) 

By applying Eq. (8), the fuel flux in Eq. (7) becomes 

,

, ,

( )
( ) (1 ) ( )

F p F e
F

t F F s F e

u
u u

λ
φ

λ
Σ + Σ

=
Σ − − Σ + Σ

                                             (9) 

If the scattering cross section term is split into potential and resonance parts, i.e.

, , ,( ) ( )s F RS F p Fu uS = S + S , 

,

, , ,

( )
( ) ( )

F p F e
F

a F F RS F F p F e

u
u u

λ
φ

λ λ
S + S

=
S + S + S + S

                                     (10) 

As usual, the summation of energy-independent terms are defined as the background cross section 

,

, , , , ,

( ) ( )
( ) ( ) ( ) ( )

b isob
F F

a iso iso RS iso b a iso iso RS iso b iso

u or u
u u u u

s
φ φ

λ s λ ss
S

= =
S + S + S + +

         (11) 
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where , ,,b F p F e b iso b isoNλ sΣ = Σ + Σ = Σ  and isoN is the number density of resonance isotope 

iso. Eq. (11) assumes no resonance interference among resonance isotopes so the microscopic 

cross sections in the denominator pertain only to resonance isotope iso. Applying Eq. (11) to Eq. 

(1) indicates that the shielded cross section is only dependent on the background cross section  

,
,

, , ,
, ,

,

, , ,

( )
( ) ( )

( ) ( )

g

g

b iso
x isou

a iso iso RS iso b iso
x iso g

b iso

u
a iso iso RS iso b iso

u du
u u

du
u u

s
s

s λ ss
s s

s λ ss

∆

∆

+ +
=

+ +

∫

∫
                              (12) 

Given the connection between shielded cross section and background cross section, the 

slowing-down calculations are performed to obtain the self-shielded cross sections for a range of 

background cross sections. A straightforward way would be to solve the slowing-down equation 

for a homogeneous mixture of a resonant material and a scattering nuclide whose content can be 

varied through the background cross section as in the GROUPR module of NJOY [27]. However, 

a better way is to use a set of heterogeneous pin cell configurations in the realistic reactor 

geometry by varying the fuel and moderator densities or fuel to moderator ratios to achieve a 

range of background cross sections. The transition from homogeneous to 1D cylindrical geometry 

was firstly attempted when performing the verification calculation in Ref. [28] and later this 

approach was adopted for the generation of subgroup weights in the HELIOS code [29]. Other 

efforts employing the heterogeneous RI table rather than the homogeneous RI table can be found 

in Ref. [30,31]. ESSM employs a search for the equivalence cross section by iterating between 

the pre-computed RI tables and the fixed source problem, and this consistency between 

generating and using the tables is essential for the accuracy of the method, which is discussed 

next.  

The multi-group form of Eq. (11) can be obtained by first rearranging the denominator to the 

left hand side, and then integrating over the group boundaries, 
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,
,

, , , , ,

b g g
F g

a iso g iso RS iso g b g

u
φ

λ
S ∆

=
S + S + S

                                                     (13)   

The background cross section can then be solved in terms of the flux 

( ), , , , ,
,

,

a iso g iso RS iso g F g
b g

g F gu
λ φ

φ
S + S

S =
∆ −

                                                     (14) 

The dependence of the shielded cross section versus background cross section can be determined 

by a series of realistic 2-D pin cell problems with various configurations similar to Ref. [30,31]. 

For each configuration, the multi-group self-shielded cross sections are computed from the exact 

2-D slowing-down calculation. To obtain the corresponding background cross section, the 

unknown flux in Eq. (14) is solved from a fixed source problem of the same 2-D pin cell 

configuration formulated using the IR approximation (the multi-group shielded cross sections in 

the following equation are computed from the exact 2-D slowing-down calculation) 

( ) ( ), ,
1( , ) ( ) ( , ) 1 ( ) ( ) ( ) ( )

4g t g g RS g p g p gr r r r r r r uϕ ϕ λ φ λ
p
 ∇ ⋅Ω Ω + S Ω = − S + S + S ∆   (15) 

where ( , )g rϕ Ω  is the angular flux with respect to location r and angle Ω . Therefore, the 

procedure of generating heterogeneous RI table for ESSM can be summarized as three steps: (a) 

Solve exact slowing-down equation for every pin cell configuration to obtain the multi-group 

self-shielded cross sections; (b) Solve Eq. (15) to obtain the scalar flux of the fixed source 

problem for every pin cell configuration; (c) Obtain the background cross section by Eq. (14) so 

that the self-shielded cross section and background cross section are linked. This procedure is 

performed for every resonance isotope at several temperatures of interest. 

