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Abstract

Fretting wear models typically estimate wear rates using some form of a work-rate wear model with constant wear
coefficients, but experimental results show that using a constant wear coefficient makes the wear model insufficient at
modeling the complex dependence of the wear rate on various operating conditions of fretting wear. A new modeling
framework is discussed that is designed with the goal of simulating abrasive/adhesive fretting wear mechanisms of
brittle materials at the micron length-scale with the presence and interaction of third-body wear debris in order to
study the effects of fretting operating conditions on wear rates. The capabilities of the model include the ability to
generate new wear debris particles through brittle fracture of elastically-deforming asperities and modeling contact
with friction and adhesion between any bodies in the simulation. These capabilities are demonstrated through two
small simulations, and a validation study on the friction and sliding capabilities of the model is discussed through the
simulation of a block sliding under gravity down an inclined plane.

Keywords: fretting wear, third body, wear debris, discrete element, contact

1. Introduction

Fretting wear is a common issue in many engineer-
ing applications. One particular application where it
plays an important role is grid-to-rod fretting (GTRF)
in nuclear reactors; GTRF is the cause of about 74%
of leaking fuel incidents in light water-cooled nuclear
fission reactors [1]. In GTRF, the turbulent coolant vi-
brates fuel rods against supporting grids which results
in the wear of the thin cladding walls of the rod. Cur-
rent attempts to model this process and estimate the rod
lifetime, such as VITRAN (Vibration Transient Anal-
ysis Nonlinear) [2, 3], involve using work-rate wear
models [4, 5] with constant empirical wear coefficients,
in which the wear rate is considered to be proportional
only to the rate of mechanical work done in the rubbing
process. However, several experimental results have
shown that a work-rate wear model with constant wear
coefficients cannot properly model the complex depen-
dency of the wear rate on various operating conditions.

In order to develop a better model to estimate wear
rates under the variety of different possible operating
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conditions relevant in fretting wear, it is necessary to
understand the mechanisms through which the changing
operating conditions affect the rate of wear debris gen-
eration from the surface of the fretting materials. We
have developed a modeling framework to dynamically
simulate fretting wear mechanisms at the micron length-
scale which can be used to study how wear debris is gen-
erated through colliding asperities on the surface of the
two rough, brittle fretting materials, how accumulating
third-body wear debris generated from wear play a role
in the further evolution of the wear process, and how
these processes vary with different operating conditions
such as normal load, slip amplitude, material properties,
type of fretting motion (pure sliding or a hybrid motion
of sliding and impact), and other properties.

Currently, we have developed the framework and cor-
responding code for critical features for modeling wear
of rough brittle materials, such as elasticity, contact,
fracture, friction, and sliding. These capabilities are
demonstrated through a simulation of two elastic cir-
cles pushed together in contact and sliding against each
other with friction and also through a simulation of the
fracture of a single asperity due to a collision with an
obstacle. We have also partially validated the friction
and sliding capabilities of the model through the case

Preprint submitted to Computational Methods in Applied Mechanics and Engineering May 8, 2014

CASL-U-2014-0139-000



study of a block sliding down an inclined plane under
gravity.

Many simulation techniques focused on modeling
and understanding wear accurately model the forces,
traction and slip between the geometries sliding against
each other and then reduce the information from these
simulations to a work rate to be used in a simple work-
rate wear model with a constant wear coefficient. Typ-
ically the forces and slip calculations used to estimate
the wear come from analytical expression from elastic
solid mechanics [6, 7], or from finite element simula-
tions [8, 9, 10]. In these simulations, progressive wear-
ing of the surface is modeled, but wear debris is not in-
cluded in the simulations. Attempts have been made to
model the third-body wear debris in fretting wear sim-
ulations. The wear debris layer has been modeled as
an anisotropic elastic-plastic material using finite ele-
ments in a fretting wear simulation using Archard’s law
in [11]; the model is capable enough to track the growth
and shrinkage of the debris layer thickness through ejec-
tion of wear debris from the contact interface, but there
are limitations in the model due to the requirement of
using a continuum simplification of the discrete wear
debris particles. A third-body layer of individual rigid
debris particles modeled using discrete elements was
used by [12] to study the effect of the third-body layer
on the macroscopic friction behavior of two sliding bod-
ies; however, the wear debris particles are included in
the beginning of the simulation and cannot be generated
through wear of surfaces.

Alternatives to fretting wear models based on work-
rate in the literature appears to be limited to only mod-
eling fatigue-based mechanisms of wear. These mecha-
nisms have been studied in a 2-D numerical model [13]
and in 3-D using the finite element method [14] to find
the likely location of crack initiation and the number of
cycles for initiation and propagation of the crack. An
analytical model of fretting wear that is informed by fi-
nite element analysis but based solely on the fatigue-
based mechanism of fretting wear has also been devel-
oped [15]. While these studies and models are useful
for fatigue-based mechanisms, they do not address the
challenge of modeling abrasive/adhesive wear mecha-
nisms in a way that does not rely on the limited work-
rate model.

Experiments by [16] and [17] of dry fretting wear be-
tween two metals show how a work-rate wear model
with constant wear coefficients fail to predict the depen-
dence of the wear rate on parameters such as normal
load, slip amplitude of the oscillatory motion, and on
the number of cycles. The results show that the wear
coefficient in the work-rate model increases with slip

amplitude rather than remaining constant. In particu-
lar, there is a large sudden increase in the wear coeffi-
cient at a particular slip amplitude which represents the
transition from partial slip, during which fatigue-based
mechanisms of wear like delamination [18] are domi-
nant, to gross slip, in which the wear rate is accounted
for mostly by abrasive and adhesive wear. The exper-
imental results also show a decrease in the wear coef-
ficient as the number of cycles increase, which can be
explained by the increasing true area of contact between
asperities (and thus decrease in local pressure) because
asperities deform and surface roughness changes as the
fretting process continues. These are just some of many
experimental results that demonstrate the need to model
wear rates through an understanding the micromechani-
cal state of contact and not only a work-rate wear model
with constant empirical wear coefficients. Other exper-
iments [19, 20, 21, 22] show how the grid support ge-
ometry in the case of GTRF, further complicate wear
rate predictions, and experiments on the dependence of
the wear rate on a hybrid sliding/impact fretting motion
by [23, 24] show that the wear coefficient can change
by an order of magnitude simply by adjusting the type
of fretting motion. These experimental results motivate
our desire to understand how the wear coefficient varies
with certain important operating conditions in fretting
wear. And to do this, we plan to study the wear process
using the modeling framework we developed which can
simulate fretting wear mechanisms such as brittle abra-
sive wear of colliding asperities, interaction of third-
body wear debris, and contact with adhesion and sliding
friction of the fretting surfaces and wear debris.

