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“When it is not in our power to determine what is true, we ought to follow what is
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Abstract

While Monte Carlo simulation has been recognized as a powerful numerical method

for use in radiation transport, it has required a mixture of methods development

and hardware advancement to meet these expectations in practical applications. In

an effort to continue this advancement for uses of Monte Carlo simulation in ever

larger capacities, Oak Ridge National Laboratory is developing the Shift hybrid

deterministic/Monte Carlo code to be massively-parallel for use on parallel computing

systems of all sizes. As part of this development, verification of the Monte Carlo parts

of the code is needed to confirm that the current version of the code is operating

properly, by matching the results of similar, currently available codes, as well as

allowing for testing of the code in the future, to ensure that subsequent code changes

and the implementation of new capabilities don’t adversely affect the results. This

research starts that verification using some basic reactor criticality benchmarks. The

Shift code has been shown to agree within three standard deviations with MCNP and

KENO, two of the most widely used Monte Carlo criticality codes. Also investigated

was the efficiency of the Shift code as it currently stands, scaling with the number

of processors the code is run on as well as the number of particles being simulated.

The code was found to scale well, as long as there are enough particles to make the

transport take significantly more time than the inter-cycle communication between

compute nodes.
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Chapter 1

Introduction

As early as the Manhattan Project, Monte Carlo simulation has been recognized

as a powerful numerical method (3). However, at the time it was infeasible to use

Monte Carlo for modeling radiation transport phenomena with any level of detail.

As a consequence, many simplifications were made early in the history of radiation

transport to accommodate the computational capabilities of the times. Generally,

advances in nuclear simulation follow and take advantage of advances in computing

(6). The availability of advanced computational methods notwithstanding, ever-

increasing processing speeds have also influenced the utility of various radiation

transport methods. However, as codes were borne out of one advancement

in computing, they would subsequently need to be retrofitted to utilize later

advancements or risk becoming irrelevant. This has been attempted several times

with various codes and with mixed results. The ever-present alternative is to design

a new code centered around fully utilizing the new capability.

This alternative approach has been explored by researchers at Oak Ridge National

Laboratory (ORNL), giving rise to the Denovo project and, more specifically, the Shift

hybrid deterministic/Monte Carlo code. The code is being built from the ground up

to be massively parallel by utilizing the best available techniques while overcoming

the challenges those techniques present (15). As part of the Denovo project, Shift

1
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will combine Monte Carlo transport with a deterministic transport algorithm as a

hybrid method in order to reduce the total computation time required to acquire an

accurate result by utilizing the advantages of both techniques.

Once this new code has enough capabilities, these capabilities must be verified and

reverified during later stages of development. This is done to demonstrate that each

new capability performs its job appropriately while, at the same time, ensuring it does

not break any of the previous capabilities of the code. For a Monte Carlo program,

this generally involves utilizing benchmarks that have either been checked against

experimental results or simulated using codes that have been previously validated

against other experimental results. This research conducts such a verification on the

eigenvalue estimation, flux estimation, and the scaling capabilities of the Monte Carlo

code Shift.

2
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Chapter 2

Background

2.1 Early Uses and Constraints of Monte Carlo

Radiation Transport Codes

Monte Carlo has been regarded since the Manhattan Project as a powerful numerical

method that would be useful in the simulation of radiation transport. This is

due to its generality (2). So long as the geometry of a given simulation can

be described mathematically, and the physical processes can be represented with

equations or probability distributions, the Monte Carlo method can simulate almost

any radiation transport problem. However, Monte Carlo has historically been

considered “complicated, inefficient, and expensive” (3) and because of this, has been

utilized as a “method of last resort” (10). Several reasons have been suggested for

this (3). First, Monte Carlo was used when other methods couldn’t be. Thus, it

was used on problems that had complicated geometries and physics that were too

difficult to describe with partial differential equations in deterministic calculations.

Second, the use of statistical methods added a new source of numerical error. Variance

reduction techniques were derived in order to reduce this error to acceptable levels

during a practical run time; however, the application of these techniques has often

been considered less of a science than an art. Third, the use of the law of large numbers

3
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required that the number of histories run be increased according to the square of the

desired reduction in statistical error. Thus, in order to have a great deal of certainty

in a given result, the programs would need to run a very large number of histories.

2.2 Utilizing Advances in Computation

With these problems in mind, Monte Carlo was restricted in the areas and ways in

which it was applied. Due to memory restrictions, complicated geometries could only

be represented on large machines. Also, cross section files of limited size had to be

utilized. Large and detailed geometries had the added complication of requiring more

histories to get a reasonable degree of certainty in the results. Because of this, Monte

Carlo methods were primarily utilized for performing detailed simulations at the pin

cell level as a means of determining the flux spectrum, which would subsequently be

used to collapse cross sections for use in less detailed diffusion simulations (1). For

other reasons, including the inherent difficulty in accounting for thermal hydraulic

feedback, a task easily handled by diffusion-based codes, deterministic radiation

transport was also limited to this role. While diffusion simulations are faster and

easier, they are inherently error prone due to the assumptions made to justify the

use of the diffusion equation. This resulted in many years of research to find ways to

reduce the errors in the diffusion results. At the same time, research and advances in

computing methods and power have led to an enormous increase in the availability

of Monte Carlo radiation transport methods to the average researcher, as well as its

feasibility for use with larger problems. Aside from the general increases in processing

speed, two main computational advances have led to the re-imagining of Monte Carlo

codes in an attempt to utilize them: vectorization and parallelization.

While scalar processing power increased through the 1950s and 1960s, vector-

ization provided the next great leap in the 1970s (figure 2.1). Before vectorization,

scalar processing computers would take one piece of data and one instruction of how to

manipulate it, even if the same instruction was being used for multiple pieces of data in

4
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a row. Vectorization allowed for a multiple pieces of data to be sent to the processors

with a single instruction to perform on all of them, resulting in all of the calculations

being completed much quicker. The key to optimizing processor efficiency is to fill the

vector as much as possible before sending it through the processor. However, the way

in which Monte Carlo codes had historically been built was not suited for use on vector

processors. At the time, Monte Carlo codes were designed to model a single particle,

following it from collision to collision until it was absorbed or left the boundary of the

problem - an approach known as history-based Monte Carlo. Attempting to vectorize

this would lead to starting with a full vector of particles, but having some particles

absorbed before others and ending up with an incomplete vector going through the

processor. Many attempts were made to vectorize many history-based programs,

including KENO-IV. Almost all of them resulted in increased computation time and

those that didn’t only resulted in small decreases (4). In 1973, Martin and Brown

published an alternative method they referred to as “event-based Monte Carlo” (2).

In this approach, the simulation was divided into different processing events such as

collision analysis, tallying, tracking, and boundary crossing. When a given event had

a full vector, or whichever vector was closest to being full, it would be processed,

contributing to the totals of other the vectors. Various codes were built using this

method until a full general-geometry, general physics, continuous energy code was

constructed around this method. Lessons were taken from the previous codes and

combined them all into the production code called RACER3D. Speedups of more

than an order of magnitude were reported using this code. Attempts at vectorizing

old codes, such as KENO-IV, probably ended up with such poor results because other

sections of the code were not specifically designed for vector processing.

5
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Figure 2.1: Historic computer performance versus time.(2)

The second major computational advancement was parallel processing. Monte

Carlo designs have been even slower to capitalize on this technological development

than was the case with vector processing. This is curious because it has been

recognized since very early on that Monte Carlo was well-suited for parallel computers

(3). This is because each particle in a given generation is processed independently of

any other particles. Thus, co-generational particles can be run on separate processors

at the same time. The memory requirements of Monte Carlo were still a major

roadblock. Separate processes would either have to share memory and risk one process

having to wait for another process, if they both try to access the same piece of memory

at the same time, or to give each process its own complete set of memory, doubling

the required amount of accessible memory. Having distributed memory, on the other

hand, would require synchronization and communication between the processors after

each cycle in order to calculate the results. Accepting this communication issue, this

gave rise to domain decomposition in its many forms.

Domain decomposition takes a dimension of the problem and splits it into two

or more sections each to be distributed to one processor. This can be done over any

dimension: geometry, angle, and/or energy (6). Because of the inevitable exchange

6
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of particles between the sub-domains of any of these decomposition dimensions,

this leads to an increase in network communication. Thus, this generally leads

to a reduction in efficiency with the notable exception of cases in which there are

greater memory requirements for the complete problems than are available to the

individual processors, which is alleviated by decomposing the domains. In this case,

communicating particles that cross domains between different processors could be

faster than having to read the data off of the hard disk. For example, energy

decomposition could allow one processor to only concern itself with all high energy

particles in fast groups and another could concern itself with thermal energy particles.

This would lead to a great many particles scattering from the domain of the first

processor to that of the second, but it would only require each processor to have

the cross sections for those specific energy ranges. Far more popular is geometric

domain decomposition, which divides the problem geometry between processors. This

requires each processor to only keep part of the geometry in memory and communicate

the necessary information about particles that cross a given boundary to another

processor. A concern when attempting to combine this with vector processing is that

by dividing up the number of particles simulated on a given processor, it will be more

difficult to fill a vector for efficient processing.

While domain decomposition solves the problem of computers with limited

memory, it does so with the aforementioned trade-offs. However, computers have

been advancing such that containing a fairly large and complex problem geometry

complete with continuous energy cross-sections for many isotopes on a single computer

is becoming more common. With this, the main problem to be tackled by parallel

processing is to process more particles more quickly. This has been achieved with

domain replication. Domain replication takes the entire problem domain, including

all cross sections, all angles, and the entire problem geometry, and puts it on every

processor. With this method, the only communications are giving each processor

the problem domain and the number of particles to be run at the beginning and

each processor reporting to the master processor the results of each cycle at its end.

7
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Thus, so long as the computation time involved in simulating the required number of

particles on a given processor takes a significant amount of time with respect to the

communication time between cycles, a speedup can be observed. Domain replication

and domain decomposition can also be utilized at the same time, taking multiple

instances of a decomposed domain and distributing them to various processors. To

observe the benefits of both domain replication and domain decomposition, Lawrence

Livermore National Laboratory developed the MERCURY Monte Carlo code (8).

They were able to observe speedups for both methods.

Finally, another technique used to improve the efficiency of the Monte Carlo

approach is to use it as part of a hybrid method (13). This hybrid method utilizes

a deterministic code to generate importance functions over the problem in any

dimension, generally space and energy. This importance function can then be used

to generate a problem-wide map for weight windows to be used in the Monte Carlo

simulation. Weight windows is a variance reduction technique used in Monte Carlo

codes that establishes upper, lower, and target weights for a particle of a given energy

in a given region of the problem. If a particle has too high of a weight, it is split into

multiple particles of equal weight as close to the target weight as possible. If a particle

has too low of a weight, it goes through roulette with an appropriate probability of

survival such that the particle is either killed or survives with the target weight. By

applying such a weight window map to a problem at the very beginning, this method

ensures that areas that are generally slow to converge, and would otherwise require a

great deal more histories to be run for confident tally estimates are able to converge

at similar rates to other, more quickly converging areas of the problem.

8
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2.3 Shift: A Massively Parallel, Hybrid Monte

Carlo/Deterministic Radiation Transport Code

In order to take full advantage of all of these methods, Oak Ridge National Laboratory

undertook the development of the Shift hybrid deterministic/Monte Carlo code as a

part of the Denovo code-base. The entire code-base is being built to be utilized

on massively parallel machines. As such, Shift is capable of serial runs, domain

replication, domain decomposition, or both domain replication and decomposition.

Once it is complete, the results from the deterministic calculation will be used to

accelerate source convergence and drive hybrid variance reduction techniques used in

the Monte Carlo simulation. By combining all of these, it should become feasible

to run highly detailed, full reactor problems on massively parallel computers in

reasonable amounts of time and to get well-converged tallies in all areas of the core.

As a starting point in building this code, the Monte Carlo module of the code

is being built to be capable of stand-alone simulations. This is to verify that it

is performing appropriately as it is being built (12). Such verification is necessary

throughout the project to ensure that each newly added component is working and

that its implementation does not break any of the other components already in place.

One of the ways of accomplishing this is by building an input to test a given feature

that has been added to the code under development and already exists in a reference

code that has been previously verified and validated. Using different inputs with

varying expected results, it can be shown that the method is responding appropriately

to the different input parameters by showing similar changes between the new code

and the old one. For instance, the transport section of a radiation transport code

can be tested by utilizing the same problem at different temperatures and seeing if

the result responds in similar relative direction and magnitude as the reference code.