When performing the resonance calculation of a specific problem, ESSM directly uses these 

RI tables for cross section interpolation. An initial set of self-shielded cross sections can be 
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obtained by assuming 0eΣ =  so that ,b F p F isoNs λ= Σ . With the coefficients of these multi-

group shielded cross sections, Eq. (15) is solved for every 2-D plane and the resulting flux is used 

in Eq. (14) to update the background cross sections. Then a new set of self-shielded cross sections 

can be obtained by RI table interpolation. The procedure iterates until the equivalence cross 

sections eΣ of all resonant regions of the 2-D plane converge. 

To be consistent with the generation of the RI tables, the ESSM iteration should be performed 

for each resonance isotope independently, where other resonance isotopes are treated as 

background isotopes with only potential scattering. However, because the equivalence cross 

section for the single fuel region is not very sensitive to the total cross section [32], in order to 

save computing time, a simplification was introduced by the original presentation of ESSM that 

the ESSM iteration is performed only once with all the resonance isotopes as a whole absorber. 

The resonance interference can be considered later by interference models but not confusing the 

ESSM iteration loop. The correction model discussed in this paper will follow this simplification 

but cancel out the resultant bias by carefully computing the correction factors. This issue is 

addressed later in the Section II.C.  

Also, it has been verified that ,RS gλS can be eliminated in Eq. (14) and Eq. (15) without 

sacrificing accuracy, if they are consistently eliminated when generating and using RI tables 

[29,31]. This can be explained as ,RS gλS only imposes a shift of RI versus background cross 

sections. By eliminating ,RS gλS , Eq. (14) and (15) become 

, , ,
,

,

a iso g F g
b g

g F gu
φ
φ

Σ
Σ =

∆ −
                                                                 (16) 

( ), ,
1( , ) ( ) ( , ) ( ) ( ) ( ) ( )

4g t g g s g p g p gr r r r r r r uϕ ϕ λ φ λ
p
 ∇ ⋅Ω Ω + Σ Ω = Σ − Σ + Σ ∆        (17) 
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These two equations are used in the ESSM calculation.  

In the foregoing derivation of conventional ESSM, obtaining Eq. (7) and Eq. (8) requires a 

single fuel region without subdivision. Although one can extend the method to solve a multiple-

fuel-region problem by calculating the multi-region fluxes from Eq. (17) and evaluate the 

background cross sections of different annuli using different fluxes, the same RI table pre-

computed from a single fuel region is used for different sub-regions, which prematurely assumes 

the correlations between shielded cross section and background cross section for different annuli 

are identical to the single fuel region. This assumption leads to significant errors in the shielded 

cross sections. Numerical results illustrating this behavior are given later in Section III.   

    

II.B. A quasi-1D slowing down equation 

A quasi-1D slowing-down equation is developed in this subsection. The correction factors 

accounting for the spatial self-shielding, resonance interference, and non-uniform temperature 

distribution are obtained by solving the quasi-1D slowing-down model with appropriate 

conditions to account for these effects. Consider a fuel rod which is divided into multiple annuli, 

where different annuli may have different temperatures and material compositions. The neutron 

flux in region i of the fuel rod is given by the collision probability form of the transport equation 

with the source term only including scattering (same assumptions for resonance energy range as 

in the previous subsection) 

 , ( ) ( ) ( ) ( ) ( ) ( )i t i i j j i j k k i k
j F k M

V u u V P u Q u V P u Q uφ → →
∈ ∈

Σ = +∑ ∑                         (18)                 

where iV , , ( )t i uΣ and ( )i uφ  are the volume, total cross section and scalar flux of region i. 