2. Requirements for wear model

Experimental results have shown that a work-rate
wear model with a constant wear coefficient is unable
to model the complex dependence of the wear rate on
operating conditions such as contact load, slip displace-
ment, number of cycles, type of fretting motion, and
more. By allowing the wear coefficient to not be con-
stant but instead vary with these operating conditions,
the work-rate wear model can become more useful for
modeling fretting wear under more complicated scenar-
ios. Understanding the dependence of the wear coeffi-
cient on the relevant operating conditions through ex-
periments alone would require a huge combination of
operating condition values which quickly become un-
feasible. Instead, simulations providing the ability to
study the mechanism through which changes in the op-
erating conditions influence the wear process offer a
tractable solution to creating a fretting wear mechanism
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map and models of how the wear coefficient changes
with operating conditions.

Different mechanisms of wear are already well
known in the literature, such as ductile/brittle abrasive
and adhesive wear, and fatigue-based mechanisms of
wear. However, though fretting wear is often charac-
terized by its tendency to collect wear debris in the con-
tact region, a survey of the literature shows there has
been limited analysis on the effect of the third-body
layer on the wear rate. Experiments discussed in [25]
showed that the third-body wear debris layer may re-
duce the wear rate by acting as a compacted lubricating
layer or alternatively may increase the wear rate due to
the abrasive behavior of the hard oxide debris particles;
and, whether the wear debris is beneficial or harmful
for wear depends on parameters such as the normal load
and slip amplitude. Therefore, the main focus of our
model is to understand the behavior of wear debris on
wear rates and how changes in the operating conditions
affect this behavior. For the model to be capable enough
to allow for studying this behavior, we require a micron
length-scale model, because that is the length scale of
the wear debris, which can simulate the interaction and
contact of individually tracked third-body wear debris
particles with each other and with asperities on the sur-
face of the two fretting materials, and which can also
track the amount, size and shape of wear debris gener-
ated through the wearing process.

To simplify the requirements of the model while still
remaining capable of handling our main focus, we re-
strict the model to brittle abrasive and adhesive wear
through the brittle fracture of elastically deformed as-
perities. Ductility and plastic deformation can be safely
ignored when modeling the wear of brittle materials,
such as the zirconia oxide film that grows on the grid
supports and fuel rod cladding in the case of GTRF.
Also, abrasive and adhesive mechanism of wear domi-
nate the influence on the wear rate compared to fatigue-
based mechanisms of wear in the operating conditions
of gross slip which is our primary regime of interest.

The strict requirements on the model to be incred-
ibly flexible with regards to the possibility of contact
between any surfaces in the simulations, including sur-
faces that are dynamically formed when new wear de-
bris are generated, require a new method designed for
this style of contact from the beginning. Inspiration for
the model was taken from both molecular dynamics and
more appropriately the discrete element method (DEM)
in terms of the ability for discretely tracked elements in
the system to interact with their neighbors which change
as the simulation evolves. Unlike DEM, however, rigid
particles could not be used because elastic strain is nec-

essary to model the fracture of asperities and generate
new wear debris. The elastic deformation of material
simulated in the model is inspired by the finite element
method, and in fact the model uses something similar
to constant strain triangular finite elements in 2-D to
model elasticity. Beyond contact, elastic deformation,
and fracture, further requirements for the model include
the need to properly model friction and adhesion be-
tween contacting surfaces. These requirements are sat-
isfied in our model through modified dynamics of the
contact mechanism. While it is ideal for the model to
capable of working in 3-D, a 2-D model can still pro-
vide very useful results; our model is currently limited
to 2-D as a simplification, although there is no foresee-
able limitation in extending it to 3-D.

3. Methods

In this model, all elastic bodies are comprised of
smaller bodies called discrete elements. Fig. 1 shows
a typical discretization of two circular bodies into dis-
crete elements. The discrete elements are not actually
shown in that image because the discrete elements do
not have a specified shape. The only state tracked for
each discrete element e is its mass me, position pe, ve-
locity ve, and effective size re. The discrete elements are
represented by each of the vertices of the triangles in the
figure. The discrete elements at the boundary of a body
are called surface elements. Although all discrete ele-
ments have an effective size, in Fig. 1 the effective size
of only the surface elements is visualized by the blue
circles centered on the position of the elements; the ra-
dius of each circle in the visualization is set equal to the
effective size of its corresponding element.

Neighboring discrete elements can join together to
form a joint; the discrete elements forming the joint
are called the members of the joint. Joints can be one
of two types: interior joints or contact joints. Interior
joints represent a solid connection between the joint’s
member elements; within an interior joint, there is con-
tiguous matter bonded together that is shared between
the member elements. Conversely, contact joints repre-
sent two independent solids that are merely in contact
with one another. The space within a contact joint is di-
vided into the two solids by a partition called the contact
plane. In Fig. 1, both joints are visualized: the discrete
elements in each of the two bodies are held together by
interior joints, which are visualized in the figure by the
green triangles (in 2-D) with black edges; also, the con-
tact between the two bodies is represented through con-
tact joints, which are visualized by the yellow triangles
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Fig. 1. Two circular bodies, which are each discretized
by discrete elements held together with interior joints,
are in a state of contact. The contact between the bodies
is modeled using the contact joints.

with orange edges. All joints are able to model the elas-
tic deformation of the material within the domain of the
joint. Interior joints also provide the capability of frac-
ture, and contact joints provide the capabilities of fric-
tion and adhesion.

3.1. Elasticity of joints

Elasticity is modeled within the joints. Both interior
and contact joints can be deformed elastically, but the
dynamics of contact joints are slightly more involved
because the contact joints need to model the differences
in the stress carrying capacity of contact joints, which is
discussed in sections 3.3 and 3.4.

The displacement field u(X) of the matter within a
joint is assumed to be fully described by a single de-
formation gradient tensor F for the joint such that the
partial derivative of the displacement field with respect
to material coordinates is ∂u

∂X = F − I, where I is the
identity tensor. Then, the displacement field within a
joint can be determined if the reference configuration of
the joint and the current positions of the joint’s mem-
ber elements are known. The reference configuration is
the set of independent displacement vectors between the
positions of the joint’s member elements when the joint
is in a stress-free state. For interior joints, the reference
configuration is initially determined at the beginning of
the simulation: it is either directly prescribed for each
interior joint, or more likely it can be easily calculated
from the initial positions of the elements if the interior
joints at the start of the simulation are taken to be in a
stress-free state.