After new components are added, the same problems should be run again to verify

that the old components work, and new problems should be run to verify the new

component has been implemented correctly.

9
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Chapter 3

Methodology

For this research, the results of the Monte Carlo module of Shift were compared

against those of MCNP5-1.60, hereafter referred to as MCNP, and KENO-VI.

The compared results include eigenvalue results as well as flux tallies for certain

benchmarks. The benchmarks used include the C5G7-2D and -3D benchmarks as

well as select benchmarks developed by the Consortium for Advanced Simulation of

Light Water Reactors (CASL) at Oak Ridge National Laboratory. To test the parallel

capabilities of Shift, the problems were all run on varying numbers of processors. To

observe the efficiency of Shift, the problems were also run with varying numbers of

histories.

3.1 Codes Used

MCNP is a general purpose Monte Carlo radiation transport code developed at Los

Alamos National Laboratory. Capable of both criticality and shielding calculations,

MCNP handles the transport of neutrons, photons, and electrons. While MCNP can

utilize continuous energy cross sections, the benchmark for which this code was used

in this research did not require it. However, part of the powerful tallying capabilities

were utilized. MCNP is also capable of domain replication parallel processing, though

10
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this was only used to achieve better results faster and not for timing comparisons in

this research (11).

KENO-VI is the Monte Carlo criticality code that comes with the SCALE package,

developed at Oak Ridge National Laboratory. With the update from KENO-Va to

KENO-VI, the geometry package gained improved functionality while also making the

generation and reading of the input file easier for the user. The update also added

continuous energy functionality, though the code is equally capable in both continuous

energy and multi-group modes. Recently, domain replication parallel capabilities have

been added (14).

As previously noted, Shift is being constructed at Oak Ridge National Laboratory

to be a massively-parallel, hybrid-method radiation transport code. This research

concentrates on criticality calculations using the Monte Carlo method only. At this

point in development, Shift is capable of utilizing multi-group and continuous energy

cross sections for both criticality and shielding calculations. It can run in parallel

using full domain decomposition, full domain replication, domain decomposition with

overlapping domains, and multi-set overlapping domain (MSOD) decomposition (15).

Shift also accepts several geometry input formats including those used in KENO-VI

and MCNP.

At the time of this research, two variance reduction techniques were employed:

weight roulette and implicit capture. Weight roulette involves tracking a particle’s

weight. Once the weight falls below a prescribed value, the particle is subject to

Russian roulette. This results in either the particle being killed or the particle’s

weight increasing above the lower limit based on the probability of elimination (11).

While this does not directly reduce the variance of a result, it allows for computation

time to be spent on particles of greater significance to the answer, generally resulting

in a reduction in the variance reported after a given period of computation time.

Implicit capture occurs along every step of particle transport. Every time a particle

experiences a scatter, its weight is reduced based on the probability of absorption and

a partial absorption is tallied at that location (11). This results in absorption tallies

11
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all along the particle path instead of just at the end. Also, this reduces the weight of

the particle smoothly as it is transported, taking it more quickly towards the lower

limit to be subject to rouletting.

3.2 Benchmark Problems

The C5G7 benchmark problems were developed by the Organization for Economic Co-

operation and Development Nuclear Energy Agency in order to test the capabilities

of radiation transport codes that do not use spatial homogenization above the fuel-

pin level (7; 9). The benchmark problem is the C5 MOX fuel assembly problem

specified by Cavarec et al. (5). It has quarter-core radial and half-core axial symmetry.

The full core consists of 16 light-water-moderated 17x17 fuel assemblies containing

either uranium oxide (UO2) or mixed oxide (MOX) fuel. Taking advantage of the

symmetry, one octant is simulated with reflective boundary conditions on the three

inward-facing surfaces. The fuel assemblies are surrounded by light-water acting as a

reflector beyond which is a vacuum boundary condition (Figure 3.1). While the UO2

assembly only has one enrichment, the MOX assemblies have three enrichments of

4.3%, 7.0%, and 8.7% as shown in Figure 3.2. Each assembly contains 24 guide tubes

for control rods and one instrument tube for a fission chamber in the center grid-cell.

All pin cells have a radius of 0.54cm with a pitch of 1.26cm.

The two-dimensional case (2D) is a 1cm thick slice of the reactor with reflective

boundary conditions on the top and the bottom, as well as the two inward facing radial

surfaces. The fuel regions in the three three-dimensional (3D) cases are divided into

three equal axial sections. The differentiation between the three inputs is by the axial

sections that have control rods or water in the guide tubes. The ”Rods Out” case only

has control rods above the fuel assemblies in the reflector region. The ”Rodded A”

case has control rods only in the top section of the inner fuel assembly. The ”Rodded

B” case has control rods in the top section of all but the outer/corner assembly and

the middle section of the inner assembly (Appendix A). As these cases are reflected

12
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Figure 3.1: C5G7 boundary conditions (7).

13

CASL-U-2014-0142-000



Figure 3.2: C5G7 pin pattern (7).
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Figure 3.3: C5G7 fuel pin geometry (7).

across the axial mid-plane of the reactor, they simulate the control rods being inserted

from the top and the bottom.

The materials in this benchmark include light-water used as the reflector and

moderator, one UO2 fuel, three enrichments of MOX fuel, one guide tube, one

instrument tube, and one type of control rod. While this benchmark test is intended

for codes that avoid homogenization above the fuel-pin level, all of the pins are

homogenized with the gap and cladding (Figure 3.3). The benchmark provides seven

group macroscopic cross sections in an MCNP-format that are normalized such that

the atom density of all of the materials is 1 atom/barn-cm. The benchmark provides

eigenvalue results for all of the above configurations based on MCNP simulations.

Although the benchmark also provides pin power results, this research utilized flux-

tallies instead, due to the early stage of development Shift was in. All of these

problems were run with 1200 cycles including 500 skipped cycles. For the eigenvalue

results, 300,000 particles were simulated for every cycle.
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At ORNL, as part of CASL, a series of reactor progression benchmark problems

are being designed by Andrew Godfrey (17). These benchmark problems are based on

the Watts Bar Nuclear 1 (WBN1) reactor on its first cycle. WBN1 is a Westinghouse

designed 17x17 pressurized water reactor (PWR) built in the U.S. in the 1980s. This

series of benchmarks is being designed to provide several problems of increasing

complexity to test and demonstrate the capabilities of a reactor simulation code.

Again, due to the early stage of development that Shift was in at the time of this

research, some modifications were required for the utilization of these benchmark

problems. While these benchmarks were designed to use continuous energy (CE)

cross sections, at the time of this research Shift did not have CE capabilities.

Instead, 238-group cross sections were used. Although the benchmark provides

reference Monte Carlo results based on CE cross sections, multi-group cross sections

were generated and used for comparisons in this research. Also, as Shift only

utilized isotropic scattering, the KENO-VI runs were performed using only isotropic

scattering. Problems 1 and 2 were run for 2300 cycles including 500 skipped cycles.

For the eigenvalue results of Problem 1, 200,000 particles were simulated for every

cycle in both KENO-VI and Shift. For Problem 2, KENO-VI used 200,000 particles

while Shift used 100,000.

The first benchmark problem is an infinitely reflected 2D pin-cell based on the

beginning of cycle. It has a UO2 fuel pin including 3.1% enriched fuel, a gap filled with

Helium gas, zircalloy-4 cladding, and borated water as the moderator at 1300ppm.

The radius of the fuel pellet and the outer radii of the gap and cladding are 0.4096cm,

0.418cm, and 0.475cm, respectively. The lattice pitch is 1.26cm. Due to the fact

that one of the capabilities this benchmark tries to demonstrate is variation in the

eigenvalue result with respect to temperature, several temperature combinations of

the fuel and moderator are evaluated (Table 3.1). For all of the cases, the moderator

temperatures, density, and boron concentration are based on the hot-zero-power

(HZP) condition of WBN1.
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Table 3.1: CASL benchmark problem 1 material temperatures.

Fuel Moderator
Case temperature temperature

[Kelvin] [Kelvin]
1a 565 565
1b 600 600
1c 600 900
1d 600 1200

The second benchmark problem from this suite expands the pin-cell of the first

problem out to a 2D assembly lattice. To appropriately simulate an assembly, this

benchmark includes 24 guide tubes and an instrument tube in the center-grid cell.

Also included is an inter-assembly gap of 0.04cm. The lattice has reflective boundary

conditions on all sides. Figure 3.4 shows a quarter representation of this lattice.

Unlike the first problem, only one temperature was used to evaluate the eigenvalue

results and scaling capabilities of Shift. Additional benchmark problems have been

developed scaling up to several assemblies; however, these were not available at the

time of this research.

3.3 Verification Methodology

These problems were all run on various computers at ORNL and the NECluster at

the University of Tennessee’s Department of Nuclear Engineering. The only computer

on which timing runs were executed was the ORNL Institutional Cluster (OIC). This

computer is composed of 40 nodes with 12 processors (dual hexacores) per node and

distributes jobs using the TORQUE queuing system. Scaling runs were performed

using the 3D C5G7 benchmarks and the CASL problem 1 and 2 benchmarks.
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Figure 3.4: Quarter-lattice used in Problem 2 (17).

All of the inputs were generated by the author. The inputs for Shift used the

python input format, an example of which can be seen in Appendix B. Cross sections

were input manually for the 7-group C5G7 benchmarks in Shift. The benchmark

came with its own MCNP-style cross section file to use with MCNP. For the C5G7

benchmarks, the geometry is also defined within the python input. For the 238-

group CASL benchmarks, cross sections were generated using the CSASI sequence

in the SCALE code package. CSASI uses CENTRM, PMC, and WORKER to

generate problem-dependent, microscopic multi-group cross sections based on the

geometry(14). It then uses ICE to mix the cross sections and generate an AMPX

library of macroscopic cross sections. These can then be used by both KENO and

Shift. The CASL benchmark geometries are defined in Shift using the KENO format

to assure consistency. To avoid complications and assure that the codes are run

in as similar a manner as possible, both KENO and Shift were run using isotropic

scattering only.
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The C5G7 MCNP and Shift runs were compared, using both the eigenvalue and

flux tally results along with their respective standard deviations, to each other and to

the reference results. In order to properly compare the results, propagation of error

was used to determine the relative uncertainty between the results of the benchmark

paper, the MCNP results, and the Shift results (Equation 3.1). Equation 3.1 shows

that the propagated error is equal to the square root of the sum of the squares of the

two errors being propagated - in this case from the benchmark paper, MCNP, or Shift

results. As the flux tallies were performed on every pin cell on the 2D benchmark

and for all three axial zones for every pin on the three 3D benchmark problems, the

errors for the respective tallies in MCNP and Shift were also propagated. The flux

tallies were compared using relative percent difference between the results of each

tally (Equation 3.2). The CASL problems were only compared using the eigenvalue

results from the benchmark, which used KENO-VI and Shift.

