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•  The simple model we have developed seems to capture the relevant axial 
instabilities observed in the Insilico/AMP coupling. 

•  Convergence behavior for the Picard iterations for both the high-fidelity 
coupling and this 1D model agree relatively well. 

•  Anderson is seen to be a faster converging, more robust method for this 
problem. Doesn’t require a priori knowledge for selection of mixing parameter. 

•  Preliminary studies have been carried out implementing Anderson 
acceleration on the Insilico/AMP coupling.  

–  At lower power, Anderson converges in approximately same number of 
iterations as optimally damped Picard.  

–  At higher power, iterations fail due to violating bounds on material property 
evaluations. 

–  In our model only specific heat calculation features this sort of bound, but 
coolant temperature never approaches violating the bounds. 

–  It is then of interest to determine whether this failure mode would be 
observed with a better flow model, or if there is some way to address these 
bound failures (possibly implementing a line search on Anderson). 

A One-Dimensional Analysis of Anderson Acceleration for Coupled  
Neutronic and Thermal Hydraulic Calculations in a Light Water Reactor 

•  Accurate simulation of light water reactors requires simultaneous solution of 
various coupled physical systems (e.g. neutronics, CFD, fuel properties). 

•  Couplings in CASL are generally implemented as Picard iterations. 

•  Picard iteration is implemented as a sequence of single-physics solves with 
the updated solution transferred to other sets of physics until convergence. 

•  Flexible implementation allows for use of existing codes in the VERA software 
package for accurate single physics solves. 

•  Interested in capturing the behavior of a Picard coupling between Insilico for 
Neutronics and AMP for fuel performance and subchannel flow. 

•  At high enough reactor power, oscillatory error modes arise in the solution, 
and numerical damping is required for convergent iteration. Would be ideal to 
utilize a more robust and faster converging solution method. 

•  Oscillatory behavior largely observed in axial direction, so we attempt to 
analyze convergence behavior with a 1D model which can be solved rapidly. 

Introduction 

Alex R. Toth – North Carolina State University 

 Mentor: S. Slattery  With: C.T. Kelley, R. Pawlowski, S.Hamilton, K. Clarno  Program: NESLS  Consortium for Advanced Simulation of Light Water Reactors 

Anderson Acceleration 

•  Acceleration method for solving the fixed point problem u = G(u). 

•  Stores at most m (user specified number) previous function evaluations and 
computes new iterate as the linear combination of these with minimal 
linearized residual: 

 

•  Call the algorithm with given m Anderson-m, β is called the mixing parameter. 

•  Same implementations requirements as Picard, only additional cost is storage 
of additional vectors. 

•  Anderson is “essentially equivalent” to GMRES iteration for linear problems. 

•  Anderson is locally linear convergent for nonlinear problems. 

•  We have implemented Anderson in the Trilinos nonlinear solver package NOX. 

•  In implementation of the flow model, specific heat is interpolated from a table 
look-up. 

•  Without sufficient damping, oscillatory instabilities in Picard iteration now arise 
as a shift between front-peaked and back-peaked fuel temperature and flux. 
This results from asymmetry introduced into the problem by the flow model. 

•  Picard requires more damping, and optimal damping factor is about 0.3. 

•  Anderson-1 fails to converge for mixing parameters greater than 0.8. 

•  Other Anderson iterations are relatively insensitive to the mixing parameter, 
and  there is no obvious trend for what would be an optimal value. 

Three-Way Coupling Results 

Model Description 

Conclusions and Future Work 

Two-Way Coupling Results 

•  Model coupling between neutronics and fuel and coolant properties in a single 
pin cell with height L, physical properties homogenous at each axial height. 

•  Neutron distribution governed by the diffusion equation: 

   subject to the power normalization: 

 
•  Suppose axial conduction negligible in fuel, and fuel temperature governed by 

Newton’s Law of Cooling: 

   where Tf is the fuel temperature and  Tw is the coolant temperature. 

•  Consider both a two-way coupling between neutronics and fuel temperature, 
with constant coolant, and a three-way coupling integrating the flow model: 

•  We implement a Picard iteration as: 

•  Tw is either taken to be constant or computed using the flow model, and ω is 
called the damping factor. 

•  Diffusion equation solved with Trilinos eigensolvers. Cell homogenized cross 
sections computed by linear fit from data points generated by XSProc. 

•  The two-way Picard coupling displays the same oscillatory instabilities 
observed in the high-fidelity coupling. Without sufficient damping, the 
temperature and flux distributions alternate between single-peaked and 
double-peaked distributions. 

•  Oscillations in Picard iteration leads to slow convergence or divergence. 

•  The same oscillatory behavior is observed in the Anderson iterations, though it 
does not seem to adversely affect convergence. 

•  Iteration counts for Picard are similar to what has been observed in the 
Insilico/AMP coupling. 

•  The optimal level of damping for Picard is dependent on the power level. For 
reasonable power levels, an optimal choice is generally in the range 0.3-0.6. 

•  Anderson iterations are largely insensitive to the choice of mixing parameter. 
Convergence slowed if mixing parameter is too small, but range for what is 
optimal is much larger and ranges from about 0.3-1.0. This range appears to 
be insensitive to the power level. 
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Figure: Temperature profile behavior, without and with damping 

Figure: Picard and Anderson iterations to convergence, varying levels of damping 
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Figure: Fuel temperature profile behavior, without and with damping 

Figure: Picard and Anderson iterations to convergence, varying levels of damping 
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