In 2-D, exactly three discrete elements can form a
joint, which has the shape of a triangle. The three mem-
ber elements of joint j are e j

1, e j
2, and e j

3, which are or-
dered such that the path drawn going from e j

1 to e j
2 to

e j
3 and back to e j

1 turns in a counter-clockwise orienta-
tion. The vector s j

i for i ∈ {1, 2, 3} is the directed edge

of the triangle associated with joint j that is opposite to
the member element e j

i . For example, s j
1 = pe j

3
−pe j

2
and

s j
2 = pe j

1
− pe j

3
. The reference configuration of joint j

in 2-D is given by {w j
1,w

j
2}. If a joint j is in the stress-

free state at time t = 0, then the vectors of the reference
configuration of joint j are given by w j

1 = s j
1(t = 0) and

w j
2 = s j

2(t = 0), or some rotation of those vectors. If
the current positions of the member elements of joint j
at time t are known, and the reference configuration of
joint j is also known, then the deformation gradient ten-
sor F j(t) that defines the displacement field within the
joint j at time t can be calculated as follows:

F j(t) =
[
s j

1(t) s j
2(t)
] [

w j
1 w j

2

]−1

=
[
(pe j

3
(t) − pe j

2
(t)) (pe j

1
(t) − pe j

3
(t))
] [

w j
1 w j

2

]−1
.

(1)

While elasticity is modeled in the joints, the elas-
tic response of a body under loads and deformation
ultimately needs to come from the motion of the dis-
crete elements that make up the body. The elements
are just treated as point masses that move according to
fe = meae = me

∂2pe
∂t2 . The net force on the element fe

needs to be selected to appropriately model a realistic
elastic response. The net force is determined by con-
serving the energy of the system (sum of kinetic and
potential energy). If the potential energy of the system
is Π, then the net force on each element e is

fe = −
∂Π

∂pe
. (2)

The potential energy of the elastic body with domain
Ω and boundary Γ that has body forces b acting on the
body and traction forces t acting on part of its boundary
Γσ is given by

Π =

∫
Ω

UdA −
∫
Ω

b · udA −
∫
Γσ

t · udS , (3)

where U is the elastic strain energy density. Because
the joints define where matter exists within a body and
the joints do not overlap, the domain of a body Ω is the
union of the disjoint domains of joints. If the domain of
an joint j is Ω j, then Ω =

⋃
∀ j Ω j and

Π =
∑
∀ j


∫
Ω j

UdA −
∫
Ω j

b · udA

 , (4)

assuming there are no tractions t. Tractions are not typ-
ically useful for the wear simulations intended to be run
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with this model. Tractions are not needed for contact be-
cause the contact joints directly model the contact, and
prescribed tractions at the boundary of a body can be
simulated by simply prescribing equivalent body forces
on the surface elements of the body.

Combining (2) and (4) gives

fe =
∑
∀ j

−
∫
Ω j

∂U

∂pe
dA +

∫
Ω j

∂(b · u)
∂pe

dA

 . (5)

Je is defined as the set of joints that the discrete element
e belongs to as a member. By recognizing that the strain
energy densityU(x), body force b(x), and displacement
u(x) only depend on pe when x ∈

⋃
j∈Je

Ω j, (5) can be
written as

fe = felastic
e + fbody

e

= −
∑
j∈Je

∫
Ω j

∂U

∂pe
dA +

∑
j∈Je

∫
Ω j

∂(b · u)
∂pe

dA, (6)

where
felastic

e = −
∑
j∈Je

∫
Ω j

∂U

∂pe
dA, (7)

and
fbody

e =
∑
j∈Je

∫
Ω j

∂(b · u)
∂pe

dA. (8)

Under the approximating assumption that the body
force b(x) is homogeneous over the domain of a single
joint j, or b(x) = b j for x ∈ Ω j, the contribution to the
net force due to body forces, equation (8), reduces in the
2-D model to

fbody
e =

1
3

∑
j∈Je

A jb j, (9)

where A j is the area of the joint j. Usually the body
force is due to an acceleration, such as the acceleration
due to gravity g. In that case, the body force is b = ρg,
where ρ is the density of the material, which is assumed
to be homogeneous over the domain of a single joint.
Applying gravity as a body force can be greatly sim-
plified by selecting appropriate masses for the discrete
elements. By selecting the mass of the elements at the
start of the simulation according to

me =
1
3

∑
j∈Je

ρ jA j, (10)

where ρ j is the homogeneous density of the material
within the joint j, (9) is further simplified to fbody

e = meg

for the case of the body force being due to an accelera-
tion g.

The general form of the potential energy in (3) allows
for any hyperelastic material to be used in the model.
However, to actually calculate felastic

e in (7), a specific
material model must be chosen to get an expression for
the strain energy density. The Saint Venant-Kirchoff

material [26] was chosen for the current implementa-
tion of the model, which is an isotropic material with
strain energy density

U =
1
2
λ(tr E)2 + µ tr (E2), (11)

where λ and µ are the Lamé constants, and E is the La-
grangian Green strain given by

E =
1
2

(FᵀF − I). (12)

With the selection of the Saint Venant-Kirchoff mate-
rial model, the contribution to the net force due to elas-
ticity, equation (7), reduces in 2-D model to

felastic
e =

∑
j∈Je

[
1
2
σ jR π

2
s j

M j
e

]
. (13)

M j
e ∈ {1, 2, 3} is an index map such that M j

e j
i

= i ∀i ∈

{1, 2, 3}. R π
2

is a rotation matrix that rotates vectors
counter-clockwise by 90◦ and is defined by

R π
2

=

[
0 −1
1 0

]
.

σ j is the Cauchy stress in the joint j and is given by

σ j =
1

det F j F jS j(F j)ᵀ, (14)

where S j is the second Piola-Kirchoff stress in joint
j and relates to the Lagrangian Green strain E j =
1
2 ((F j)ᵀF j − I) in the joint j according to

S j = λ(tr E j)I + 2µE j. (15)

3.2. Fracture of interior joints
Fracture is modeled by simply removing interior

joints when a fracture condition has been met for the
interior joint. Because the mass and velocity is tracked
with the discrete elements and not the joints, mass and
linear/angular momentum is conserved in the fracture
process.

In general, the fracture condition can come from a co-
hesive zone model. In the current implementation of the
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model, a very simple fracture algorithm is used in which
the interior joint is removed if the maximum principal
Cauchy stress in the interior joint exceeds some thresh-
old value σ f t.

To roughly estimate that threshold value the fracture
toughness KIc and linear elastic fracture mechanics are
used. Assuming a symmetric crack of width 2a oriented
in the worse possible direction, and assuming the crack
can be approximately modeled as existing in an infinite
body with a far field stress σ∞, the stress intensity factor
from linear elastic fracture mechanics is KI = σ∞

√
πa.

Fracture occurs when KI = KIc, so KIc = σ f t
√
πa.

Therefore, the fracture threshold is estimated as

σ f t =
KIc
√
πa
, (16)

where a is taken to be some fraction of the length scale
of the interior joint.

When an interior joint is fractured, the member ele-
ments of the joint become surface elements. Because
of this, they can later join together into contact joints to
model contact. Discrete elements from a freshly frac-
tured interior joint can immediately come together to
form a stress-free contact joint, in which case, the model
is simulating the process of the material fracturing but
not actually separating from each other by a significant
distance. The material can then later separate as the dis-
crete elements are pulled apart, eventually causing the
contact joint to be removed. The details of this proces-
sare discussed in section 3.3.2.