σPropagated =
√
σ2
1 + σ2

2 (3.1)

Rel.%Diff. = 100×
∣∣∣∣φ1 − φ2

φ1

∣∣∣∣ (3.2)

To investigate the scaling capabilities at this point in development, the problems

were run on OIC with varying numbers of processors and particles. The number

of processors on which the benchmarks were run varied based on using complete

nodes. Thus, each problem was run on 12, 24, 48, 72, 96, 120, 144, 168, 192, 216,

and 240 processors for each number of particles. The number of particles was varied

based on the number of particles per cycle starting at 1000 and increasing by steps

of roughly double the previous number. The maximum number of particles per cycle

varied based on the input. The second CASL problem was only scaled up to 1× 105

particles per cycle, whereas the first CASL problems were scaled up to 1×106 particles

per cycle, and the C5G7 problems up to 1 × 107 particles per cycle. For example,

the second CASL problem was run with 1000, 2000, 5000, 10000, 20000, 50000, and
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100000 particles per cycle. These runs allowed for observation of the speedup and

efficiency of Shift for each problem. Speedup is generally defined as the time it takes

for a problem to run on a single processor divided by the time it takes for the same

problem to run on more than one processor. In this research, speedup is the time it

takes for a problem to run on a single 12-processor node divided by the time it takes

for the same problem to run on more than one 12-processor node. The efficiency is

the ratio of how much speedup was achieved to how much additional power was used

to solve the problem. For example, if a problem is found to run twice as fast when

running on four times as many processors, the efficiency would be 2
4

or 0.5. These

results also provided an opportunity to observe the behavior of the variance of the

eigenvalue as a function of particles simulated. The expectation was that the standard

deviation should decrease as the inverse square root of the number of histories.
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Chapter 4

Results

4.1 Eigenvalue Results

4.1.1 C5G7 Benchmark

Table 4.1 shows the eigenvalue results of all four C5G7 benchmark problems along

with their respective standard deviations in percent mil or pcm (Equation 4.1). The

table also shows the propagated standard deviations between the benchmark results

and those from MCNP and Shift. The difference between the eigenvalue results

between the benchmark and the two codes is shown in both pcm and as a fraction

of the propagated standard deviations (Equation 3.1). All of the results show good

agreement by falling within three standard deviations of each other, with MCNP

and Shift each having one result that is over two standard deviations away from the

respective benchmark value. This is followed by a direct comparison of the results

of the two codes. The propagated standard deviations are presented again, in pcm,

followed by the differences in the eigenvalue results in terms of pcm and fractions

of the propagated standard deviations. The table shows that none of the eigenvalue

results were more than two standard deviations apart.

pcm = 105 × (k1 − k2) (4.1)
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Table 4.1: C5G7 Eigenvalue Results

Std.
Error

vs.
vs. Error

vs.
vs.

Case Source Eigenvalue Dev.
Propagated

benchmark
benchmark Propagated

MCNP
MCNP

[pcm]
Std. Dev.

[pcm]
[fraction of Shift/MCNP

[pcm]
[fraction of

[pcm] Std. Dev.] [pcm] Std. Dev.]

Benchmark 1.18655 3 - - - - - -
2D MCNP 1.18651 5 5.83 -4 -0.686 - - -

Shift 1.18652 7 7.62 -3 -0.394 8.60 1 0.116
Benchmark 1.14308 3 - - - - - -

Rods Out MCNP 1.14298 5 5.83 -10 -1.71 - - -
Shift 1.14310 7 7.62 2 0.262 8.60 12 1.40

Benchmark 1.12806 3 - - - - - -
Rodded A MCNP 1.12822 5 5.83 16 2.74 - - -

Shift 1.12807 7 7.62 1 0.131 8.60 -15 -1.74
Benchmark 1.07777 3 - - - - - -

Rodded B MCNP 1.07773 5 5.83 -4 -0.686 - - -
Shift 1.07759 7 7.62 -18 -2.36 8.60 -14 -1.63
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Table 4.2: C5G7 Flux Tally Results

Range of relative
Tallies withinCase % differences in

3σflux tally
2D -0.456 - 0.492 98.01%

Rods Out -1.23 - 1.09 98.41%
Rodded A -1.35 - 0.846 97.95%
Rodded B -1.53 - 0.965 96.80%

The flux tally results were compared using relative percent differences as well as

the propagated standard deviations. Table 4.2 shows the ranges of the relative percent

differences for all four benchmark problems. Some negative bias with respect to the

MCNP flux tally results can be observed in the ranges of the 3D benchmark problem

results; however, the greatest relative difference is just over 1.5%, so the results have

a reasonable level of agreement.

Table 4.2 also shows the percentage of flux tally results that fall within three

propagated standard deviations of each other for each benchmark problem. A perfect

Gaussian distribution would have 99.7% of the tallies fall within three standard

deviations of each other, and these results have nearly met this criterion. It is

reasonable to suspect that the observed variations could be attributed to cycle-to-

cycle correlations or fission source distributions that have not completely converged.

It is important to remember that the alternating fuel materials between assemblies

will lead to an uneven fission source. Figure 4.1 shows a distribution of the relative

percent differences between the flux tallies of MCNP and Shift for the Rodded B

benchmark problem, which contains the greatest flux tally difference. In this figure,

the center of the core is in the back corner at coordinate [35, 0, 0]. The figure shows

that the tallies all fall within 2% of each other. The greatest difference is at the edges

of the fuel nearest the reflector. These areas are also the most uncertain as they have
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Figure 4.1: Relative percent difference of flux tallies in top section of Rodded B
case between Shift and MCNP.

lower fluxes. The seemingly random nature of the tallies supports the conclusion that

there are no significant systematic differences in the results of the two codes.

4.1.2 CASL Problems 1 and 2

Table 4.3 shows the eigenvalue results for both CASL benchmark Problems 1 and 2.

The eigenvalue results for each case are given for both codes along with the resulting

standard deviation, in terms of pcm. These were then combined using propagation of

error. The differences in the eigenvalue results from the two codes are then presented

in both pcm and as a fraction of the error propagated standard deviation. All of the

results fall within two standard deviations, and most of the Problem 1 results fall
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Table 4.3: CASL Eigenvalue Results

Std.
Error

vs.
vs.

Case Code Eigenvalue Dev.
Propagated

KENO-VI
KENO-VI

[pcm]
Std. Dev.

[pcm]
[fraction of

[pcm] Std. Dev.]

1a
KENO-VI 1.18234 2.8

5.22 -5.4 -1.03
Shift 1.18229 4.4

1b
KENO-VI 1.17763 2.8

5.13 -0.9 -0.175
Shift 1.17762 4.3

1c
KENO-VI 1.16644 2.9

5.27 -3.8 -0.721
Shift 1.16640 4.4

1d
KENO-VI 1.15700 3.1

5.22 -3.1 -0.594
Shift 1.15697 4.2

2a
KENO-VI 1.17858 2.9

6.75 16.1 2.39
Shift 1.17874 6.1

within one standard deviation. All of the Problem 1 results for Shift do fall below

those of KENO-VI, however the result for Problem 2 from Shift is greater than that

from KENO-VI. As with the C5G7 results, the standard deviation estimate reported

by KENO-VI is smaller than that reported by Shift. This is most likely due to more

variance reduction techniques being used by KENO-VI. Naturally, this is not the

only reason for the results for Problem 2 as it should be noted that Shift was run

with half as many histories as KENO-VI. But even after estimating the amount that

the standard deviation would be reduced by doubling the number of particles, it still

would not be as low as the estimate reported by KENO-VI.
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4.2 Shift Scaling Results

Performing the scaling study allowed for the observation of two characteristics of the

code. First, it allowed for the verification of the variance behavior as the number of

histories varied across several orders of magnitude, the expected behavior being that

it would decrease linearly with an increase in number of histories. Second, it allowed

for an evaluation of the parallel speedup and efficiency of the code under various

circumstances.

The variance behavior was evaluated by plotting all of the variances for a given

benchmark on a log-log plot of variance vs. the number of particles per cycle.

Generation of a best fit line as an exponential should result in the exponent being -1.

This was performed using Microsoft Excel 2010. The resulting graph for the C5G7

Rodded B case can be seen in Figure 4.2. The trend line and its equation are included

on the chart, and show that the exponential is -1.005 based on data from 103 to 107

particles per cycle. Figure 4.3 shows the same result for Problem 1a of the CASL

benchmark. As the figure shows, this particular instance resulted in the expected

exponent of -1. The exponentials for all of the benchmarks range from -0.984 to

-1.009. The -0.984 value is for CASL Problem 2 with the next lowest being -0.998.

These all show that the variance behavior in Shift with varying numbers of histories

is appropriate for a Monte Carlo code.

The timing evaluation of Shift using the C5G7 Rodded B case is demonstrated in

Figure 4.4, which shows that there is a reduction in run time as the problems is run

on more processors for larger numbers of particles per cycle. As expected, once the

number of histories per processor becomes small enough, it takes longer to complete

the simulation as it is run on more processors. For clarity, the equation for the trend

line for each data set, based on number of particles per cycle, is provided next to

the legend. As the exponential decreases, the efficiency of adding more processors

is decreasing. This culminates once the exponential becomes positive, showing that

it takes longer to complete the simulation as more processors are added. The lines
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Figure 4.2: C5G7 Rodded B variances vs. number of particles per cycle.
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Figure 4.3: CASL Problem 1a variances vs. number of particles per cycle.
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Figure 4.4: C5G7 Rodded B run time vs. number of processors.

representing the runs with the most histories show that running the simulation on

240 processors has resulted in completion in less than a tenth of the time it takes

to run on 12 processors. However, the equation for the line representing the fewest

histories has a positive exponetial, indicating that the simulation actually took longer

when run on more processors than it did on fewer. This is the point at which the

extra time required for communication between all of the processors is longer than

the reduction in time due to each processor having to process fewer particles. The

results from almost all of the benchmarks show that the inflection point is somewhere

around 1000 particles per cycle.

Figure 4.5 shows the speedup for the C5G7 Rodded B case. As this research

was done using complete nodes, this chart shows how much faster a simulation is

completed vs. how many nodes were used to complete the simulation. The chart

includes a line demonstrating perfect speedup. With 10 times the nodes, perfect

29

CASL-U-2014-0142-000



Figure 4.5: C5G7 Rodded B speedup vs. number of nodes.

speedup would result in the simulation finishing 10 times faster. Of course, this is not

feasible because there are serial parts of the code and communication costs. Every

line segment that has a positive slope shows that adding those processors caused the

simulation to take less time to run overall. If the line segment is flat, i.e., has a slope of

zero, it represents no increase or decrease in runtime associated with running the case

on those extra processors. Naturally, if the line segment has a negative slope, running

the case on those extra processors resulted in the simulation taking longer than it did

without them. Some variation is to be expected as adding processors requires different

sets of random numbers. This can lead to certain processors getting hung up on more

particles requiring the entire process to wait for them to finish. Again, it is clear that

the speedup is not as pronounced as the number of particles per cycle decreases, as

the parallel sections of the code (particle transport) are completed significantly faster

than the serial and communication sections.

30

CASL-U-2014-0142-000



Figure 4.6: CASL Problem 1d speedup vs. number of nodes.

Figure 4.6 shows a similar speedup. This demonstrates that the speedup is not

significantly impacted by the number of cross section groups used in the simulation.

Finally, Figure 4.7 shows the efficiency for the Rodded B case. This chart

demonstrates the relationship between the lines for each case and the perfect scenario

(a linear speedup with the addition of more processors) illustrated in Figure 4.5.

In this chart, a perfect speedup would be represented by an efficiency of 1, or a

flat line across the top. Again, as the particle transport section of the code is that

which is parallelized, having more histories allows for a more efficient use of multiple

processors. Graphs of the results for all of the benchmark problems can be found in

Appendix C.
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Figure 4.7: C5G7 Rodded B efficiency vs. number of processors.
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Chapter 5

Conclusions

The results show that Shift is working properly at this stage of development. For

all nine cases that were investigated, Shift has been shown to produce eigenvalue

results in agreement, within three standard deviations, with results from published

benchmarks, MCNP5, and/or KENO-VI. Shift was also shown to have good

agreement with MCNP5 flux tallies for the C5G7 cases. While fewer than expected

tallies fell within three standard deviations of each other, this may be due to cycle-

to-cycle correlation or incomplete convergence of the fission source (16). The scaling

study went on to demonstrate that the variance estimate behaves as expected for

a Monte Carlo simulation, by decreasing as an exponential of negative one versus

increased histories.

The scaling study then demonstrated the parallel capabilities of Shift. As

expected, with many histories, increasing the number of processors on which the

simulation is run results in significant run time reduction. However, with fewer

histories to be divided up between the many parallel processors, further parallelization

results in longer run times. This was further reflected in the speedup and efficiency

results. The results show that Shift is capable of significant increases in speed of

simulation through the use of domain replicated parallelization. For systems that are

used by many people, a minimum desired degree of efficiency should be set to ensure

33

CASL-U-2014-0142-000



that the system is being utilized to as close to its full potential as possible. As shown

in Figure 4.7, there comes a point at which using more processors results in all of

the processors being used inefficiently. Whilt it is infeasible to expect experimenters

to demonstrate that their use of a code was above the recommended efficiency, such

scaling studies can be used as a basis for such assurance.

