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Conjugate Heat Transfer Verification Block Initial Conditions

Implementation of block initial conditions as opposed to the current globally

y defined initial conditions allows for different initial conditions to be applied to
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Figure 1: Longitudinal section of channel with boundary conditions

Figure 5:Numerical Simulation (Dimensionless Temperature) courtesy of A. Barletta et al./
A. Barletta et al./ International Journal of Thermal Sciences 47 (2008) 43-51. International Journal of Thermal Sciences 47 (2008) 43-51.

Native Conjugate Heat Transfer Comparison User Defined IC’s/BC’s Control File Setup
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New Layout # Integrated in IC’s block
Dimensionless Temperature Comparison at solid/fluid Interface # user velocity BC's in legacy block Initial
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Nondimensional distance from Inlet (0 to 4n) 2. A*cos(B*x) + C*sin(D*x)
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and the analytic solution shown In Figure 2 is given by _ : 1. Implementation of interface heat flux designation capabillity.
equation 1 below Interface as shown below.
0(n,8) = 6,(n) + 6,(n)sin(BL/Pe) + 6,(n)cos(BS/Pe) (1)
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Figure 3: Solid Fluid Interface
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