3.3. Contact joints
There are some important differences between con-

tact joints and interior joints. While the matter within
the domain of an interior joint is supposed to be bonded
together as part of a solid body, the matter in contact
joints consists of two independent solids that are just in
contact with one another. The domain of the contact
joint is divided by a partition called the contact plane.
In 2-D, this contact plane is actually just a line, and
it is always parallel to the edge from the joint’s mem-
ber elements e j

1 to e j
2 and located in between the edge

and the third member element e j
3. Within the domain

of the contact joint, the matter on one side of the con-
tact plane belongs to one body while the matter on the
other side of the contact plane belongs to another body.
It may be possible that the two solids are actually parts
of a larger single body, but at the scale of an individual
contact joint, they appear to be from different bodies.
Since within the domain of the contact joint, there are
two bodies that are in contact, the ability to transfer ten-
sion and shear between the two bodies is limited. In

particular, a tensile load above some adhesive threshold
will cause the two bodies to separate, thus removing the
contact joint, and a shear load above a frictional limit
will cause bodies to slip along the contact plane, thus
severely deforming the contact joint. Severe deforma-
tion due to slipping can also cause the bodies to slide
off one another which also leads to the removal of the
contact joint. Finally, the contact joints need to be cre-
ated in the first place to represent contact between two
bodies that were originally not in contact and prevent
them from passing through each other. All of these dif-
ferences between contact joints and interior joints are
discussed in detail in the remainder of section 3.

3.3.1. Forming contact joints
There are restrictions on how contact joints can be

formed. First, only surface element can join together to
form a contact joint. In particular, the first two surface
elements of a contact joint, e j

1 and e j
2, need to be belong

to a directed edge from e j
2 to e j

1 that is a boundary edge.
A boundary edge is any directed edge between surface
elements that belongs to any interior joint. Second, a
contact joint cannot be created that uses a directed edge
that already exists (an edge between identical discrete
elements but in the opposite direction is fine). These
two constraints prevent contact joints from forming that
could overlap with each other or an interior joint. Fi-
nally, the most important constraint on forming contact
joints is the proximity constraint which only allows sur-
face discrete elements to form a contact joint if they are
“close enough” to one another.

The proximity constraint determines when the sur-
face of two bodies are close enough to be considered
in contact. The actual surface of a body discretized with
discrete elements is not tracked in this model because
the discrete elements making up the body do not have a
defined shape. Instead the surface of a body can be ap-
proximated by the location of the surface elements and
each of their effective sizes. For example, in Fig. 1, al-
though the black edges of the triangles near the surface
in each of the bodies are far apart from one another, the
two bodies in that figure are actually touching (although
just barely). The extent of the blue circles, which rep-
resent the effective size of the discrete elements, gives
a vague approximation of the actual surface of the bod-
ies. The condition used in the current model to deter-
mine whether the proximity constraint is satisfied for a
candidate contact joint j is to check if both e j

1 is close
enough to e j

3 and if e j
2 is close enough to e j

3. Checking
whether e j

1 is close enough to e j
2 is unnecessary because

they must be part of a boundary edge and are therefore
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always assumed to be close enough. For two elements to
be considered “close enough” to one another, we require
the distance between the two elements to be less than
the sum of their effective sizes. Therefore, the proxim-
ity constraint of a candidate contact joint j is satisfied if
‖pe j

3
− pe j

1
‖ < re j

3
+ re j

1
and ‖pe j

3
− pe j

2
‖ < re j

3
+ re j

2
.

The effective size of each of the elements is deter-
mined before the start of the simulation. It is desirable
to choose an effective size such that circles centered on
the elements with radii set to the effective size of the
elements would have some overlap with adjacent cir-
cles, but at the same time not be too big. Each joint has
some characteristic length which in 2-D is defined as the
square root of the area of the joint. Choosing the effec-
tive size of an element through a weighted average of
the characteristic lengths of the joints that the element
belongs to as a member, where the weights are deter-
mined from the areas of the joints, was found to provide
the best results. Mathematically, the effective size of an
element e is

re = c
∑
j∈Je

a j
e

√
A j, (17)

where the weights a j
e are given by

a j
e =

A j ∑
j̃∈Je

A j̃

 , (18)

and c is a constant to universally adjust the weights. A
constant of c = 0.9 was used to provide good results.

If the constraints for forming a contact joint are all
satisfied, the contact joint must be created. Currently the
implementation of the model iterates though the pairs of
elements of all boundary edges and for each pair iterates
through all surface elements in the simulation looking
for a third element that can form a contact joint that sat-
isfy all the constraints. If there are more than one valid
candidates for the third element, the element closest to
the boundary edge is chosen. The computational com-
plexity of this naive algorithm is of order N2, where N
is the number of surface elements at any given time in
the simulation, but restricting the search space to only
nearby surface elements by using data structures like
quadtrees can reduce the computational complexity of
the algorithm to be linear with N.

3.3.2. Breaking contact joints
Contact joints must be removed when the joints mem-

ber elements should no longer be considered to be in
contact. This can happen if the surfaces are pulled apart
from one another, but it can also happen if one surface

slides away from another surface. In reality, if there is
any amount of slipping that occurs at a point, the two
material points that were originally coincident prior to
slipping will no longer be in contact after slipping oc-
curs. In the model, this is approximated by consider-
ing the two surfaces represented by a contact joint to be
in contact even with some amount of sliding (which is
discussed in section 3.4) until the sliding becomes too
great that the surfaces cannot reasonably be considered
in contact anymore. These two different ways of end-
ing contact are modeled by removing the contact joints
if either of two conditions are satisfied: the pull apart
condition or the slide off condition.

The slide off condition is satisfied for contact joint j
if the projection of e j

3 onto the boundary edge from e j
1 to

e j
2 is far away from the boundary edge. Mathematically,

this means the slide off condition is satisfied if either (s j
1 ·

s j
3)/‖s j

3‖
2 or (s j

2 · s
j
3)/‖s j

3‖
2 is greater than some positive

threshold value. We have currently selected a threshold
of 0.50, which represents the slide off condition being
met if the projection of e j

3 extends beyond the nearest
vertex of the boundary edge by an amount greater than
50% of the length of the boundary edge.

The pull apart condition is determined from the stress
state in the contact joint. In a non-adhesive contact, the
contact joint could not take any tensile load normal to
the contact plane. We extend this concept in order to
provide a very simple model of adhesion by consider-
ing the contact to be pulled apart only if the normal ten-
sile stress σn exceeds some threshold value σat. So, the
pull apart condition is satisfied if σn > σat. The pull
apart condition can be updated in the future with more
sophisticated models of adhesion.