There is much work to do yet on the verification of the Shift code. As it

is under development, these simulations will need to be repeated to ensure no

future modifications or added capabilities have caused the initial code segments to

behave differently. Also, the CASL benchmark problems will have to be compared

once continuous energy physics has been fully implemented. Reaction rate tally

comparisons will also need to be made. The rest of the suite of CASL benchmark

problems will also have to be used to demonstrate Shift’s ability to properly simulate

more complicated environments. The larger of the CASL benchmarks and other

such benchmarks will allow for the testing of the domain decomposition method

of parallelization. Finally, once the code has been completed to the satisfaction of

ORNL, it will need to be validated against measured experimental results to show

that it can adequately predict real world processes.
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Appendix A

C5G7 Control Rod Insertion Depth

Figure A.1: C5G7 Rods Out control rod insertion depth (shaded sections).
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Figure A.2: C5G7 Rodded A control rod insertion depth (shaded sections).

Figure A.3: C5G7 Rodded B control rod insertion depth (shaded sections).
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Appendix B

Example Shift Input for C5G7

Rodded B Case

###########################################################

## c5g7 roddedb . py

## nsk

###########################################################

import os , sys , math , s t r i ng , copy

# pykba equat ion type

from rtk mg import ∗

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−##

## MAIN

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−##

i n i t i a l i z e ( sys . argv )
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i f node ( ) == 0 :

p r i n t ”Denovo − pykba Python Front−End”

pr in t ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

p r i n t ” Release : %16s ” % ( r e l e a s e ( ) )

p r i n t ” Release Date : %16s ” % ( r e l e a s e d a t e ( ) )

p r i n t ” Build Date : %16s ” % ( bu i l d da t e ( ) )

p r i n t

t imer = Timer ( )

t imer . s t a r t ( )

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−##

## MATERIAL CROSS SECTIONS

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−##

## The f o l l o w i n g mate r i a l data i s taken d i r e c t l y from the

publ i shed benchmark

## The t o t a l c r o s s s e c t i o n s are a c t u a l l y t ransport−c o r r e c t e d

c r o s s s e c t i o n s

## According to the benchmark paperwork , only the transport−

c o r r e c t e d t o t a l

## c r o s s s e c t i o n should be used , not the ac tua l t o t a l c r o s s

s e c t i o n .

## NOTE: The t a b l e s in the benchmark are transposed from the

way Denovo reads

## the s c a t t e r i n g c r o s s s e c t i o n s . . .

num groups = 7
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####### UO2 Fuel−Clad Macroscopic Cross Se c t i on s ##########

## Transport−c o r r e c t e d Total Cross Se c t i on s

T UO2 = [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ]

T UO2 [ 0 ] = 1.77949 e−1

T UO2 [ 1 ] = 3.29805 e−1

T UO2 [ 2 ] = 4.80388 e−1

T UO2 [ 3 ] = 5.54367 e−1

T UO2 [ 4 ] = 3.11801 e−1

T UO2 [ 5 ] = 3.95168 e−1

T UO2 [ 6 ] = 5.64406 e−1

## F i s s i o n Cross Sec t i on

F UO2 = [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ]

F UO2 [ 0 ] = 7.21206 e−3

F UO2 [ 1 ] = 8.19301 e−4

F UO2 [ 2 ] = 6.45320 e−3

F UO2 [ 3 ] = 1.85648 e−2

F UO2 [ 4 ] = 1.78084 e−2

F UO2 [ 5 ] = 8.30348 e−2

F UO2 [ 6 ] = 2.16004 e−1

## Nu

N UO2 = [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ]

N UO2 [ 0 ] = 2.78145

N UO2 [ 1 ] = 2.47443

N UO2 [ 2 ] = 2.43383

N UO2 [ 3 ] = 2.43380
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N UO2 [ 4 ] = 2.43380

N UO2 [ 5 ] = 2.43380

N UO2 [ 6 ] = 2.43380

## Chi

C UO2 = [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ]

C UO2 [ 0 ] = 5.87910 e−1

C UO2 [ 1 ] = 4.11760 e−1

C UO2 [ 2 ] = 3.39060 e−4

C UO2 [ 3 ] = 1.17610 e−7

C UO2 [ 4 ] = 0.00000000

C UO2 [ 5 ] = 0.00000000

C UO2 [ 6 ] = 0.00000000

## S c a t t e r i n g Matrix f o r UO2 Fuel−Clad ( Macroscopic )

S UO2 = [ [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] ]

S UO2 [ 0 ] = [ [ 1 . 2 7 5 3 7 e−1] ]

S UO2 [ 1 ] = [ [ 4 . 2 3 7 8 0 e−2] , [ 3 . 24456 e−1] ]

S UO2 [ 2 ] = [ [ 9 . 4 3 7 4 0 e−6] , [ 1 . 63140 e−3] , [ 4 . 50940 e−1] ]

S UO2 [ 3 ] = [ [ 5 . 5 1 6 3 0 e−9] , [ 3 . 14270 e−9] , [ 2 . 67920 e−3] ,

[ 4 . 52565 e−1] , [ 1 . 25250 e−4] ]

S UO2 [ 4 ] = [ [ 0 . 0 0 0 0 0 0 0 0 ] , [ 0 . 0 0 0 0 0 0 0 0 ] , [ 0 . 0 0 0 0 0 0 0 0 ] ,

[ 5 . 56640 e−3] , [ 2 . 71401 e−1] , [ 1 . 29680 e−3] ]

S UO2 [ 5 ] = [ [ 0 . 0 0 0 0 0 0 0 0 ] , [ 0 . 0 0 0 0 0 0 0 0 ] , [ 0 . 0 0 0 0 0 0 0 0 ] ,

[ 0 . 0 0 0 0 0 0 0 0 ] , [ 1 . 0 2550 e−2] , [ 2 . 65802 e−1] , [ 8 . 54580 e−3] ]

S UO2 [ 6 ] = [ [ 0 . 0 0 0 0 0 0 0 0 ] , [ 0 . 0 0 0 0 0 0 0 0 ] , [ 0 . 0 0 0 0 0 0 0 0 ] ,

[ 0 . 0 0 0 0 0 0 0 0 ] , [ 1 . 0 0210 e−8] , [ 1 . 68090 e−2] , [ 2 . 73080 e−1] ]
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## Upscatte r ing Matrix

U UO2 = [ [ ] , [ ] , [ ] , [ ] , [ ] , [ ] , [ ] ]

U UO2 [ 0 ] = [ ]

U UO2 [ 1 ] = [ ]

U UO2 [ 2 ] = [ ]

U UO2 [ 3 ] = [ 4 ]

U UO2 [ 4 ] = [ 5 ]

U UO2 [ 5 ] = [ 6 ]

U UO2 [ 6 ] = [ ]

######## 4.3% MOX Fuel−Clad Macroscopic Cross−Sec t i on s

############

## Transport−c o r r e c t e d Total Cross Se c t i on s

T MOX43 = [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ]

T MOX43 [ 0 ] = 1.78731 e−1

T MOX43 [ 1 ] = 3.30849 e−1

T MOX43 [ 2 ] = 4.83772 e−1

T MOX43 [ 3 ] = 5.66922 e−1

T MOX43 [ 4 ] = 4.26227 e−1

T MOX43 [ 5 ] = 6.78997 e−1

T MOX43 [ 6 ] = 6.82852 e−1

## F i s s i o n Cross−Sec t i on s

F MOX43 = [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ]

F MOX43 [ 0 ] = 7.62704 e−3

F MOX43 [ 1 ] = 8.76898 e−4

F MOX43 [ 2 ] = 5.69835 e−3

F MOX43 [ 3 ] = 2.28872 e−2
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F MOX43 [ 4 ] = 1.07635 e−2

F MOX43 [ 5 ] = 2.32757 e−1

F MOX43 [ 6 ] = 2.48968 e−1

## Nu Cross−Sec t i on s

N MOX43 = [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ]

N MOX43 [ 0 ] = 2.85209

N MOX43 [ 1 ] = 2.89099

N MOX43 [ 2 ] = 2.85486

N MOX43 [ 3 ] = 2.86073

N MOX43 [ 4 ] = 2.85447

N MOX43 [ 5 ] = 2.86415

N MOX43 [ 6 ] = 2.86780

## Chi Cross−Sec t i on s

C MOX43 = [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ]

C MOX43 [ 0 ] = 5.87910 e−1

C MOX43 [ 1 ] = 4.11760 e−1

C MOX43 [ 2 ] = 3.39060 e−4

C MOX43 [ 3 ] = 1.17610 e−7

C MOX43 [ 4 ] = 0.00000000

C MOX43 [ 5 ] = 0.00000000

C MOX43 [ 6 ] = 0.00000000

## S c a t t e r i n g Matrix f o r 4.3% MOX Fuel−Clad ( Macroscopic )

S MOX43 = [ [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] ]

S MOX43 [ 0 ] = [ [ 1 . 2 8 8 7 6 e−1] ]

S MOX43 [ 1 ] = [ [ 4 . 1 4 1 3 0 e−2] , [ 3 . 25452 e−1] ]
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S MOX43 [ 2 ] = [ [ 8 . 2 2 9 0 0 e−6] , [ 1 . 63950 e−3] , [ 4 . 53188 e−1] ]

S MOX43 [ 3 ] = [ [ 5 . 0 4 0 5 0 e−9] , [ 1 . 59820 e−9] , [ 2 . 61420 e−3] ,

[ 4 . 57173 e−1] , [ 1 . 60460 e−4] ]

S MOX43 [ 4 ] = [ [ 0 . 0 0 0 0 0 0 0 0 ] , [ 0 . 0 0 0 0 0 0 0 0 ] , [ 0 . 0 0 0 0 0 0 0 0 ] ,

[ 5 . 53940 e−3] , [ 2 . 76814 e−1] , [ 2 . 00510 e−3] ]

S MOX43 [ 5 ] = [ [ 0 . 0 0 0 0 0 0 0 0 ] , [ 0 . 0 0 0 0 0 0 0 0 ] , [ 0 . 0 0 0 0 0 0 0 0 ] ,

[ 0 . 0 0 0 0 0 0 0 0 ] , [ 9 . 3 1270 e−3] , [ 2 . 52962 e−1] , [ 8 . 49480 e−3] ]

S MOX43 [ 6 ] = [ [ 0 . 0 0 0 0 0 0 0 0 ] , [ 0 . 0 0 0 0 0 0 0 0 ] , [ 0 . 0 0 0 0 0 0 0 0 ] ,

[ 0 . 0 0 0 0 0 0 0 0 ] , [ 9 . 1 6560 e−9] , [ 1 . 48500 e−2] , [ 2 . 65007 e−1] ]

## Upscatte r ing Matrix

U MOX43 = [ [ ] , [ ] , [ ] , [ ] , [ ] , [ ] , [ ] ]

U MOX43 [ 0 ] = [ ]

U MOX43 [ 1 ] = [ ]

U MOX43 [ 2 ] = [ ]

U MOX43 [ 3 ] = [ 4 ]

U MOX43 [ 4 ] = [ 5 ]

U MOX43 [ 5 ] = [ 6 ]

U MOX43 [ 6 ] = [ ]

########## 7.0% MO Fuel−Clad Macroscopic Cross−Sec t i on s

###########

## Transport−c o r r e c t e d t o t a l c r o s s s e c t i o n

T MOX70 = [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ]

T MOX70 [ 0 ] = 1.81323 e−1

T MOX70 [ 1 ] = 3.34368 e−1

T MOX70 [ 2 ] = 4.93785 e−1

T MOX70 [ 3 ] = 5.91216 e−1
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T MOX70 [ 4 ] = 4.74198 e−1

T MOX70 [ 5 ] = 8.33601 e−1

T MOX70 [ 6 ] = 8.53603 e−1

## F i s s i o n c r o s s s e c t i o n

F MOX70 = [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ]

F MOX70 [ 0 ] = 8.25446 e−3

F MOX70 [ 1 ] = 1.32565 e−3

F MOX70 [ 2 ] = 8.42156 e−3

F MOX70 [ 3 ] = 3.28730 e−2

F MOX70 [ 4 ] = 1.59636 e−2

F MOX70 [ 5 ] = 3.23794 e−1

F MOX70 [ 6 ] = 3.62803 e−1

## Nu

N MOX70 = [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ]

N MOX70 [ 0 ] = 2.88498

N MOX70 [ 1 ] = 2.91079

N MOX70 [ 2 ] = 2.86574

N MOX70 [ 3 ] = 2.87063

N MOX70 [ 4 ] = 2.86714

N MOX70 [ 5 ] = 2.86658

N MOX70 [ 6 ] = 2.87539

## Chi

C MOX70 = [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ]

