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Abstract

This paper evaluates the performance of multiphysics coupling algorithms
on a light water nuclear reactor core simulation. The simulation couples the
k-eigenvalue form of the neutron transport equation with heat conduction
and subchannel flow equations. We compare Picard iteration (block Gauss-
Seidel) with multiple variants of preconditioned Jacobian-free Newton-Krylov
(JFNK). The performance of the methods are evaluated over a range of en-
ergy group sizes, boron concentrations and core power levels. A novel physics-
based approximation to a Jacobian-vector product has been developed to
mitigate the impact of expensive cross section processing steps. Numeri-
cal experiments demonstrating the efficiency of JFNK relative to standard
Picard iteration are performed on a 3D model of a nuclear fuel assembly.
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1. Introduction

Determining the steady-state power and temperature distributions within
an operating nuclear reactor is an important component of reactor design and
analysis. This task requires simultaneously solving equations describing the
distribution of neutrons throughout the reactor in addition to the transfer of
heat through the fuel and structural materials and into fluid coolant regions.
Current core analysis methods rely on the use of a Picard iteration, alternat-
ing between solving individual physics components. Although this approach
offers a simple path to coupling different physics codes due to the minimial
code interaction required, there are also significant drawbacks. Picard iter-
ation lacks global convergence theory and, at best, a q-linear convergence
rate [1]. Additionally, user-defined relaxation schemes are usually required
to achieve convergence. Newton-based methods, however, are shown to be
globally convergent with q-quadratic convergence rates. The downside to
Newton-based methods is that the need for residual and sensitivity infor-
mation requires more invasive access to application codes. While access to
analytical Jacobian matrices is commonly infeasible, Jacobian-free Newton-
Krylov (JFNK) methods [2] can be used to realize many of the benefits of
Newton-based methods while only requiring evaluation of nonlinear func-
tions. While JFNK methods have been successfully applied in many areas,
to date little has been done to evaluate the viability of such methods for
multiphysics reactor simulations.

In this study we investigate the use of a JFNK approach to solve multi-
physics problems involving coupling between 3D discretizations of the radi-
ation transport and heat transfer equations along with a simple subchannel
flow model for modeling of pressurized water reactors. Because one of the
dominant costs associated with the current model is the on-line generation
of cross section data for use by the neutronics solver, the use of low-cost
approximate function evaluations within the JFNK approach is considered.
Both criticality (k-eigenvalue) and Boron search problems are considered.

The rest of the paper is organized as follows: Section 2 describes the
physics models, Section 3 describes various coupling algorithms, Section 4
contains numerical results for a single PWR fuel assembly, and Section 5
presents conclusions and proposals for future ares of investigation.
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2. Physics Models

In this document we consider solution of multiphysics problems involving
coupling between neutron transport and heat transfer. In particular, we fo-
cus on the solution of problems involving light water reactors (LWRs). Most
of the fundamental ideas described here are applicable to a wide range of
reactor types, but certain aspects of the problem, such as geometric features,
are particular to LWRs (and possibly pressurized water reactors in particu-
lar). For nuclear reactor problems, the standard formulation of the neutron
transport equation is the k-eigenvalue problem

Ω̂ · ∇ψ(~r, E, Ω̂) + σ(~r, E, T )ψ(~r, E, Ω̂) =∫ ∞
0

dE ′
∫
4π

dΩ̂′ σs(~r, E
′ → E, Ω̂′ → Ω̂, T )ψ(~r, E ′, Ω̂′) +

1

k
χ(~r, E)

∫ ∞
0

dE ′
∫
4π

dΩ̂′ νσf (~r, E
′, T )ψ(~r, E ′, Ω̂′) , (1)

where Ω̂ is the direction of particle travel, E is the particle energy, T is
the temperature of the background material, σ is the total cross section, σs
is the scattering cross section, νσf is the neutron production cross section,
and χ is the fission spectrum. The goal is to find the largest value of the
eigenvalue k and the corresponding eigenvector ψ. Because Eq. (1) represents
an eigenvalue problem, the vector ψ has no explicit magnitude. We choose
a natural normalization by setting the global heat generation rate (due to
nuclear fission occurring in the fuel) to a pre-defined value, i.e.∫

dV

∫ ∞
0

dE

∫
4π

dΩ̂κσfψ = P ∗ . (2)

As noted in Eq. (1), the cross sections are dependent on the temperature
of the media, T . Thus, for a reactor not operating at a constant temperature
it is also necessary to solve a heat conduction equation within the solid fuel
and clad regions with fission providing the thermal source, i.e.

−∇ ·K(T )∇T =

∫ ∞
0

dE

∫
4π

dΩ̂κσf (E)ψ(E, Ω̂) , (3)

where K is the material thermal conductivity and κ is the heat generated
per fission event. Because no fission occurs in the clad regions, the source in
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those locations is zero. The exterior surface of the clad is then coupled to
the coolant through the subchannel model that solves equations describing
the conservation of mass, momentum, and energy, i.e.