3.4. Friction

In this model, friction is modeled through the evo-
lution of the reference configuration of contact joints.
With a given reference configuration, the stress state
in a contact joint changes as the current configuration
evolves due to the moving member discrete elements.
The stress state can be used to determine the tangential
load T and normal load N acting on the slip plane of the
contact joint. So, in general the tangential and normal
loads of contact joint j are functions of the reference
and current configurations: T j = T̂ (s j

1, s
j
2,w

j
1,w

j
2) and

N j = N̂(s j
1, s

j
2,w

j
1,w

j
2), where the non-linear functions

T̂ and N̂ are known and depend on the elastic proper-
ties of the material within a contact joint which does not
change throughout the lifetime of that contact joint.

To model friction, restrictions are placed on the tan-
gential force. The contact joints cannot carry a tangen-
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tial force that is greater in magnitude than the friction
limit µ|N|, where the coefficient of friction µ is the coef-
ficient of static friction µs under the conditions of stick
or is the coefficient of kinetic friction µk under the con-
ditions of slip.

During each iteration in a simulation, the discrete el-
ement positions are updated and the deformation and
stress state within each joint is calculated. During
the updating stage, each contact joint j must satisfy
the restriction on the tangential force described above:
|T j(tn)| ≤ µ|N j(tn)|. To satisfy this requirement, the ref-
erence state is adjusted in a constrained manner to sim-
ulate the slipping phenomena. In 2-D, the contact plane
is an line, so a unit vector t̂ j

parallel to that line repre-
senting the contact plane of contact joint j is used; the
vector t̂ j

is actually defined in the reference space so that
it is parallel to the vector −(w j

1 + w j
2). After the discrete

element positions have been updated, the vectors s j
1(tn)

and s j
2(tn) are known. The reference configuration of the

contact joint in the prior iteration, {w j
1(tn−1),w j

2(tn−1)},
is also known. If |T̂ (s j

1(tn), s j
2(tn),w j

1(tn−1),w j
2(tn−1))| ≤

µ|N̂(s j
1(tn), s j

2(tn),w j
1(tn−1),w j

2(tn−1))|, then the condition
is satisfied with the current reference configuration, and
thus w j

1(tn) = w j
1(tn−1) and w j

2(tn) = w j
2(tn−1). On the

other hand, if that inequality is not satisfied, then the
following non-linear equation,

|T̂ (s j
1(tn), s j

2(tn),w j
1(tn−1) + s j

n t̂ j
,w j

2(tn−1) + s j
n t̂ j

)| =

µ|N̂(s j
1(tn), s j

2(tn),w j
1(tn−1) + s j

n t̂ j
,w j

2(tn−1) + s j
n t̂ j

)|,
(19)

needs to be solved for the single degree of freedom s j
n,

which is the amount of slipping that occurs in contact
joint j from time tn−1 to tn. After solving for s j

n, the new
reference configuration for the contact joint j is given
by:

w j
1(tn) = w j

1(tn−1) + s j
n t̂ j
,

and
w j

2(tn) = w j
2(tn−1) + s j

n t̂ j
.

3.5. Remeshing of contact joints

3.5.1. Reason for remeshing
Fig. 2 shows a sequence of steps in a simulation of

two surfaces in sliding contact. The domain of each
of the joints visualized in the figure are uniquely col-
ored to aid in understanding what is occurring during
these steps. Also, the edges of the interior joints are
colored black, while the edges of the contact joints are
colored orange. As the sliding progresses, the contact

joints are deforming under shear considerably because
they are undergoing slip. If the joints were to continue
to deform, eventually the slide off condition discussed
in section 3.3.2 would be satisfied and the contact joints
would be removed. It is not ideal for contact joints to be
removed and recreated from one time step to another in
the simulations when in reality there is always a smooth
gradual change in the contact conditions; the stress state
of the newly formed contact joints would not carry over
the elastic shear deformation and normal loading of the
preceding contact joints, and thus the total normal and
tangential loads would periodically fluctuate with dis-
continuous jumps in the loads instead of remaining sta-
ble. To overcome these issues, the concept of remeshing
adjacent contact joints is introduced.

An example of the remeshing process can be seen in
Fig. 2 in the transition from step 2 to step 3. The yel-
low and orange contact joints in step 2 are replaced with
two new contact joints of a slightly different, desatu-
rated, yellow and orange color. Similarly, the dark green
and blue contact joints in step 2 are replaced in step 3
with the light green and light blue contact joints. The
changes from step 2 to step 3 does not simply consist of
removing the old contact joints and forming new ones
according to the procedures in sections 3.3.1 and 3.3.2.
Instead, the adjacent contact joints are instantaneously
replaced within a single time step and the reference con-
figuration of the new contact joints is carefully selected
to maintain certain invariants which is discussed in sec-
tion 3.5.3.

Fig. 2 also demonstrates how the remeshing proce-
dure allows for long-distance sliding. The quadrilateral
formed by the desaturated orange contact joint and light
blue contact joint in step 4, is roughly the same shape as
the quadrilateral formed by the dark green contact joint
and dark blue contact joint in step 1. The two quadri-
laterals also involve the same surface elements of the
bottom surface. However, the surface elements of the
orange-blue quadrilateral of step 4 involves a different
pair of top surface elements than the pair of top surface
elements taking part in the green-blue quadrilateral of
step 1. In fact, the top surface elements involved have
been shifted over by one element to the left along the
boundary edge due to the fact that the top surface is
sliding towards the right. This process could continue,
leading to discrete elements in contact several steps later
that were originally a very large distance apart. And
while the long-distance sliding takes place, the contact
joints could be continuously updated through remeshing
so that at any given time there is always stable contact
(represented through the contact joints) between the two
bodies.
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Fig. 2. Two surfaces in sliding contact causing the contact joints to be remeshed.

3.5.2. Remeshing conditions
Remeshing of skewed adjacent contact joints needs

to occur before the slide off condition has been satis-
fied causing the contact joints to be removed. Of course
sometimes, it is desirable to allow the slide off condi-
tion to be satisfied for a contact joint. For example,
in Fig. 2, the red contact joint is adjacent to the yel-
low contact joint in step 3. Then, from step 3 to step
4, the red contact joint is removed due to the slide off

mechanism. In this case, this is desired behavior and
it would not be desirable to attempt remeshing the red
and yellow contact joints. Another example of when
remeshing would be undesirable is in step 1 of Fig. 2.
The orange and yellow contact joints will eventually be
remeshed right after step 2, but it is not desirable to pre-
maturely remesh the orange and yellow contact joints in
step 1 because they would become even more skewed
than they already. The desired behavior for remeshing
can be achieved by only remeshing if two conditions are
satisfied.