C MOX70 [ 0 ] = 5.87910 e−1

C MOX70 [ 1 ] = 4.11760 e−1
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C MOX70 [ 2 ] = 3.39060 e−4

C MOX70 [ 3 ] = 1.17610 e−7

C MOX70 [ 4 ] = 0.00000000

C MOX70 [ 5 ] = 0.00000000

C MOX70 [ 6 ] = 0.00000000

## S c a t t e r i n g Matrix f o r 7.0% MOX Fuel−Clad ( Macroscopic )

S MOX70 = [ [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] ]

S MOX70 [ 0 ] = [ [ 1 . 3 0 4 5 7 e−1] ]

S MOX70 [ 1 ] = [ [ 4 . 1 7 9 2 0 e−2] , [ 3 . 28428 e−1] ]

S MOX70 [ 2 ] = [ [ 8 . 5 1 0 5 0 e−6] , [ 1 . 64360 e−3] , [ 4 . 58371 e−1] ]

S MOX70 [ 3 ] = [ [ 5 . 1 3 2 9 0 e−9] , [ 2 . 20170 e−9] , [ 2 . 53310 e−3] ,

[ 4 . 63709 e−1] , [ 1 . 76190 e−4] ]

S MOX70 [ 4 ] = [ [ 0 . 0 0 0 0 0 0 0 0 ] , [ 0 . 0 0 0 0 0 0 0 0 ] , [ 0 . 0 0 0 0 0 0 0 0 ] ,

[ 5 . 47660 e−3] , [ 2 . 82313 e−1] , [ 2 . 27600 e−3] ]

S MOX70 [ 5 ] = [ [ 0 . 0 0 0 0 0 0 0 0 ] , [ 0 . 0 0 0 0 0 0 0 0 ] , [ 0 . 0 0 0 0 0 0 0 0 ] ,

[ 0 . 0 0 0 0 0 0 0 0 ] , [ 8 . 7 2890 e−3] , [ 2 . 49751 e−1] , [ 8 . 86450 e−3] ]

S MOX70 [ 6 ] = [ [ 0 . 0 0 0 0 0 0 0 0 ] , [ 0 . 0 0 0 0 0 0 0 0 ] , [ 0 . 0 0 0 0 0 0 0 0 ] ,

[ 0 . 0 0 0 0 0 0 0 0 ] , [ 9 . 0 0160 e−9] , [ 1 . 31140 e−2] , [ 2 . 59529 e−1] ]

## Upscatte r ing Matrix

U MOX70 = [ [ ] , [ ] , [ ] , [ ] , [ ] , [ ] , [ ] ]

U MOX70 [ 0 ] = [ ]

U MOX70 [ 1 ] = [ ]

U MOX70 [ 2 ] = [ ]

U MOX70 [ 3 ] = [ 4 ]

U MOX70 [ 4 ] = [ 5 ]

U MOX70 [ 5 ] = [ 6 ]
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U MOX70 [ 6 ] = [ ]

############### 8.7% MOX Fuel−Clad Macroscopic Cross−s e c t i o n s

###############

## Total c r o s s s e c t i o n s

T MOX87 = [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ]

T MOX87 [ 0 ] = 1.83045 e−1

T MOX87 [ 1 ] = 3.36705 e−1

T MOX87 [ 2 ] = 5.00507 e−1

T MOX87 [ 3 ] = 6.06174 e−1

T MOX87 [ 4 ] = 5.02754 e−1

T MOX87 [ 5 ] = 9.21028 e−1

T MOX87 [ 6 ] = 9.55231 e−1

## F i s s i o n c r o s s s e c t i o n s

F MOX87 = [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ]

F MOX87 [ 0 ] = 8.67209 e−3

F MOX87 [ 1 ] = 1.62426 e−3

F MOX87 [ 2 ] = 1.02716 e−2

F MOX87 [ 3 ] = 3.90447 e−2

F MOX87 [ 4 ] = 1.92576 e−2

F MOX87 [ 5 ] = 3.74888 e−1

F MOX87 [ 6 ] = 4.30599 e−1

## Nu

N MOX87 = [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ]

N MOX87 [ 0 ] = 2.90426

N MOX87 [ 1 ] = 2.91795
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N MOX87 [ 2 ] = 2.86986

N MOX87 [ 3 ] = 2.87491

N MOX87 [ 4 ] = 2.87175

N MOX87 [ 5 ] = 2.86752

N MOX87 [ 6 ] = 2.87808

## Chi

C MOX87 = [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ]

C MOX87 [ 0 ] = 5.87910 e−1

C MOX87 [ 1 ] = 4.11760 e−1

C MOX87 [ 2 ] = 3.39060 e−4

C MOX87 [ 3 ] = 1.17610 e−7

C MOX87 [ 4 ] = 0.00000000

C MOX87 [ 5 ] = 0.00000000

C MOX87 [ 6 ] = 0.00000000

## S c a t t e r i n g Matrix f o r 8.7% MOX Fuel−Clad ( Macroscopic )

S MOX87 = [ [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] ]

S MOX87 [ 0 ] = [ [ 1 . 3 1 5 0 4 e−1] ]

S MOX87 [ 1 ] = [ [ 4 . 2 0 4 6 0 e−2] , [ 3 . 30403 e−1] ]

S MOX87 [ 2 ] = [ [ 8 . 6 9 7 2 0 e−6] , [ 1 . 64630 e−3] , [ 4 . 61792 e−1] ]

S MOX87 [ 3 ] = [ [ 5 . 1 9 3 8 0 e−9] , [ 2 . 60060 e−9] , [ 2 . 47490 e−3] ,

[ 4 . 68021 e−1] , [ 1 . 85970 e−4] ]

S MOX87 [ 4 ] = [ [ 0 . 0 0 0 0 0 0 0 0 ] , [ 0 . 0 0 0 0 0 0 0 0 ] , [ 0 . 0 0 0 0 0 0 0 0 ] ,

[ 5 . 43300 e−3] , [ 2 . 85771 e−1] , [ 2 . 39160 e−3] ]

S MOX87 [ 5 ] = [ [ 0 . 0 0 0 0 0 0 0 0 ] , [ 0 . 0 0 0 0 0 0 0 0 ] , [ 0 . 0 0 0 0 0 0 0 0 ] ,

[ 0 . 0 0 0 0 0 0 0 0 ] , [ 8 . 3 9730 e−3] , [ 2 . 47614 e−1] , [ 8 . 96810 e−3] ]
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S MOX87 [ 6 ] = [ [ 0 . 0 0 0 0 0 0 0 0 ] , [ 0 . 0 0 0 0 0 0 0 0 ] , [ 0 . 0 0 0 0 0 0 0 0 ] ,

[ 0 . 0 0 0 0 0 0 0 0 ] , [ 8 . 9 2800 e−9] , [ 1 . 23220 e−2] , [ 2 . 56093 e−1] ]

## Upscatte r ing Matrix

U MOX87 = [ [ ] , [ ] , [ ] , [ ] , [ ] , [ ] , [ ] ]

U MOX87 [ 0 ] = [ ]

U MOX87 [ 1 ] = [ ]

U MOX87 [ 2 ] = [ ]

U MOX87 [ 3 ] = [ 4 ]

U MOX87 [ 4 ] = [ 5 ]

U MOX87 [ 5 ] = [ 6 ]

U MOX87 [ 6 ] = [ ]

######### F i s s i o n Chamber Macroscopic Cross−s e c t i o n s

##############

## Transport c o r r e c t e d Total Cross−Sect i on

T FISCH = [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ]

T FISCH [ 0 ] = 1.26032 e−1

T FISCH [ 1 ] = 2.93160 e−1

T FISCH [ 2 ] = 2.84250 e−1

T FISCH [ 3 ] = 2.81020 e−1

T FISCH [ 4 ] = 3.34460 e−1

T FISCH [ 5 ] = 5.65640 e−1

T FISCH [ 6 ] = 1.17214

## F i s s i o n Cross−s e c t i o n

F FISCH = [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ]

F FISCH [ 0 ] = 4.79002 e−9
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F FISCH [ 1 ] = 5.82564 e−9

F FISCH [ 2 ] = 4.63719 e−7

F FISCH [ 3 ] = 5.24406 e−6

F FISCH [ 4 ] = 1.45390 e−7

F FISCH [ 5 ] = 7.14972 e−7

F FISCH [ 6 ] = 2.08041 e−6

## Nu

N FISCH = [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ]

N FISCH [ 0 ] = 2.76283

N FISCH [ 1 ] = 2.46239

N FISCH [ 2 ] = 2.43380

N FISCH [ 3 ] = 2.43380

N FISCH [ 4 ] = 2.43380

N FISCH [ 5 ] = 2.43380

N FISCH [ 6 ] = 2.43380

## Chi

C FISCH = [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ]

C FISCH [ 0 ] = 5.87910 e−1

C FISCH [ 1 ] = 4.11760 e−1

C FISCH [ 2 ] = 3.39060 e−4

C FISCH [ 3 ] = 1.17610 e−7

C FISCH [ 4 ] = 0.00000000

C FISCH [ 5 ] = 0.00000000

C FISCH [ 6 ] = 0.00000000

## S c a t t e r i n g Matrix f o r F i s s i o n Chamber ( Macroscopic )
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S FISCH = [ [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] ]

S FISCH [ 0 ] = [ [ 6 . 6 1 6 5 9 e−2] ]

S FISCH [ 1 ] = [ [ 5 . 9 0 7 0 0 e−2] , [ 2 . 40377 e−1] ]

S FISCH [ 2 ] = [ [ 2 . 8 3 3 4 0 e−4] , [ 5 . 24350 e−2] , [ 1 . 83425 e−1] ]

S FISCH [ 3 ] = [ [ 1 . 4 6 2 2 0 e−6] , [ 2 . 49900 e−4] , [ 9 . 22880 e−2] ,

[ 7 . 90769 e−2] , [ 3 . 73400 e−5] ]

S FISCH [ 4 ] = [ [ 2 . 0 6 4 2 0 e−8] , [ 1 . 92390 e−5] , [ 6 . 93650 e−3] ,

[ 1 . 69990 e−1] , [ 9 . 97570 e−2] , [ 9 . 17420 e−4] ]

S FISCH [ 5 ] = [ [ 0 . 0 0 0 0 0 0 0 0 ] , [ 2 . 98750 e−6] , [ 1 . 07900 e−3] ,

[ 2 . 58600 e−2] , [ 2 . 06790 e−1] , [ 3 . 16774 e−1] , [ 4 . 97930 e−2] ]

S FISCH [ 6 ] = [ [ 0 . 0 0 0 0 0 0 0 0 ] , [ 4 . 21400 e−7] , [ 2 . 05430 e−4] ,

[ 4 . 92560 e−3] , [ 2 . 44780 e−2] , [ 2 . 38760 e−1] , [ 1 . 09910 ] ]

## Upscatte r ing Matrix

U FISCH = [ [ ] , [ ] , [ ] , [ ] , [ ] , [ ] , [ ] ]

U FISCH [ 0 ] = [ ]

U FISCH [ 1 ] = [ ]

U FISCH [ 2 ] = [ ]

U FISCH [ 3 ] = [ 4 ]

U FISCH [ 4 ] = [ 5 ]

U FISCH [ 5 ] = [ 6 ]

U FISCH [ 6 ] = [ ]

############# Guide Tube Macroscopic Cross−Sec t i on s

##############

## Transport Cross−Sect i on

T GUIDT = [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ]

T GUIDT [ 0 ] = 1.26032 e−1
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T GUIDT [ 1 ] = 2.93160 e−1

T GUIDT [ 2 ] = 2.84240 e−1

T GUIDT [ 3 ] = 2.80960 e−1

T GUIDT [ 4 ] = 3.34440 e−1

T GUIDT [ 5 ] = 5.65640 e−1

T GUIDT [ 6 ] = 1.17215

## S c a t t e r i n g Matrix f o r Guide Tube ( Macroscopic )

S GUIDT = [ [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] ]

S GUIDT [ 0 ] = [ [ 6 . 6 1 6 5 9 e−2] ]

S GUIDT [ 1 ] = [ [ 5 . 9 0 7 0 0 e−2] , [ 2 . 40377 e−1] ]

S GUIDT [ 2 ] = [ [ 2 . 8 3 3 4 0 e−4] , [ 5 . 24350 e−2] , [ 1 . 83297 e−1] ]