( )j iP u→ is the first flight collision probability from region j to i and ( )jQ u is the scattering 
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source of region j. Applying NR approximation for the scattering source of the non-fuel regions 

yields 

, ,( ) ( ) ( ) ( ) ( )i t i i j j i j k k i p k
j F k M

V u u V P u Q u V P uφ → →
∈ ∈

Σ = + Σ∑ ∑                           (19) 

By utilizing the reciprocity relation , ,( ) ( ) ( ) ( )X X Y t X Y Y X t YV P u u V P u u→ →Σ = Σ , 

,

( )
( ) ( ) ( )

( )
i j

i j i k
j F k Mt j

P u
u Q u P u

u
φ →

→
∈ ∈

= +
Σ∑ ∑                                            (20) 

Earlier spatially dependent self-shielding methods also simplify the source term of the fuel 

regions using the NR approximation. This approximation is problematic because it gives the same 

scattering source ( )jQ u  for different fuel regions. Although the scattering cross section at 

lethargy u could be same for different fuel regions at uniform temperature and fuel composition, 

the flux is strongly shielded in the fuel center in comparison to the fuel surface near large 

absorption resonances, resulting in different scattering sources along the fuel radius. Another 

approximation of the conventional treatment is assuming the total cross section to be spatially 

independent, i.e., , ,( ) ( )t j t Fu uΣ = Σ . This assumption is poor for at least two cases: depleted fuel 

and a non-uniform temperature profile. In the following derivation, both of these approximations 

are removed. The region-to-region collision probability ( )i jP u→  is evaluated, but an 

approximation is introduced to save computing time.   

Instead of directly calculating ( )i jP u→ , we calculate 

                             (21) 

CASL-U-2014-0123-000-a



15 
 

As shown in Fig. 1, , ( )i iT C
i jP u→ is the first flight collision probability from region i to j assuming a 

uniform temperature iT and material composition iC  throughout the whole fuel. In a media of 

uniform temperature and material composition, i jP→ can be easily tabulated by the total cross 

section levels. Thus, in the resonance calculation, , ( )i iT C
i jP u→  can be interpolated from the table 

rather than rigorous computation. It is straightforward to show that 

                                                           (22) 

Therefore, the escape probability , ( )esc iP u of the realistic temperature profile and material 

composition is still conserved through the approximation. In addition, by summarizing the right 

hand side of Eq. (19) over all sub-region i of the fuel, it can be shown that the set of  also 

conserves the total reaction rate R  of the whole fuel rod  

,

,

( ) ( ) ( )

( ) ( ) ( )

j j j i k k i p k
j F i F i F k M

j j j i k k i p k
j F i F i F k M

R V Q u P u V P u

V Q u P u V P u R

→ →
∈ ∈ ∈ ∈

→ →
∈ ∈ ∈ ∈

= + Σ =

+ Σ =

∑ ∑ ∑∑

∑ ∑ ∑∑ 
                           (23) 

Substituting ( )i jP u→  in Eq. (20) with yields the following expression of flux 

,
,

,
, ,

( )1 ( )
( ) ( ) ( )

1 ( ) ( )

i i

i i

T C
i jesc i

i j i kT C
j F k Mesc i t j

P uP u
u Q u P u

P u u
φ →

→
∈ ∈

−
≈ +

− Σ∑ ∑                                (24) 

By defining 
,

,
,
, ,

( )( )
( ) ( )

1 ( ) ( )

i i

i i

T C
i jt i

i jT C
j Fesc i t j

P uu
Q u Q u

P u u
→

∈

Σ
=

− Σ∑  and replacing ( )i k
k M

P u→
∈
∑  with , ( )esc iP u  

, ,
,

( )( ) 1 ( ) ( )
( )

i
i esc i esc i

t i

Q uu P u P u
u

φ = − +  Σ
                                            (25) 
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Using the rational form of ,
,

, ,

( )
( )

( ) ( )
e i

esc i
t i e i

u
P u

u u
Σ

=
Σ + Σ

 ( , ( )e i uΣ  should be energy dependent 

based on our investigation in Ref. [32]), the equation can be transformed into a form similar to 

the conventional equivalence theory 

,

, ,

( ) ( )
( )

( ) ( )
i e i

i
t i e i

Q u u
u

u u
φ

+ Σ
=
Σ + Σ

                                                            (26) 

Therefore, the quasi-1D slowing-down equation is defined as 

, , ,( ) ( ) ( ) ( ) ( )t i e i i i e iu u u Q u uφ Σ + Σ = + Σ                                              (27) 

This equation is actually in a 0-D form but 1-D information is embedded in ( )iQ u  and , ( )e i uΣ . 