The first condition is a check to make sure that
remeshing would not create contact joints that overlap.
For example, if an attempt was made to remesh the red
and yellow contact joints in step 3 of Fig. 2, the result-
ing new contact joints would actually overlap with each
other and with some of the interior joints of the bot-
tom body. This is clearly unacceptable, so this potential
problem is avoided by verifying that none of the inte-
rior angles of the quadrilateral formed by the adjacent
contact joints have an angle greater than 180◦.

The second condition that must be satisfied is called
the skewness condition, which requires that the shape
of the new contact joints after remeshing be less skewed
than the shape of the contact joints before remeshing.
More precisely, the skewness of a contact joint is mea-
sured by a metric called the shape factor. For a 2-D con-
tact joint, the shape factor is the minimum of the cosines
of the angles of the contact joint. Less skewed contact
joints have larger shape factors. The shape factor has a
maximum value of 0.5 for the least skewed contact joint,
which has the shape of an equilateral triangle. So, if ad-
jacent joints j1 and j2 are being considered for remesh-
ing into new adjacent contact joints j3 and j4, the skew-
ness condition is satisfied if SF j1 + SF j2 < SF j3 + SF j4 ,
where SF j is the shape factor of contact joint j.

3.5.3. Invariants

When it is appropriate to remesh adjacent contact
joints, the new contact joints that replace the previous
ones each require a reference configuration. The refer-
ence configurations are selected to maintain certain in-
variants that must hold throughout the remeshing pro-
cess. These invariants come from the conservation of
linear/angular momentum and the conservation of en-
ergy; the conservation of mass is automatically satis-
fied because the discrete elements are not created or de-
stroyed.

Remeshing can be better understood by considering
the example of remeshing adjacent contact joints j1 and
j2 into new contact joints j3 and j4. Contact joints j1
and j2 form a quadrilateral in 2-D with elements e1, e2,
e3, and e4 at the vertices of the quadrilateral. The path
from e1 to e2 to e3 to e4 and back to e1 turns in a counter-
clockwise orientation. The edge vectors of the quadri-
lateral are known and can be calculated from the known
vectors s j1

1 , s j1
2 , s j2

1 , s j2
2 . The four forces acting on the

elements of the quadrilateral due to the elastic contri-
butions of contact joints j1 and j2 only are also known
from (13). For linear momentum to be conserved, the
net force on each element after remeshing should re-
main the same as it was prior to remeshing. This means
that the four forces acting on the elements of the quadri-
lateral due to elastic contributions of only contact joints
j3 and j4 should be the same as the four forces acting on
the elements due to elastic contributions of only contact
joints j1 and j2. This imposes 8 constraints (four 2-D
forces) on the reference configuration vectors w j3

1 , w j3
2 ,

w j4
1 , and w j4

2 because the edges of joints j3 and j4 (s j3
1 ,

s j3
2 , s j4

1 , s j4
2 ) are fixed to satisfy the known edge vectors of

the quadrilateral. Two of those 8 constraints are redun-
dant due to the conservation of linear momentum and
one additional constraint is redundant due to the con-
servation of angular momentum. So, the forces on the
elements of the quadrilateral impose only 5 constraints
on the reference configuration vectors that need to be
solved. The reference configuration vectors have a total
of 6 degrees of freedom in 2-D (one of the four refer-
ence configuration vectors is redundant because two of
the four reference configuration vectors will always be
equal and opposite). The additional constraint needed
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to solve the problem comes from the conservation of en-
ergy. The elastic strain energy in the quadrilateral prior
to remeshing must equal the elastic strain energy in the
quadrilateral after remeshing, or U j1 + U j2 = U j3 + U j4 ,
where U j is the strain energy of joint j.

So, satisfying the invariants during the remeshing
procedure requires solving a system of six non-linear
equations for six unknowns. The unknowns are the in-
dependent variables defining the referencing configura-
tions of the two new contact joints j3 and j4. Five of the
six equations satisfy conservation of momentum, and
the sixth equation satisfies conservation of energy. The
equations are non-linear because of the non-linear de-
pendence of the forces and strain energy density to the
reference configuration, as can be seen through equa-
tions (1), (11), (12), (13), (14), and (15).

3.6. Time integration scheme and boundary conditions

With the forces on the elements known from (6),
(9), and (13), the positions of the elements pe(t) can
be evolved using explicit time integration according to
Newton’s equation of motion fe = me

∂2pe
∂t2 . The current

implementation of the model uses an explicit linear mul-
tistep method for the time integration, in particular the
fourth-order Adams–Bashforth method.

As mentioned before, traction boundary conditions
are simulated by assigning an appropriate body force to
the surface discrete elements that are part of the bound-
ary that the traction would be applied to. For example,
a uniform traction of t applied to an edge of length L
connecting elements e1 and e2 is satisfied by applying a
body force of 1

2 Lt to each of the elements e1 and e2.
Displacement boundary conditions are easy to con-

trol because the simulation tracks the positions of the
discrete elements. The simulation allows for various
types of displacement boundary conditions. Some of
the discrete elements can be selected to be restrained in
their motion in some way. For example, a roller support
can be simulated by preventing a change in the position
of an element in one direction while allowing for move-
ment in the perpendicular direction. This boundary con-
dition is simulated in simulations by modifying the ve-
locity vector to be consistent with the boundary condi-
tion. Another way the simulation allows handling dis-
placement boundary conditions is by directly control-
ling the position of some discrete elements over time.
This boundary condition is simulated by modifying the
current configuration of discrete elements at each time
step to be consistent with the imposed displacements.

4. Applications/Validation

The capabilities of this model, such as elasticity, frac-
ture, contact, friction, adhesion, long-distance sliding,
and tracking third-bodies, are demonstrated with two
simple simulations. The first simulation consists of two
elastic circles coming into contact and sliding against
each other to demonstrate the capabilities of contact,
friction, and long distance-sliding through the use of
remeshing. The second simulation demonstrates a typ-
ical wear mechanism: an asperity coming into contact
and breaking off due to fracture from the elastic strain-
ing in the asperity and becoming a new wear debris par-
ticle that is properly tracked in the simulation. Then, the
case of a block sliding down an inclined plane is studied
to act as a partial validation on some of the capabilities
of the model. For all of these simulations, the material
parameters (which are typical values for zirconia oxide)
are: Young’s modulus E = 200 GPa, Poisson’s ratio ν =

0.3, fracture toughness KIc = 13 MPa m1/2, and density
ρ = 6 g cm−3.

In the visualizations of the simulations that are shown
in the figures, the discrete elements themselves, which
are located at the vertices of the triangles representing
the joints, are not shown. However, only for discrete el-
ements at the surface, the effective sizes of the elements
are shown with blue circles centered at the location of
the elements. Triangles with black edges represent the
interior joints, and triangles with orange edges represent
the contact joints. The contact joints have a preferred
orientation that defines the contact plane, but the con-
tact planes are not shown in the visualizations below.
The σyy component of the Cauchy stress within each
joint (both interior and contact) are visualized through
color plots.