S GUIDT [ 3 ] = [ [ 1 . 4 6 2 2 0 e−6] , [ 2 . 49900 e−4] , [ 9 . 23970 e−2] ,

[ 7 . 88511 e−2] , [ 3 . 73330 e−5] ]

S GUIDT [ 4 ] = [ [ 2 . 0 6 4 2 0 e−8] , [ 1 . 92390 e−5] , [ 6 . 94460 e−3] ,

[ 1 . 70140 e−1] , [ 9 . 97372 e−2] , [ 9 . 17260 e−4] ]

S GUIDT [ 5 ] = [ [ 0 . 0 0 0 0 0 0 0 0 ] , [ 2 . 9 8750 e−6] , [ 1 . 08030 e−3] ,

[ 2 . 58810 e−2] , [ 2 . 06790 e−1] , [ 3 . 16765 e−1] , [ 4 . 97920 e−2] ]

S GUIDT [ 6 ] = [ [ 0 . 0 0 0 0 0 0 0 0 ] , [ 4 . 2 1400 e−7] , [ 2 . 05670 e−4] ,

[ 4 . 92970 e−3] , [ 2 . 44780 e−2] , [ 2 . 38770 e−1] , [ 1 . 09912 ] ]

## Upscatte r ing Matrix

U GUIDT = [ [ ] , [ ] , [ ] , [ ] , [ ] , [ ] , [ ] ]

U GUIDT [ 0 ] = [ ]

U GUIDT [ 1 ] = [ ]

U GUIDT [ 2 ] = [ ]

U GUIDT [ 3 ] = [ 4 ]

U GUIDT [ 4 ] = [ 5 ]
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U GUIDT [ 5 ] = [ 6 ]

U GUIDT [ 6 ] = [ ]

############## Control Rod Macroscopic Cross−Sec t i on s

#################

## Transport Cross−Sect i on

T CONTROL = [ 0 . 0 , 00 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ]

T CONTROL[ 0 ] = 2.16768 e−1

T CONTROL[ 1 ] = 4.80098 e−1

T CONTROL[ 2 ] = 8.86369 e−1

T CONTROL[ 3 ] = 9.70009 e−1

T CONTROL[ 4 ] = 9.10482 e−1

T CONTROL[ 5 ] = 1.13775

T CONTROL[ 6 ] = 1.84048

## S c a t t e r i n g Matrix f o r Control Rod ( Macroscopic )

S CONTROL = [ [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] ]

S CONTROL[ 0 ] = [ [ 1 . 7 0 5 6 3 e−1] ]

S CONTROL[ 1 ] = [ [ 4 . 4 4 0 1 2 e−2] , [ 4 . 71050 e−1] ]

S CONTROL[ 2 ] = [ [ 9 . 8 3 6 7 0 e−5] , [ 6 . 85480 e−4 ] , [ 8 . 01859 e−1] ]

S CONTROL[ 3 ] = [ [ 1 . 2 7 7 8 6 e−7] , [ 3 . 91395 e−10] , [ 7 . 20132 e−4] ,

[ 5 . 70752 e−1] , [ 6 . 55562 e−5] ]

S CONTROL[ 4 ] = [ [ 0 . 0 0 0 0 0 0 0 0 ] , [ 0 . 0 0 0 0 0 0 0 0 0 ] , [ 0 . 0 0 0 0 0 0 0 0 ] ,

[ 1 . 46015 e−3] , [ 2 . 07838 e−1] , [ 1 . 02427 e−3] ]

S CONTROL[ 5 ] = [ [ 0 . 0 0 0 0 0 0 0 0 ] , [ 0 . 0 0 0 0 0 0 0 0 0 ] , [ 0 . 0 0 0 0 0 0 0 0 ] ,

[ 0 . 0 0 0 0 0 0 0 0 ] , [ 3 . 8 1486 e−3] , [ 2 . 02465 e−1] , [ 3 . 53043 e−3] ]

S CONTROL[ 6 ] = [ [ 0 . 0 0 0 0 0 0 0 0 ] , [ 0 . 0 0 0 0 0 0 0 0 0 ] , [ 0 . 0 0 0 0 0 0 0 0 ] ,

[ 0 . 0 0 0 0 0 0 0 0 ] , [ 3 . 6 9760 e−9] , [ 4 . 75290 e−3] , [ 6 . 58597 e−1] ]
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## Upscatte r ing Matrix

U CONTROL = [ [ ] , [ ] , [ ] , [ ] , [ ] , [ ] , [ ] ]

U CONTROL[ 0 ] = [ ]

U CONTROL[ 1 ] = [ ]

U CONTROL[ 2 ] = [ ]

U CONTROL[ 3 ] = [ 4 ]

U CONTROL[ 4 ] = [ 5 ]

U CONTROL[ 5 ] = [ 6 ]

U CONTROL[ 6 ] = [ ]

############### Moderator 1 Macroscopic Cross−Sec t i on s

################

## Transport−c o r r e c t e d Total Cross Sec t i on

T MOD1 = [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ]

T MOD1[ 0 ] = 1.59206 e−1

T MOD1[ 1 ] = 4.12970 e−1

T MOD1[ 2 ] = 5.90310 e−1

T MOD1[ 3 ] = 5.84350 e−1

T MOD1[ 4 ] = 7.18000 e−1

T MOD1[ 5 ] = 1.25445

T MOD1[ 6 ] = 2.65038

## S c a t t e r i n g Matrix f o r Moderator ( Macroscopic )

S MOD1 = [ [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] , [ [ ] ] ]

S MOD1 [ 0 ] = [ [ 4 . 4 4 7 7 7 e−2] ]

S MOD1 [ 1 ] = [ [ 1 . 1 3 4 0 0 e−1] , [ 2 . 82334 e−1] ]

S MOD1 [ 2 ] = [ [ 7 . 2 3 4 7 0 e−4] , [ 1 . 29940 e−1] , [ 3 . 45256 e−1] ]
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S MOD1 [ 3 ] = [ [ 3 . 7 4 9 9 0 e−6] , [ 6 . 23400 e−4] , [ 2 . 24570 e−1] ,

[ 9 . 10284 e−2] , [ 7 . 14370 e−5] ]

S MOD1 [ 4 ] = [ [ 5 . 3 1 8 4 0 e−8] , [ 4 . 80020 e−5] , [ 1 . 69990 e−2] ,

[ 4 . 15510 e−1] , [ 1 . 39138 e−1] , [ 2 . 21570 e−3] ]

S MOD1 [ 5 ] = [ [ 0 . 0 0 0 0 0 0 0 0 ] , [ 7 . 4 4860 e−6] , [ 2 . 64430 e−3] ,

[ 6 . 37320 e−2] , [ 5 . 11820 e−1] , [ 6 . 99913 e−1] , [ 1 . 32440 e−1] ]

S MOD1 [ 6 ] = [ [ 0 . 0 0 0 0 0 0 0 0 ] , [ 1 . 0 4550 e−6] , [ 5 . 03440 e−4] ,

[ 1 . 21390 e−2] , [ 6 . 12290 e−2] , [ 5 . 37320 e−1] , [ 2 . 48070 ] ]

## Upscatte r ing Matrix

U MOD1 = [ [ ] , [ ] , [ ] , [ ] , [ ] , [ ] , [ ] ]

U MOD1[ 0 ] = [ ]

U MOD1[ 1 ] = [ ]

U MOD1[ 2 ] = [ ]

U MOD1[ 3 ] = [ 4 ]

U MOD1[ 4 ] = [ 5 ]

U MOD1[ 5 ] = [ 6 ]

U MOD1[ 6 ] = [ ]

################### Create nuf v e c t o r s

NUF UO2 = [ ]

NUF MOX43 = [ ]

NUF MOX70 = [ ]

NUF MOX87 = [ ]

NUF FISCH = [ ]

f o r i in range (0 , 7) :

NUF UO2. append ( N UO2 [ i ] ∗ F UO2 [ i ] )

NUF MOX43. append ( N MOX43[ i ] ∗ F MOX43 [ i ] )
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NUF MOX70. append ( N MOX70[ i ] ∗ F MOX70 [ i ] )

NUF MOX87. append ( N MOX87[ i ] ∗ F MOX87 [ i ] )

NUF FISCH . append ( N FISCH [ i ] ∗ F FISCH [ i ] )

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−##

## DB

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−##

db = DB(” pykba ”)

# mg c r o s s s e c t i o n data

db . i n s e r t (” downscatter ” , 0 , 1)

db . i n s e r t (” num groups ” , num groups )

db . i n s e r t (” Pn order ” , 0)

# groups

n bnd = [ 2 . 0 e7 , 1 . 0 e6 , 5 . 0 e5 , 3 . 0 , 0 . 625 , 0 . 1 , 0 . 02 , 1 . 0 e−5]

db . i n s e r t (” neutron bnd ” , n bnd )

# i n i t i a l f i s s i o n source box

f s = [ 0 . 0 , 42 .84 , 0 . 0 , 42 . 84 , 0 . 0 , 4 2 . 8 4 ]

# k−code database

db . add db (” kcode db ” , ”kcode ”)

db . i n s e r t (” kcode db ” , ” i n i t f i s s i o n s r c ” , f s )

db . i n s e r t (” kcode db ” , ” k e f f i n i t ” , 1 .07777)

db . i n s e r t (” kcode db ” , ” num cycles ” , 1200)

db . i n s e r t (” kcode db ” , ” num in ac t i v e cy c l e s ” , 500)
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db . i n s e r t (” kcode db ” , ”Np” , 10000000)

# t a l l y database

db . add db (” t a l l y d b ” , ” t a l l y ”)

# gene ra l input

db . i n s e r t (” mc d iag f r ac ” , 1 . 1 )

db . i n s e r t (” seed ” , 32442)

# boundary mesh

xb = [−0.000001 , 64 . 26001 ]

yb = [−0.000001 , 64 . 26001 ]

zb = [−0.000001 , 64 . 26001 ]

db . i n s e r t (” x bnd mesh ” , xb )

db . i n s e r t (” y bnd mesh ” , yb )

db . i n s e r t (” z bnd mesh ” , zb )

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−##

## GEOMETRY

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−##

## MOD −> 0

## UO2 −> 1

## MOX 43 −> 2

## MOX 70 −> 3

## MOX 87 −> 4

## GT −> 5 Guide tubes in the core ( no guide tubes above

the core )
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## FC −> 6 F i s s i o n chambers in the core

## CR 1 −> 7 Control rods in the core

## FC 1 −> 8 In the top r e f l e c t o r r eg i on

## CR −> 9 In the top r e f l e c t o r r eg i on

## mod −> 0 moderator b lock above f u e l p ins

## REF −> 0 Moderator b lock that i s the r e f l e c t o r r eg i on

## TOPREF −> 0 Moderator b lock above the r e f l e c t o r r eg i on

p i t ch = 1.26

he ight = 14.28

# pins ( measurements in cm)

uo2 = RTK Cell (1 , 0 . 54 , 0 , p itch , height , 1 )

m43 = RTK Cell (2 , 0 . 54 , 0 , p itch , height , 1 )

m70 = RTK Cell (3 , 0 . 54 , 0 , p itch , height , 1 )

m87 = RTK Cell (4 , 0 . 54 , 0 , p itch , height , 1 )

gt = RTK Cell (5 , 0 . 54 , 0 , p itch , height , 1 )

f c = RTK Cell (6 , 0 . 54 , 0 , p itch , height , 1 )

c r 1= RTK Cell (7 , 0 . 54 , 0 , p itch , height , 1 )

f c 1= RTK Cell (8 , 0 . 54 , 0 , p itch , 21 . 42 , 1 )

cr = RTK Cell (9 , 0 . 54 , 0 , p itch , 21 . 42 , 1 )

mod = RTK Cell (0 , 1 . 26 , 21 . 42 , 1 )

# not r e a l l y pins , but b locks o f moderator / r e f l e c t o r

r e f = RTK Cell (0 , 21 . 42 , he ight , 1 )

t o p r e f = RTK Cell (0 , 21 . 42 , 21 . 42 , 1 )

# r e f l e c t o r l a t t i c e
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r e f 1 = L a t t i c e (1 , 1 , 1 , 1)

r e f 1 . a s s i g n o b j e c t ( r e f , 0)

r e f 1 . complete ( 0 . 0 , 0 . 0 , 0 . 0 )