Determination of ( )iQ u includes two quantities, ( )jQ u  and , ( )i iT C
i jP u→ . Evaluation of ( )jQ u is 

similar to the conventional homogeneous slowing-down calculation. A detailed description of 

efficient evaluation of ( )jQ u  can be found in Ref. [25]. The first flight collision probability is 

evaluated using Carlvik method [33] for the 1-D cylindrical geometry. A table of i jP→ versus 

total cross section is established before the resonance calculation for , ( )i iT C
i jP u→  interpolation. 

Usually, 1000-2000 cross section points are sufficient to generate an accurate i jP→ table so the 

additional computing time is negligible.  

In addition to ( )iQ u , , ( )e i uΣ is determined by rigorously evaluating , ( )esc iP u  using the 

realistic fuel temperature profile and material compositions in the 1-D cylindrical geometry. To 

incorporate the inter-pin shielding effect into , ( )e i uΣ , a straightforward approach could be to 

evaluate the equivalence cross section by 1-D cylindrical pin in infinite coolant and modify it by 
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the realistic Dancoff effect from ESSM calculation. Specifically, the CE equivalence cross 

section for infinite coolant is modified as  

, ,inf
, , inf

, ,

( ) ( )
ESSM
e F g

e i e i
e F g

E E
S

S ≈ S
S

                                                      (28) 

In this equation, inf
, ( )e i EΣ is the equivalence cross section of sub-region i evaluated using Carlvik 

method in 1-D cylindrical geometry with infinite coolant. , ,
ESSM
e F gS is the realistic equivalence cross 

section of the single fuel region obtained from ESSM. inf
, ,e F gΣ is the equivalence cross section of 

the single fuel region in 1-D cylindrical geometry with infinite coolant, calculated by the group-

wise total cross section. To compute inf
, ,e F gΣ , a few iterations are required between calculation of 

Carlvik equivalence cross section and interpolation from the RI tables. An alternative approach of 

using Eq. (28) could be to compute the Dancoff factor by comparing the fuel escape probability 

in the infinite coolant with the one in the realistic lattice, i.e.,    

( )
( )

, , , , , ,, ,
, inf inf inf inf

, , , , , , , ,

ESSM ESSM ESSMESSM
e F g t F g e F ge F g

F g
e F g e F g t F g e F g

P
D

P
SS  + S

= =
SS  + S

                                     (29) 

The Dancoff factor is in turn to modify inf
, ( )esc iP u and thus , ( )e i EΣ . Both approaches assume that 

the Dancoff effect is not dependent on energy so that the group-averaged factors are used for 

every point within each energy group. Although the definition of Dancoff factor in the second 

approach is conventionally used in Ref. [18,19], numerical experiments give slightly better results 

when the equivalence cross section is directly modified as Eq. (28). Therefore, the first approach 

is chosen for the quasi-1D model.  
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II.C. Correction based self-shielding method for annular fuel regions 

The basic idea of the correction based self-shielding method for annular fuel regions is to 

compute the shielded cross sections by ESSM iteration with single mesh of the fuel region, and 

correct the multi-region effect by the factors obtained from the quasi-1D slowing-down 

calculation. The resonance interference and non-uniform temperature effects are also modeled by 

properly choosing the calculation conditions of the factors. The method is presented as follows: 

Step 1. Solve ESSM using volume-averaged fuel temperature T and material composition for a 

single fuel region without resonance interference treatment. This step generates a set of 

shielded cross sections intf
, , , ( )non

iso x g F Ts − (for isotope iso, energy group g and reaction channel x) 

incorporating inter-pin shielding effect (Dancoff effect) but without consideration of intra-pin 

effects or interference. 

Step 2. Resolve the intra-pin and resonance interference effects by solving Eq. (27) for two sets 

of problems: 

a. For the fuel mixture for each sub-region i of the fuel and realistic temperature distribution 

iT , which produces shielded cross sections ; 

b. For each isolated isotope with single fuel region using uniform temperature T (conditions 

similar to Step 1), which produces shielded cross sections . 