4.1. Circles in contact

In the first simulation, two circular bodies are brought
into contact with each other by holding the bottom half
of the bottom body fixed and driving the top half of
the top body downward until a compressive contact is
formed between the two elastic circular bodies, shown
in Fig. 3a. The orange-bordered contact joint in that
figure show the state of elastic contact between the two
bodies. The number of contact joints increase as the
compression grows, which demonstrate the increasing
area of contact between the two elastic circles in con-
tact.

The top half of the top circular body is then moved
rigidly to the right to allow the circles to slide against
each other with friction. Fig. 3b show how the contact
joints have deformed under shear to represent sliding
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(b) Snapshot at t = 3.537 ns

Fig. 3. Snapshots of the simulation of circles in contact.

under friction. Some of the shear is carried elastically
by the contact joint until a limit, after which point the
further deformation of the triangle is due to slipping. A
little later in the simulation, see Fig. 3c, the deforma-
tion of the contact joints has become so severe that an
automatic remesh occurred to allow for further sliding.

As sliding continues, the contact joints move along
the surface of the circular body but because the two bod-
ies are getting further apart with additional sliding, the
compressive loading in the contact joints is reduced, as
seen in Fig. 3d, until eventually tensile loading exceed-
ing the adhesion threshold develops normal to the con-
tact plane of the contact joints resulting in the contact
joints disappear and thus causing the two circular bod-
ies to pull apart, as seen in Fig. 3e.
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(d) Snapshot at t = 6.578 ns
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(e) Snapshot at t = 7.999 ns

Fig. 3. Snapshots of the simulation of circles in contact.
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4.2. Asperity contact and break-off

In the second simulation, a moving asperity of a
rough surface encounters an obstacle which causes the
asperity to break off the surface. At the start of the sim-
ulation, the top body is brought down to come into con-
tact with the circular obstacle, which is held in place
during the simulation, and then it begins moving right.
In Fig. 4a, the contact between the asperity and the ob-
stacle is modeled by the orange-bordered contact joints
that form between the elements within the top body and
the element within the circular obstacle.

As the top body moves to the right, shown in Fig. 4,
the impeding obstacle causes interior joints in the top
body to progressively fracture from elastic strain until
eventually the entire left asperity breaks off from the
rest of the body. The fragmented asperity is then a third-
body wear debris particle that is free to move within the
simulation under its dynamic forces. In fact, there are
five third-body particles in Fig. 4c: one is the large as-
perity fragment, the second is a small triangular body
made from three discrete elements, and the remaining
three third-body particles are each single discrete ele-
ments that are adhering to the surface of the top body.

4.3. Block sliding down inclined plane

The simulation of a block sliding down an inclined
plane under the force of gravity provides a partial val-
idation of some of the capabilities of the model. In
particular, the simulation needs to accurately model the
contact and friction between the block and surface on
which the block is sliding. Long-distance sliding re-
quires the remeshing capabilities of the model to main-
tain a smooth always present contact between the block
and plane. The friction model of the contact joints needs
to be capable of accurately modeling the transition from
stick to slip so that the block does not start sliding until
the force pulling on the block exceeds the static friction
force.

In order to provide the validations desired, we first
set up the geometry of a block resting on an inclined
plane. A union of the geometries of the plane inclined
at an angle of 15° and the block on top of it, is first used
in a energy minimization simulation to find the static
equilibrium state of the body under the force of gravity
(g = 98 nm ns−2). The minimization of the potential en-
ergy is done through steepest descent using the gradient
of the energy (the forces on the elements) until the crite-
ria on the forces is satisfied such that the system reaches
a state close to static equilibrium (at least enough to re-
duce severe bounces in the later dynamic simulation).
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Fig. 4. Snapshots of the simulation of asperity contact
and break-off.
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Fig. 5. State of block and inclined plane geometries un-
der gravity after relaxing with energy minimization.

Fig. 5 shows the state of the system after the minimiza-
tion procedure. The interior joints in the interface be-
tween the block and the plane are then converted into
contact joints with the same reference configuration to
keep the same state of stress, which separates the block
and the inclined plane into two different bodies ready
for the dynamic simulation.

Simulations are run in order to identify two regimes
of sliding: stick and slip. The block is expected to
slide when the static coefficient of friction is less than
tangent of the angle of the incline. Instead of altering
the angle of the inclined plane, which would require a
re-minimization procedure, the coefficients of friction
are modified for various dynamic simulations. Through
these simulations we were able to identify that the tran-
sition between stick to slip occurred when the static co-
efficient of friction µs < tan(15◦) ≈ 0.268, as expected.
The details of two particular simulations, one for stick
and one for slip, are included below.

The dynamic simulation of the block on an inclined
plane with a static and kinetic coefficient of friction of
µs = µk = 0.28 is used to demonstrate sticking. At
the start of the simulation, there is a very slight down-
ward movement in which a new leading contact joint is
created, but then the block stops moving and remains
fixed for the rest of the simulation, see Fig. 6. The
tangential and normal forces on the contact surface of
the block, seen in Fig. 7, show how the forces match
what is expected from a simple free-body diagram anal-
ysis of a rigid block on an inclined plane. The tan-
gential force of friction actually increases from a lower
value to the expected result during the beginning of the
simulation which coincides with the initial downward
movement noticed in the dynamic simulation. The nor-
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Fig. 6. Block on inclined plane under a state of stick.
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Fig. 7. Forces acting on the contact surface of the non-
sliding block on an inclined plane.

mal force slightly oscillates around the expected normal
force, most likely due to the initial configuration not be-
ing perfectly in the static equilibrium state.

Another dynamic simulation, this time with a static
coefficient of friction µs = 0.25 < tan(15◦) and a ki-
netic coefficient of friction µk = 0.20, is used to demon-
strate the case of the block sliding down the inclined
plane. The block immediately begins sliding down at
the start of the simulation. A snapshot of the simulation
as the block is sliding down the plane can be seen in
Fig. 8. The tangential and normal forces on the contact
surface of the sliding block are similar to that of the non-
sliding block, in that they both slightly oscillate around
the forces expected from a free-body diagram analysis.
One important difference, however, is that the friction
force on the sliding block is µkN as expected, not µsN,
where N is the normal force. By calculating the time
derivative of the position of the center of mass of the
block, the speed at which the block was sliding down
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Fig. 8. Block sliding down an inclined plane under grav-
ity.

the inclined plane was plotted versus time. The plot was
very close to linear, and fitting a line to the data gave a
slope of approximately 6.1 nm ns−2 for the line, which is
the acceleration of the sliding block. From a free-body
analysis of a rigid block on the inclined path, the net ac-
celeration of the block is given by g(sin(θ)−µk cos(θ)) ≈
6.4 nm ns−2, which is less than a 5% difference from the
measured acceleration from the simulation results.