# top r e f l e c t o r not over core but over other r e f l e c t o r ( s ee

prev ious )

t o p r e f 1 = L a t t i c e (1 , 1 , 1 , 1)

t o p r e f 1 . a s s i g n o b j e c t ( topre f , 0)

t o p r e f 1 . complete ( 0 . 0 , 0 . 0 , 0 . 0 )

# top r e f l e c t o r over core ( l a t t i c e w/ rods , tubes , and

chambers )

t o p r e f 2 = L a t t i c e (17 , 17 , 1 , 3)

t o p r e f 2 . a s s i g n o b j e c t (mod , 0)

t o p r e f 2 . a s s i g n o b j e c t ( cr , 1)

t o p r e f 2 . a s s i g n o b j e c t ( f c 1 , 2)

t o p r e f 2 . s e t i d (5 , 2 , 0 , 1)

t o p r e f 2 . s e t i d (8 , 2 , 0 , 1)

t o p r e f 2 . s e t i d (11 , 2 , 0 , 1)

t o p r e f 2 . s e t i d (3 , 3 , 0 , 1)

t o p r e f 2 . s e t i d (13 , 3 , 0 , 1)

t o p r e f 2 . s e t i d (2 , 5 , 0 , 1)

t o p r e f 2 . s e t i d (5 , 5 , 0 , 1)

t o p r e f 2 . s e t i d (8 , 5 , 0 , 1)

t o p r e f 2 . s e t i d (11 , 5 , 0 , 1)
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t o p r e f 2 . s e t i d (14 , 5 , 0 , 1)

t o p r e f 2 . s e t i d (2 , 8 , 0 , 1)

t o p r e f 2 . s e t i d (5 , 8 , 0 , 1)

t o p r e f 2 . s e t i d (8 , 8 , 0 , 2)

t o p r e f 2 . s e t i d (11 , 8 , 0 , 1)

t o p r e f 2 . s e t i d (14 , 8 , 0 , 1)

t o p r e f 2 . s e t i d (2 , 11 , 0 , 1)

t o p r e f 2 . s e t i d (5 , 11 , 0 , 1)

t o p r e f 2 . s e t i d (8 , 11 , 0 , 1)

t o p r e f 2 . s e t i d (11 , 11 , 0 , 1)

t o p r e f 2 . s e t i d (14 , 11 , 0 , 1)

t o p r e f 2 . s e t i d (3 , 13 , 0 , 1)

t o p r e f 2 . s e t i d (13 , 13 , 0 , 1)

t o p r e f 2 . s e t i d (5 , 14 , 0 , 1)

t o p r e f 2 . s e t i d (8 , 14 , 0 , 1)

t o p r e f 2 . s e t i d (11 , 14 , 0 , 1)

t o p r e f 2 . complete ( 0 . 0 , 0 . 0 , 0 . 0 )

# UO2 l a t t i c e

uo2 l = L a t t i c e (17 , 17 , 1 , 3)

uo2 l . a s s i g n o b j e c t ( uo2 , 0)

uo2 l . a s s i g n o b j e c t ( gt , 1)

uo2 l . a s s i g n o b j e c t ( fc , 2)
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uo2 l . s e t i d (5 , 2 , 0 , 1)

uo2 l . s e t i d (8 , 2 , 0 , 1)

uo2 l . s e t i d (11 , 2 , 0 , 1)

uo2 l . s e t i d (3 , 3 , 0 , 1)

uo2 l . s e t i d (13 , 3 , 0 , 1)

uo2 l . s e t i d (2 , 5 , 0 , 1)

uo2 l . s e t i d (5 , 5 , 0 , 1)

uo2 l . s e t i d (8 , 5 , 0 , 1)

uo2 l . s e t i d (11 , 5 , 0 , 1)

uo2 l . s e t i d (14 , 5 , 0 , 1)

uo2 l . s e t i d (2 , 8 , 0 , 1)

uo2 l . s e t i d (5 , 8 , 0 , 1)

uo2 l . s e t i d (8 , 8 , 0 , 2)

uo2 l . s e t i d (11 , 8 , 0 , 1)

uo2 l . s e t i d (14 , 8 , 0 , 1)

uo2 l . s e t i d (2 , 11 , 0 , 1)

uo2 l . s e t i d (5 , 11 , 0 , 1)

uo2 l . s e t i d (8 , 11 , 0 , 1)

uo2 l . s e t i d (11 , 11 , 0 , 1)

uo2 l . s e t i d (14 , 11 , 0 , 1)

uo2 l . s e t i d (3 , 13 , 0 , 1)

uo2 l . s e t i d (13 , 13 , 0 , 1)
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uo2 l . s e t i d (5 , 14 , 0 , 1)

uo2 l . s e t i d (8 , 14 , 0 , 1)

uo2 l . s e t i d (11 , 14 , 0 , 1)

uo2 l . complete ( 0 . 0 , 0 . 0 , 0 . 0 )

# UO2 l a t t i c e with c o n t r o l rods in

uo2 2 = L a t t i c e (17 , 17 , 1 , 3)

uo2 2 . a s s i g n o b j e c t ( uo2 , 0)

uo2 2 . a s s i g n o b j e c t ( cr 1 , 1)

uo2 2 . a s s i g n o b j e c t ( fc , 2)

uo2 2 . s e t i d (5 , 2 , 0 , 1)

uo2 2 . s e t i d (8 , 2 , 0 , 1)

uo2 2 . s e t i d (11 , 2 , 0 , 1)

uo2 2 . s e t i d (3 , 3 , 0 , 1)

uo2 2 . s e t i d (13 , 3 , 0 , 1)

uo2 2 . s e t i d (2 , 5 , 0 , 1)

uo2 2 . s e t i d (5 , 5 , 0 , 1)

uo2 2 . s e t i d (8 , 5 , 0 , 1)

uo2 2 . s e t i d (11 , 5 , 0 , 1)

uo2 2 . s e t i d (14 , 5 , 0 , 1)

uo2 2 . s e t i d (2 , 8 , 0 , 1)

uo2 2 . s e t i d (5 , 8 , 0 , 1)
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uo2 2 . s e t i d (8 , 8 , 0 , 2)

uo2 2 . s e t i d (11 , 8 , 0 , 1)

uo2 2 . s e t i d (14 , 8 , 0 , 1)

uo2 2 . s e t i d (2 , 11 , 0 , 1)

uo2 2 . s e t i d (5 , 11 , 0 , 1)

uo2 2 . s e t i d (8 , 11 , 0 , 1)

uo2 2 . s e t i d (11 , 11 , 0 , 1)

uo2 2 . s e t i d (14 , 11 , 0 , 1)

uo2 2 . s e t i d (3 , 13 , 0 , 1)

uo2 2 . s e t i d (13 , 13 , 0 , 1)

uo2 2 . s e t i d (5 , 14 , 0 , 1)

uo2 2 . s e t i d (8 , 14 , 0 , 1)

uo2 2 . s e t i d (11 , 14 , 0 , 1)

uo2 2 . complete ( 0 . 0 , 0 . 0 , 0 . 0 )

# MOX l a t t i c e

mox l = L a t t i c e (17 , 17 , 1 , 5)

mox l . a s s i g n o b j e c t (m43 , 0)

mox l . a s s i g n o b j e c t (m70 , 1)

mox l . a s s i g n o b j e c t (m87 , 2)

mox l . a s s i g n o b j e c t ( gt , 3)

mox l . a s s i g n o b j e c t ( fc , 4)

f o r j in xrange (17) :
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f o r i in xrange (17) :

mox l . s e t i d ( i , j , 0 , 1)

f o r i in xrange (17) :

mox l . s e t i d ( i , 0 , 0 , 0)

f o r i in xrange (17) :

mox l . s e t i d ( i , 16 , 0 , 0)

f o r j in xrange (17) :

mox l . s e t i d (0 , j , 0 , 0)

f o r j in xrange (17) :

mox l . s e t i d (16 , j , 0 , 0)

f o r j in xrange (5 , 12) :

f o r i in xrange (3 , 14) :

mox l . s e t i d ( i , j , 0 , 2)

f o r i in xrange (4 , 13) :

mox l . s e t i d ( i , 4 , 0 , 2)

f o r i in xrange (5 , 12) :

mox l . s e t i d ( i , 3 , 0 , 2)

f o r i in xrange (4 , 13) :

mox l . s e t i d ( i , 12 , 0 , 2)

f o r i in xrange (5 , 12) :

mox l . s e t i d ( i , 13 , 0 , 2)

mox l . s e t i d (5 , 2 , 0 , 3)

mox l . s e t i d (8 , 2 , 0 , 3)

mox l . s e t i d (11 , 2 , 0 , 3)
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mox l . s e t i d (3 , 3 , 0 , 3)

mox l . s e t i d (13 , 3 , 0 , 3)

mox l . s e t i d (2 , 5 , 0 , 3)

mox l . s e t i d (5 , 5 , 0 , 3)

mox l . s e t i d (8 , 5 , 0 , 3)

mox l . s e t i d (11 , 5 , 0 , 3)

mox l . s e t i d (14 , 5 , 0 , 3)

mox l . s e t i d (2 , 8 , 0 , 3)

mox l . s e t i d (5 , 8 , 0 , 3)

mox l . s e t i d (8 , 8 , 0 , 4)

mox l . s e t i d (11 , 8 , 0 , 3)

mox l . s e t i d (14 , 8 , 0 , 3)

mox l . s e t i d (2 , 11 , 0 , 3)

mox l . s e t i d (5 , 11 , 0 , 3)

mox l . s e t i d (8 , 11 , 0 , 3)

mox l . s e t i d (11 , 11 , 0 , 3)

mox l . s e t i d (14 , 11 , 0 , 3)

mox l . s e t i d (3 , 13 , 0 , 3)

mox l . s e t i d (13 , 13 , 0 , 3)

mox l . s e t i d (5 , 14 , 0 , 3)

mox l . s e t i d (8 , 14 , 0 , 3)

mox l . s e t i d (11 , 14 , 0 , 3)
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mox l . complete ( 0 . 0 , 0 . 0 , 0 . 0 )

# MOX l a t t i c e with c o n t r o l rods in

mox 2 = L a t t i c e (17 , 17 , 1 , 5)

mox 2 . a s s i g n o b j e c t (m43 , 0)

mox 2 . a s s i g n o b j e c t (m70 , 1)

mox 2 . a s s i g n o b j e c t (m87 , 2)

mox 2 . a s s i g n o b j e c t ( cr 1 , 3)

mox 2 . a s s i g n o b j e c t ( fc , 4)

f o r j in xrange (17) :

f o r i in xrange (17) :

mox 2 . s e t i d ( i , j , 0 , 1)

f o r i in xrange (17) :

mox 2 . s e t i d ( i , 0 , 0 , 0)

f o r i in xrange (17) :

mox 2 . s e t i d ( i , 16 , 0 , 0)

f o r j in xrange (17) :

mox 2 . s e t i d (0 , j , 0 , 0)

f o r j in xrange (17) :

mox 2 . s e t i d (16 , j , 0 , 0)

f o r j in xrange (5 , 12) :

f o r i in xrange (3 , 14) :

mox 2 . s e t i d ( i , j , 0 , 2)

f o r i in xrange (4 , 13) :

mox 2 . s e t i d ( i , 4 , 0 , 2)
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f o r i in xrange (5 , 12) :

mox 2 . s e t i d ( i , 3 , 0 , 2)

f o r i in xrange (4 , 13) :

mox 2 . s e t i d ( i , 12 , 0 , 2)

f o r i in xrange (5 , 12) :

mox 2 . s e t i d ( i , 13 , 0 , 2)

mox 2 . s e t i d (5 , 2 , 0 , 3)

mox 2 . s e t i d (8 , 2 , 0 , 3)

mox 2 . s e t i d (11 , 2 , 0 , 3)

mox 2 . s e t i d (3 , 3 , 0 , 3)

mox 2 . s e t i d (13 , 3 , 0 , 3)

mox 2 . s e t i d (2 , 5 , 0 , 3)

mox 2 . s e t i d (5 , 5 , 0 , 3)

mox 2 . s e t i d (8 , 5 , 0 , 3)

mox 2 . s e t i d (11 , 5 , 0 , 3)

mox 2 . s e t i d (14 , 5 , 0 , 3)

mox 2 . s e t i d (2 , 8 , 0 , 3)

mox 2 . s e t i d (5 , 8 , 0 , 3)

mox 2 . s e t i d (8 , 8 , 0 , 4)

mox 2 . s e t i d (11 , 8 , 0 , 3)

mox 2 . s e t i d (14 , 8 , 0 , 3)

mox 2 . s e t i d (2 , 11 , 0 , 3)

mox 2 . s e t i d (5 , 11 , 0 , 3)
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mox 2 . s e t i d (8 , 11 , 0 , 3)

mox 2 . s e t i d (11 , 11 , 0 , 3)

mox 2 . s e t i d (14 , 11 , 0 , 3)

mox 2 . s e t i d (3 , 13 , 0 , 3)

mox 2 . s e t i d (13 , 13 , 0 , 3)

mox 2 . s e t i d (5 , 14 , 0 , 3)

mox 2 . s e t i d (8 , 14 , 0 , 3)

mox 2 . s e t i d (11 , 14 , 0 , 3)

mox 2 . complete ( 0 . 0 , 0 . 0 , 0 . 0 )