The ratio of shielded cross sections from problem a and b in Step 2 is used to correct the cross 

sections from Step 1, so the resultant shielded cross section is 

                                           (30) 
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The additional computation cost of the correction method compared to the conventional 

ESSM is to solve the quasi-1D slowing-down equation. Sub-step a in Step 2 requires a single 

slowing-down sweep for all the sub-regions of the fuel, while Sub-step b requires independent 

slowing-down sweeps for every resonance isotope of the fuel to exclude the interference effect. 

The computing condition of Sub-step b is similar to Step 1, except that the quasi-1D slowing-

down model is used rather than the ESSM model. Therefore, by analogy with the heterogeneous 

RI tables described in Section II.A, a second set of heterogeneous RI tables is pre-computed using 

the quasi-1D slowing-down model and also parameterized by the background cross section. With 

the second set of RI tables, slowing-down calculation of Sub-step b in Step 2 can be substituted 

by table interpolation.  

Surprisingly, another benefit is automatically gained when the second set of heterogeneous RI 

tables is used in the calculation of Sub-step b. As discussed earlier, the ESSM calculation in Step 

1 introduces a bias on , ,
ESSM
e F gS and hence a bias on the shielded cross section intf

, , , ( )non
iso x g F Ts −  because 

of combining all the resonance isotopes as a whole absorber. However, since the biased , ,
ESSM
e F gS is 

also used in Sub-step b for interpolation of , the error introduced by this 

simplification is cancelled out to some extent because intf
, , , ( )non

iso x g F Ts −  and  are both 

monotonically increasing functions of the background cross section.  

 

III. NUMERICAL VERIFICATIONS 

The resonance self-shielding method for annular fuel regions was implemented and tested in 

the direct whole core neutron transport code DeCART [34]. Five PWR pin cell problems are 

selected for verification, including uniform and non-uniform fuel temperature profiles. MCNP 

calculations with CE cross section data were performed to provide the reference results. 
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III.A Code system 

 In comparison to the conventional 2-step (transport/diffusion) methodology where the first 

step is the generation of homogenized few group cross sections with a transport method and the 

second step is a global calculation with diffusion method, DeCART performs a direct transport 

calculation (2-D transport plus 1-D diffusion) using the realistic geometry, material composition 

and temperature profile of the reactor configuration and the number of energy groups may be as 

large as the number used for the lattice calculation in the 2-step method. The resonance self-

shielding calculations are performed for every 2-D plane and the multi-group self-shielded cross 

sections are directly used in the whole core transport calculation without homogenization. Both 

the whole core transport calculation and the fixed source resonance calculations are performed 

with the MOC. 

Two new modules are added to the original DeCART code, i.e., ESSM and correction factor 

generator. The ESSM is implemented in parallel to the subgroup method in DeCART to resolve 

the inter-pin shielding effect (Step 1 in Section II.C). The correction factor generator incorporates 

the quasi-1D slowing-down solver to produce the correction factors accounting for the intra-pin 

self-shielding details and resonance interference (Step 2 in Section II.C). The collision probability 

kernel is embedded in the slowing-down solver to provide the CE dependent equivalence cross 

sections. Once the ESSM iteration is complete, the module passes the group-wise equivalence 

cross sections to the correction factor generator for Dancoff adjustment (Eq. 28). The correction 

factors are then fed to the ESSM module to correct the self-shielded cross sections. 

Fig. 2 depicts the data flow of the verification code system. The CE library is taken from 

SCALE 6.0 package [35] and the multi-group library is provided by Oak Ridge National Lab for 

use in the CASL project [36]. They are both processed by AMPX [37] from the raw nuclear data 
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of ENDF/B-VII.0 [38]. The CE data are employed when solving the slowing-down equations for 

the calculation of correction factors. The multi-group library structure consists of a total of 56 

energy groups, in which 25 groups are defined as resonance groups (0.6eV~25keV). It has been 

mentioned that two sets of heterogeneous RI tables are generated. RI table Set 1 is processed by 

SCALE-CENTRM and AMPX-IRFfactor modules by performing the 2-D heterogeneous 

slowing-down calculation for the major resonance isotopes (U-238, U-235, Pu-239, Pu-240, Pu-

241, Zr-91, Zr-96). This set of RI table has been loaded in the multi-group library for ESSM 

iteration. RI table Set 2 is generated by performing the quasi-1D slowing-down calculation and 

will be used for fast interpolation of the shielded cross section in Step 2-b of Section II.C. The 

subgroup parameters are also provided in the 56-group library, which are generated by the 

physical probability table approach and are consistent with RI table Set 1.  