5. Discussion

As discussed in the introduction, finite element sim-
ulations of fretting have been coupled with Archard’s
law or other work-rate type models to estimate the wear
rates over the contact interfaces. Some of these ap-
proaches have also adjusted the geometry of the wearing
surfaces according to the estimated wear rates by chang-
ing finite element node positions and using adaptive
remeshing. While these approaches work fine, they do
not consider the presence of discrete third body wear de-
bris at the contact interface. Adding in additional bodies
meshed using finite elements to interact through contact
in the wear process presents challenges and enormous
complexity for the typical contact algorithms used in
the finite element method (FEM). All surfaces that may
possibly come into contact need to be defined prior to
starting or continuing FEM simulations. However, in
a wear problem, new surfaces will be generated due to
wear as the simulation progresses. So, it is not known
a priori which finite elements will be participating in
contact with other finite elements.

The model presented in this paper is able to dynami-
cally update the set of entities that can be in contact over

time. Contact is handled using the dynamically created
and destroyed contact joints between discrete elements.
There is no master/slave contact algorithm between tri-
angular (in 2-D) geometries which need to be marked as
capable of contact with other triangular geometries as
would be the case in FEM; instead all surface elements
have the potential to join together into a contact joint
with nearby neighboring surface elements. This flexi-
bility allows the model to handle contact between the
two fretting surfaces, between third bodies and the fret-
ting surfaces, and between any number of third bodies,
regardless of whether the third body or fretting surface
existed in its current form at the start of the simulation
or if it was generated over time through the wear pro-
cess.

This sort of flexibility in contact is also present in the
discrete element method (DEM). An easy, scalable con-
tact algorithm is important in the types of problems typi-
cally used in DEM simulations, such as the flow of gran-
ular materials. However, there are considerable limita-
tions with DEM that make it unsuitable for fretting wear
simulations. The most important is the fact that the par-
ticles modeled by DEM are rigid. Without the ability
to model stress state in say a third-body modeled using
the discrete elements of DEM, there is no accurate way
of modeling the fracture of the wear debris particle into
multiple smaller particles. This capability is immensely
useful in simulating problems like comminution, but its
also very important in fretting wear. Furthermore, if the
fretting surfaces were also modeled using rigid DEM
elements then fracture of asperities would also not be
possible. The other major issue with the capabilities of
DEM is that its contact model is too simple. Contact
in DEM between the rigid particles is typically mod-
eled using a penalty method or Hertz contact and may
even include enhancements such as adhesion, see [12].
However, there is no clear way of adding friction be-
tween contacting elements in DEM that could allow the
method to accurately simulate the problem of the block
sliding down an inclined plane discussed in this paper.

A hybrid approach between DEM and FEM may help
resolve some these issues. In fact, the method presented
in this paper might be considered to be a conceptual
hybrid between DEM and FEM. However, the hybrid
method typically used in the literature is the combined
finite-discrete element method developed by Munjiza
[27], in which the discrete particles typically modeled
in DEM are discretized by a finite element mesh. While
this method would allow for accurately computing the
stress state in both the fretting bodies and the third bod-
ies so that the fracture of wear debris and asperities
would be possible, it still shares the same problems of
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DEM in terms of having difficulty accurately modeling
friction between the discrete particles. Furthermore, us-
ing traditional FEM contact algorithms in this hybrid
method would remove the advantages of an easy DEM-
like contact algorithm, resulting in the previously dis-
cussed problems of FEM contact modeling of a third-
body layer with many dynamically-generated discrete
wear debris particles.

The small simulations in this paper merely provide
a demonstration of the capabilities of the model. The
model is flexible enough to allow asperities on the rough
surface of a fretting body to fracture and become third-
body wear debris which can continue to interact through
contact and friction with all of the other bodies in the
simulation. Also, the problem of the block sliding down
the inclined plane shows how the same contact and fric-
tion algorithm in the model is capable of simulating the
block sliding down the plane that is consistent with re-
sults expected from a simple free-body diagram analysis
of a rigid sliding block with a Coulomb friction model.
The acceleration from the simulation is within 5% of
the acceleration calculated from the analytical result de-
rived from the simplified free-body diagram analysis. In
particular, the acceleration from the simulation results
are less than analytically calculated acceleration, which
is expected because there are slight vibrations during
sliding and that vibrational energy is transferred into the
bulk of elastic block, whereas in the free-body analysis
the block is rigid and the sliding is considered to be per-
fectly smooth.

While the results from sliding block problem are con-
sistent, further friction validation studies are needed to
better validate the friction and contact capabilities of
this model. The study of Hertz contact between an elas-
tic circular body and a flat with an oscillating sliding
motion can be another great validation study because
analytical expressions are known for parameters like the
size of the stick and slip region, the pressure and shear
distribution over the contact surface, and the frictional
work done per fretting cycle [28].

The other capabilities of the model, such as fracture,
need validation as well. A simulation of comminution,
in which brittle materials are successively crushed and
grinded together, can provide some validation for the
fracture and contact capabilities of this model. Results
from the simulation such as the size, shape, and num-
ber of particles from the process can be compared with
results from comminution experiments.

Finally, the purpose of this model is to apply it to fret-
ting wear simulations to better understand the fretting
mechanisms and how they change with different operat-
ing conditions. So, even in 2-D, simulations of fretting

wear between two rough surfaces, similar in concept to
the asperity fracture simulations presented in this paper
but at much larger size, can be conducted to study the
mechanisms of fretting wear of brittle materials. Param-
eters that can be varied in the set of simulations include
normal load, slip amplitude, surface roughness, pres-
ence of an initial third-body wear debris layer of differ-
ent compositions (number of particles, and size/shape of
particles), oscillation frequency, and variants in the fret-
ting motion such as a combined sliding and impact mo-
tion. Through qualitative analysis of the wear process
and quantitative measurements of the amount of wear in
the simulations, an understanding of the dependence of
fretting wear behavior on the operating conditions can
be obtained and a fretting wear mechanism map can be
created.

6. Conclusion

A model for simulating fretting wear of brittle materi-
als at the micron length-scale is proposed which has the
capabilities of generating wear debris and handling con-
tact between the any bodies present in the dynamic sim-
ulation, including new bodies generated during the evo-
lution of the simulation due to fracture of asperities. Ex-
perimental results have shown work-rate wear models
with constant wear coefficients are insufficient for mod-
eling fretting wear under the variety of operating condi-
tions that may occur. The model proposed in this paper
can be used to better understand how the wear coeffi-
cient changes with some relevant operating conditions
by studying how changes in the operating conditions af-
fect the mechanisms of wear in the simulations. Results
and analysis from future simulations using this model
can provide tools, such as a wear mechanism map, to
improve wear rate estimates in fretting wear problems
like the case of grid-to-rod fretting in nuclear fission re-
actors.
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