# core

core = Core (3 , 3 , 4 , 7)

core . a s s i g n o b j e c t ( r e f 1 , 0)

core . a s s i g n o b j e c t ( uo2 l , 1)

core . a s s i g n o b j e c t ( mox l , 2)

core . a s s i g n o b j e c t ( t op r e f 1 , 3)

core . a s s i g n o b j e c t ( uo2 2 , 4)

core . a s s i g n o b j e c t ( mox 2 , 5)

core . a s s i g n o b j e c t ( t op r e f 2 , 6)

core . s e t i d (0 , 0 , 0 , 1)

core . s e t i d (1 , 0 , 0 , 2)

core . s e t i d (2 , 0 , 0 , 0)

core . s e t i d (0 , 1 , 0 , 2)

core . s e t i d (1 , 1 , 0 , 1)
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core . s e t i d (2 , 1 , 0 , 0)

core . s e t i d (0 , 2 , 0 , 0)

core . s e t i d (1 , 2 , 0 , 0)

core . s e t i d (2 , 2 , 0 , 0)

core . s e t i d (0 , 0 , 1 , 4)

core . s e t i d (1 , 0 , 1 , 2)

core . s e t i d (2 , 0 , 1 , 0)

core . s e t i d (0 , 1 , 1 , 2)

core . s e t i d (1 , 1 , 1 , 1)

core . s e t i d (2 , 1 , 1 , 0)

core . s e t i d (0 , 2 , 1 , 0)

core . s e t i d (1 , 2 , 1 , 0)

core . s e t i d (2 , 2 , 1 , 0)

core . s e t i d (0 , 0 , 2 , 4)

core . s e t i d (1 , 0 , 2 , 5)

core . s e t i d (2 , 0 , 2 , 0)

core . s e t i d (0 , 1 , 2 , 5)

core . s e t i d (1 , 1 , 2 , 1)

core . s e t i d (2 , 1 , 2 , 0)

core . s e t i d (0 , 2 , 2 , 0)

core . s e t i d (1 , 2 , 2 , 0)

core . s e t i d (2 , 2 , 2 , 0)

core . s e t i d (0 , 0 , 3 , 6)

core . s e t i d (1 , 0 , 3 , 6)

core . s e t i d (2 , 0 , 3 , 3)

core . s e t i d (0 , 1 , 3 , 6)

core . s e t i d (1 , 1 , 3 , 6)

core . s e t i d (2 , 1 , 3 , 3)
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core . s e t i d (0 , 2 , 3 , 3)

core . s e t i d (1 , 2 , 3 , 3)

core . s e t i d (2 , 2 , 3 , 3)

r e f l e c t = Vec Int (6 , 1)

r e f l e c t [ 1 ] = 0

r e f l e c t [ 3 ] = 0

r e f l e c t [ 5 ] = 0

core . s e t r e f l e c t i n g ( r e f l e c t )

core . complete ( 0 . 0 , 0 . 0 , 0 . 0 )

# geometry

geometry = Geometry ( )

geometry . bu i ld geometry ( core )

# t a l l y mesh

## ( [ number o f p lanes ] , [ i n i t i a l f i l l ] )

x= Vec Dbl (35 , 0 . 0 )

y= Vec Dbl (35 , 0 . 0 )

z= Vec Dbl (4 , 0 . 0 )

## x−planes

f o r n in xrange (34) :

x [ n+1] = x [ n ] + p i t ch

## y−planes
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f o r o in xrange (34) :

y [ o+1] = y [ o ] + p i t ch

## z−planes

f o r n in xrange (3 ) :

z [ n+1] = z [ n ] + he ight

db . i n s e r t (” t a l l y d b ” , ” ta l l y mesh x ” , x )

db . i n s e r t (” t a l l y d b ” , ” ta l l y mesh y ” , y )

db . i n s e r t (” t a l l y d b ” , ” t a l l y m e s h z ” , z )

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−##

## MANAGER

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−##

# make manager , mater ia l , and ang l e s

manager = Manager ( )

manager . p a r t i t i o n (db)

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−##

## MATERIAL SETUP

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−##

## MOD −> 0

## UO2 −> 1

## MOX 43 −> 2

## MOX 70 −> 3

## MOX 87 −> 4
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## GT −> 5 Guide tubes in the core ( no guide tubes above

the core )

## FC −> 6 F i s s i o n chambers in the core

## CR 1 −> 7 Control rods in the core

## FC 1 −> 8 In the top r e f l e c t o r r eg i on

## CR −> 9 In the top r e f l e c t o r r eg i on

## mod −> 0 moderator b lock above f u e l p ins

## REF −> 0 Moderator b lock that i s the r e f l e c t o r r eg i on

## TOPREF −> 0 Moderator b lock above the r e f l e c t o r r eg i on

# make xs db

xsdb = XS DB(db)

# phys i c s

phys i c s = Phys ics ( )

xsdb . set num (10)

f o r g in xrange (0 , num groups ) :

xsdb . a s s i g n u p s c a t t e r (0 , g , T MOD1[ g ] , U MOD1[ g ] , S MOD1[

g ] )

xsdb . a s s i g n u p s c a t t e r (1 , g , T UO2 [ g ] , U UO2 [ g ] , S UO2 [ g ] )

xsdb . a s s i g n u p s c a t t e r (2 , g , T MOX43[ g ] , U MOX43[ g ] ,

S MOX43 [ g ] )

xsdb . a s s i g n u p s c a t t e r (3 , g , T MOX70[ g ] , U MOX70[ g ] ,

S MOX70 [ g ] )

xsdb . a s s i g n u p s c a t t e r (4 , g , T MOX87[ g ] , U MOX87[ g ] ,

S MOX87 [ g ] )
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xsdb . a s s i g n u p s c a t t e r (5 , g , T GUIDT[ g ] , U GUIDT[ g ] ,

S GUIDT [ g ] )

xsdb . a s s i g n u p s c a t t e r (6 , g , T FISCH [ g ] , U FISCH [ g ] ,

S FISCH [ g ] )

xsdb . a s s i g n u p s c a t t e r (7 , g , T CONTROL[ g ] , U CONTROL[ g ] ,

S CONTROL[ g ] )

xsdb . a s s i g n u p s c a t t e r (8 , g , T FISCH [ g ] , U FISCH [ g ] ,

S FISCH [ g ] )

xsdb . a s s i g n u p s c a t t e r (9 , g , T CONTROL[ g ] , U CONTROL[ g ] ,

S CONTROL[ g ] )

## Assign f i s s i o n data

xsdb . a s s i g n f i s s i o n (1 , NUF UO2, C UO2)

xsdb . a s s i g n f i s s i o n (2 , NUF MOX43, C MOX43)

xsdb . a s s i g n f i s s i o n (3 , NUF MOX70, C MOX70)

xsdb . a s s i g n f i s s i o n (4 , NUF MOX87, C MOX87)

xsdb . a s s i g n f i s s i o n (6 , NUF FISCH, C FISCH)

xsdb . a s s i g n f i s s i o n (8 , NUF FISCH, C FISCH)

phys i c s . b u i l d p h y s i c s ( xsdb )

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−##

## SOLVE

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−##

manager . se t geometry ( geometry )

manager . s e t p h y s i c s ( geometry , phys i c s )

manager . setup kcode ( )
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db . output ( )

t a l l y = Tal ly ( )

manager . s o l v e ( t a l l y )

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−##

## OUTPUT

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−##

t a l l y f i e l d = t a l l y . g e t t a l l y f i e l d ( )

t a l l y v a r = t a l l y . g e t v a r i a n c e f i e l d ( )

i f node ( ) == 0 :

f o r j in xrange (34) :

f o r i in xrange (34) :

f o r k in xrange (3 ) :

c e l l = k + ( i + j ∗ 34) ∗ 3

p r i n t ”%5 i %12.7 f %7.5 e” % ( c e l l +1,

t a l l y f i e l d ( c e l l ) , t a l l y v a r ( c e l l ) )

i f t a l l y f i e l d . a s s i gned ( ) and t a l l y v a r . a s s i gned ( ) :

s i l o = Tally Mesh SILO ( )

# s i l o . open (” c5g7−s h i f t −3−1”)
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s i l o . add (” f l u x t a l l y ” , t a l l y f i e l d )

s i l o . add (” t a l l y v a r ” , t a l l y v a r )

s i l o . c l o s e ( )

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−##

## TIMING

##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−##

timer . stop ( )

time = timer . w a l l c l o c k ( )

i f node ( ) == 0 :

p r i n t ”\n”

pr in t ”TIMING : Problem ran in %16.6 e seconds . ” % ( time )

keys = t imer keys ( )

i f l en ( keys ) > 0 :

p r i n t

”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”

f o r key in keys :

p r i n t ”%30s : %16.6 e” % ( key , t imer va lue ( key ) /

time )

p r i n t

”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−”
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##−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−##

manager . c l o s e ( )

f i n a l i z e ( )

###########################################################

## end o f unrodded 2D . py

###########################################################
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Appendix C

Benchmark Scaling Results Graphs

C5G7 Rods Out Graphs

Figure C.1: C5G7 Rods Out variances vs. number of particles per cycle.
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Figure C.2: C5G7 Rods Out run time vs. number of processors.

Figure C.3: C5G7 Rods Out speedup vs. number of nodes.
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Figure C.4: C5G7 Rods Out efficiency vs. number of processors.

C5G7 Rodded A Graphs

Figure C.5: C5G7 Rodded A variances vs. number of particles per cycle.
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Figure C.6: C5G7 Rodded A run time vs. number of processors.

Figure C.7: C5G7 Rodded A speedup vs. number of nodes.
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Figure C.8: C5G7 Rodded A efficiency vs. number of processors.

C5G7 Rodded B Graphs

Figure C.9: C5G7 Rodded B variances vs. number of particles per cycle.
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Figure C.10: C5G7 Rodded B run time vs. number of processors.

Figure C.11: C5G7 Rodded B speedup vs. number of nodes.
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Figure C.12: C5G7 Rodded B efficiency vs. number of processors.
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CASL 1a Graphs

Figure C.13: CASL 1a variances vs. number of particles per cycle.
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Figure C.14: CASL 1a run time vs. number of processors.

Figure C.15: CASL 1a speedup vs. number of nodes.
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Figure C.16: CASL 1a efficiency vs. number of processors.
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CASL 1b Graphs

Figure C.17: CASL 1b variances vs. number of particles per cycle.
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Figure C.18: CASL 1b run time vs. number of processors.

Figure C.19: CASL 1b speedup vs. number of nodes.
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Figure C.20: CASL 1b efficiency vs. number of processors.
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CASL 1c Graphs

Figure C.21: CASL 1c variances vs. number of particles per cycle.
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Figure C.22: CASL 1c run time vs. number of processors.

Figure C.23: CASL 1c speedup vs. number of nodes.
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Figure C.24: CASL 1c efficiency vs. number of processors.
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CASL 1d Graphs

Figure C.25: CASL 1d variances vs. number of particles per cycle.
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Figure C.26: CASL 1d run time vs. number of processors.

Figure C.27: CASL 1d speedup vs. number of nodes.
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Figure C.28: CASL 1d efficiency vs. number of processors.
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CASL 2a Graphs

Figure C.29: CASL 2a variances vs. number of particles per cycle.
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Figure C.30: CASL 2a run time vs. number of processors.

Figure C.31: CASL 2a speedup vs. number of nodes.
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Figure C.32: CASL 2a efficiency vs. number of processors.
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