The MCNP5 code [39] is used to generate reference shielded cross sections for comparison 

with the new method. In order to produce CE libraries for MCNP use, a series of NJOY [40] 

modules are run to generate the ACE format data for every specific temperature appearing in the 

test problems. All the ACE data are prepared from ENDF/B-VII.0, which is the same source as 

the verification code system.  

 

III.B Testing cases 

The base test problem is a typical 2-D PWR pin cell in an infinite, uniform lattice. The fuel is 

5% enriched with the pellet outside radius of 0.4096cm. The pin pitch is 1.26cm. The UO2 fuel 

pellet is subdivided into 10 equal-volume annuli. Five cases with different temperature profiles in 

the fuel pellet are tested, as shown in Table I. The temperatures in regions other than fuel are all 

set to 600K. Cases 1-3 are uniform temperature cases and Case 4-5 are non-uniform temperature 
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cases in which the ring-wise temperatures are integrated from a parabolic temperature distribution 

with volume average values of 900K and 1200K, respectively. 

  

III.C Numerical results 

In this subsection, the notation ‘ESSMOLD’ refers to the conventional ESSM with simple 

multi-region extension. ‘ESSMCRT’ refers to the proposed correction method. In addition to 

ESSM calculation, the subgroup method with special treatment for non-uniform temperature 

distribution [22] is also included for comparisons. All three methods are run with the same spatial 

discretization and MOC ray options (4/24/0.01 for polar/azimuthal/ray spacing). ESSMOLD and 

the subgroup method use the Bondarenko iteration for treatment of resonance interference. The 

MCNP reference solution is calculated with 600 active cycles and 20000 histories per cycle to 

make a total of 12 million neutron histories. As a result, the standard deviation of reaction rates 

for every reaction channel and every resonance energy group is below 1%, and the standard 

deviations of reaction rates over the resonance energy range (0.625eV-25keV) for U-238 

absorption, U-235 absorption and U-235 fission are 0.04%, 0.03% and 0.03%, respectively.   

Table II compares the spatially dependent shielded cross sections for U-238 in Group 34 

(6.5eV-6.88eV) for the three methods with MCNP. Since this is the major resonance of U-238, a 

strong spatial self-shielding is seen from the reference solution, e.g., the shielded cross section for 

the outermost ring is almost three times that for the innermost ring for Case 1. Interestingly, the 

shielded cross section of Group 34 is not monotonically increasing from the fuel center to the 

surface for the uniform temperature cases. The values become a bit larger towards the center for 

the innermost four or five rings. This can be explained by comparing the CE fluxes of every fuel 

ring, in which the fluxes of the inner rings are relatively flatter about energy than those of the 

middle rings due to the strong spatial shielding. The relative errors show that ESSMOLD is unable 
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to correctly produce the spatially shielded cross sections. For all the five cases, it underestimates 

the cross sections of the surface ring and overestimates those of the inner rings. Compared to 

ESSMOLD, the subgroup method performs better for the surface ring, but still, has large 

discrepancies for the inner rings. The shielded cross sections generated by ESSMCRT compare 

favorably with MCNP results, showing an order of magnitude in relative error compared to the 

ESSMOLD and subgroup method. The agreement of non-uniform temperature cases is on the same 

order as the agreement with the uniform temperature cases, indicating the effectiveness of the 

collision probability approximation in Eq. (21). The agreement of other resonance groups is 

similar to Group 34 and thus the results are not repeated. 

Table III shows the spatially dependent absorption cross sections of U-235 for Group 22 

(116.0eV-117.5eV) where the resonance interference due to U-238 is significant. Because the 

spectra are dominated by U-238 absorption resonances, the regular shielding behavior that the 

shielded cross section tends to the peak at the fuel surface is not seen in this group for U-235. 

ESSMOLD and the subgroup method using Bondarenko iteration fail to model the resonance 

interference, so large discrepancies are observed across all the rings of the fuel rod. Since 

ESSMCRT employs CE cross sections explicitly for interference correction, the errors of shielded 

cross sections are reduced to less than 1% for most sub-regions. 

Multiplying the shielded cross sections by the group fluxes gives the reaction rate per atom in 

different rings of the fuel. In order to rule out the flux discrepancies between MCNP and 

DeCART due to the sources other than resonance calculation, instead of directly using the MCNP 

reaction rates as the reference solution, the shielded cross sections tallied from MCNP are fed to 

DeCART to calculate the reference reaction rates. Figures 3-7 compare the errors of U-238 

absorption rates for the five cases using ESSMOLD, subgroup method, and ESSMCRT relative to the 

reference results of DeCART (MCNP XS). Two resonance groups are considered, Group 34 

(6.5eV-6.88eV), Group 22 (116.0eV-117.5eV), as well as the whole resonance energy range 
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(0.625eV-25keV). For ESSMOLD, a 15%-20% underestimation of total resonance absorption rate 

at the outmost ring is observed for all the cases. As plutonium buildup tends to peak at the fuel 

surface, this bias could significantly undermine the accuracy of a multi-region depletion 

calculation. The errors of reaction rates for subgroup method are still significant for a single 

resonance group, but become smaller over the whole resonance range. Because of the lack of a 

theoretical foundation for treating a non-uniform temperature profile with the subgroup method, 

the discrepancies of non-uniform temperature cases are somewhat larger than the uniform 

temperature cases. Of the three methods, ESSMCRT produces the best spatial distribution of the 

reaction rates, both for a single group and for the whole resonance range. The largest difference 

over the whole resonance range of all the annuli is only 1.3%. 

Previous comparisons have shown that resonance interference effect is more important for U-

235 than the spatial shielding effect, so the integrated absorption and fission rates of U-235 over 

the fuel pallet are compared for all resonance groups in Fig. 8 and Fig. 9 (Case 1 and Case 4 are 

arbitrarily selected and other cases have similar results). The reference absorption and fission 

rates are shown on the upper side and the relative errors using ESSMOLD, the subgroup method 

and ESSMCRT are compared on the lower side. ESSMOLD and the subgroup method treat the 

resonance interference by Bondarenko iteration, which is unable to produce the correct reaction 

rates for U-235 at the energy ranges where there are large resonances of U-238 (i.e. 6.67eV, 21eV 

and so on). Since the overlap condition of the resonances between U-235 and U-238 is arbitrary 

at different energy ranges, the errors of ESSMOLD and subgroup method can be positive or 

negative. The reaction rates calculated by ESSMCRT have good agreement with the reference 

results. The maximum error is 3.8%, compared to more than 100% by Bondarenko iteration.  

Table IV compares the effective multiplication factors and the total reaction rates of U-235 

and U-238 in the resonance energy range (0.625eV-25keV). For these runs, DeCART was 

performed with MCNP tallied cross sections to calculate the reference results. It is not surprising 
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that ESSMOLD and the subgroup method show larger discrepancies for the U-238 absorption rates, 

consistent with earlier results with the spatial shielding. Although very large differences were 

seen in the analysis of U-235 group-wise reaction rates, the total absorption and fission rates over 

the whole resonance energy range are not that bad for ESSMOLD and subgroup method. This is 

probably due to the error cancellation. For some cases, the U-235 fission rates from ESSMCRT are 

comparable to results from ESSMOLD or the subgroup method, but those errors are already within 

a few standard deviations of MCNP calculations. Overall, ESSMCRT gives the best agreement of 

eigenvalues for all the five cases. 

Regarding the treatment of non-uniform temperature in ESSMCRT, Step 1 and Step 2-b need an 

average temperature over the fuel rod. The volume-averaged temperature is simply chosen to 

obtain the foregoing results for Case 4 and 5. As mentioned in the introduction section, various 

approaches were developed to determine the average temperature (effective temperature), e.g., 

chord averaged temperature. In order to show the adequacy of using volume-averaged in the 

correction model, Case 4 and Case 5 are rerun with the volume-averaged temperature manually 

varied by ±50K and ±100K. The variation range of the temperature can be viewed as possible 

effective temperatures elaborately calculated by the models mentioned in Ref. [21]. Table V 

shows that the eigenvalues calculated by ESSMCRT have almost no change with variation of the 

average temperature. The bias introduced by the deviation of the average temperature from the 

true effective temperature is canceled out during the correction of shielded cross sections in Eq. 

(30). The volume-averaged scheme is therefore sufficient for the correction model. 

As the CE slowing-down calculation is involved in the correction model, it is crucial to 

analyze the computing resources required for the method. Table VI compares the computing time 

and memory usage of ESSMOLD, subgroup method and ESSMCRT. Case 2 (uniform 900K) and 

Case 4 (parabolic with 900K average) are selected for the test. To show the impact of number of 

the rings, Case 2 is varied by dividing the fuel region into 3, 6 and 10 equal-volume rings. The 
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computing time of ESSMOLD and subgroup method is primarily determined by the number of 

fixed source problems to be solved. The average number of iteration to converge equivalence 

cross sections for each group in ESSM is about three to five, which is in the same order of the 

number of subgroup levels. However, the subgroup method distributes the resonance isotopes into 

several resonance categories for the fixed source calculations, which leads to more resonance 

computing time for the subgroup method. Comparing ESSMOLD and ESSMCRT for the uniform 

temperature case, the resonance calculation time increases with the number of rings, and 

ESSMCRT cost additional 4.5% , 15% and 21% time on resonance calculation for the 3, 6 and 10 

ring cases, respectively. For the non-uniform temperature case, the resonance calculation time has 

risen by 84%. Since only a few discrete temperatures are available in the AMPX CE library 

(293K, 600K, 900K, 1200K and 2400K), the CE cross section should be interpolated on the fly of 

the slowing-down equation, which is one reason why larger increase of time is seen for the non-

uniform temperature case. Another reason is the increasing size of energy mesh for slowing-down 

calculation due to the temperature differences of fuel regions. Even so, the total computing time 

only rises by about 10%, a modest increase. The memory demand of the slowing-down 

calculation depends primarily on the number of isotopes and the range of temperatures in the 

problem. Since the slowing-down calculations for the fuel pins are decoupled, the memory 

requirement for the model does not increase with the geometrical size of the problem. This also 

makes the model easy to be implemented in parallel. 

  

IV. CONCLUSIONS 

A correction based resonance self-shielding method is developed that allows annular 

subdivision of the fuel rod. The method incorporates CE slowing-down calculations to account 

for the radial variation of the self-shielded cross sections, resonance interference, and a non-
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uniform temperature distribution within the fuel. Starting from the collision probability form of 

the integral transport equation, an efficient quasi-1D slowing-down equation is derived. The 

proposed method performs conventional ESSM iteration without subdivision of the fuel rod to 

capture the inter-pin shielding effect. Correction factors are obtained by comparing the shielded 

cross sections of the subdivided fuel rod with a single region of the fuel. These shielded cross 

sections are efficiently computed by solving the quasi-1D slowing-down equation. By properly 

choosing the computing conditions of shielded cross sections, the resonance interference and non-

uniform temperature effect are accounted for by the correction factors.  

Numerical results show that the correction method is capable of resolving the spatially 

dependent self-shielding of fuel annuli. Compared to the conventional ESSM, the error of U-238 

absorption rate over the resonance energy range for the outmost ring is reduced from 15%-20% to 

less than 1% by the correction model. The accuracy of U-235 group-wise reaction rates is 

significantly improved by properly correcting the resonance interference. The eigenvalues and 

overall reaction rates of U-238 and U-235 are all improved by the correction method. The method 

is not sensitive to the temperature averaging scheme so that the simple volume average is 

sufficient to perform the task. The additional computing time is negligible for the uniform 

temperature case, and a modest 10% increase over the total calculation time for the non-uniform 

temperature case. The memory usage of the method is acceptable and does not increase with the 

geometrical size. 

 The accurate spatially shielded cross sections within the fuel rod will be important for the 

determination of the fuel burnup distribution. This will benefit the thermal hydraulic calculation 

as the fuel conductivity is very sensitive to burnup. Also, the plutonium build-up at the fuel 

surface requires careful concern. The so called plutonium ‘rim effect' can occur at very high 

burnup and the thermal conductivity of the fuel can be significantly reduced in the rim zone. This 

phenomenon could be modeled only if the plutonium build-up is accurately estimated, which in 
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turn depends on the U-238 absorption rate near the fuel surface. In addition to the burnup, the 

distribution of the heat generation and fission product generation can also be improved by 

properly determining the spatially dependent shielded cross sections. 
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