∂ρ

∂t
+∇ · (ρ~v) = 0 (4)

∂ρvi
∂t

= −∇ · (ρvi~v) + (−∇p+∇ · ~τ)− ~g (5)

∂U

∂t
+∇ · (U~v) = −p∇ · ~v + Φ +∇K(T )∇T + q̇ , (6)

where ρ is the mass density, ~v is the velocity, p is the pressure, ~g is the force
exerted by gravity, ~τ is the viscosity tensor, U is the internal energy density,
Φ is the dissipation function, and q̇ is the thermal source. Note that the
internal energy density is related to the enthalpy density through U = h− p.
We solve these equations using a two-equation approximation in which we
assume that the coolant flow is only in the axial direction and neglect thermal
diffusion between the channels. Assuming steady-state, this reduces to

∂ρv2z
∂z

+
∂p

∂z
− ∂τ

∂z
= −g (−∇p+∇ · τ)− g , (7)

∂hvz
∂z

= −vz
∂p

∂z
− Φ +

∂

∂z
∇K(T )

∂T

∂z
+ q̇ . (8)

The thermal source consists primarily of convective heat transfer from the
clad and is the primary coupling mechanism with the temperature of the
clad/pellets.

For notational simplicity, in the remainder of this document we will allow
T to refer to not only the solution of the thermal diffusion equation in the
pellets and clad but also the solution to the subchannel equations. Our goal
is therefore to find distributions ψ, T and a value k such that Eqs. (1)–(3)
are simultaneously satisfied. For ease of notation, we introduce an operator
notation for discretized forms of the preceding equations:

A(T )φ = λB(T )φ (9)

RSREB(T )φ = P ∗ (10)

L(T )T = REB(T )φ , (11)

where RS and RE are restriction operators in space and energy, respectively,
and L(T ) refers not only to the thermal diffusion equation (3) but also the
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subchannel equations of (7)–(8). Here Eq. (9) has taken advantage of the
fact that only the angle-integrated variable φ must generally be stored rather
than the corresponding angle-dependent ψ. In addition we have written the
eigenvalue as λ ≡ 1

k
.

2.1. Nuclear Data Evaluation

Nuclear cross section data is generally tabulated at thousands of different
energy values and a variety of temperatures for every isotope. Deterministic
radiation transport solvers, however, are generally limited to using a small
number (typically fewer than 100 and often less than ten) of energy “groups”
representing average behavior over a range of energies [3]. In order for this
collapsed multigroup data to accurately represent the original energy spec-
trum, it is necessary to compute the averages using a weighting function that
matches the true solution as closely as possible. This weighting function is
usually generated by performing several local 1-D (pincell) or 2-D (lattice)
transport calculations to capture local nearest-neighbor contributions to the
solution. Such a calculation would need to be performed for every unique
type of fuel pin in the problem. In addition, because the cross section data
is temperature-dependent, the variation in the collapsed data with temper-
ature must be taken into account. One possible approach is to precompute
multigroup data at several different temperatures and then interpolate the
values to the temperature of interest. A more accurate approach, however,
is to perform a separate cross section processing calculation at every dif-
ferent temperature under consideration. The latter approach of “on-line”
generation of cross sections is the method considered in this paper.

2.2. Critical Boron Search

A nuclear reactor operating under normal conditions is always maintained
in a critical state, i.e. k ≡ 1. Because of this, rather than compute the value
of k for a given reactor configuration it is sometimes preferred to compute
the value of some parameter which results in a critical configuration. In a
pressurized water reactor (PWR) this parameter is often the concentration
of soluble boron in the coolant. In this case, the eigenvalue is no longer an
unknown and the matrix A becomes a function of the boron concentration,
C. Thus Eq. (9) becomes

A(T,C)φ = λtargetB(T )φ (12)
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where λtarget is the target eigenvalue for the search, which will typically be
unity for full core calculations but may be another value for calculations
involving only a portion of a reactor. Together with Eqs. (10) and (11),
Eq. (12) represents the problem statement for a critical boron search.

We briefly note that other single-parameter critical searches (e.g. control
rod height) can be written in a form similar to (12), with the matrices A and
possibly B depending on the given parameter. Additional critical searches
will not be considered further in this paper.

3. Solution Approaches

The radiation transport and heat transfer systems described in Eqs. (9)–
(11) can be written as a single system of coupled equations as

f

φ
λ
T

 =

fφ(φ, λ, T )
fλ(φ, T )
fT (φ, T )

 =

 A(T )φ− λB(T )φ
RSREB(T )φ− P ∗
L(T )T −REB(T )φ

 = 0 . (13)

Alternatively, to solve the boron search problem described in Section 2.2, the
system can be written as

f

φ
C
T

 =

fφ(φ,C, T )
fC(φ, T )
fT (φ, T )

 =

A(T,C)φ− λtargetB(T )φ
RSREB(T )φ− P ∗
L(T )T −REB(T )φ

 = 0 . (14)

In this section we explore strategies for solving these systems of equations.

3.1. Picard Iteration

One straightforward approach to solving this system of equations is to
alternate between solves of the individual physics in a block Gauss-Seidel
approach. This Picard iteration can be written as shown in Alg. 1. It has
been observed in several studies with various physics approximations and/or
discretizations that this simple iteration scheme applied to light water re-
actor problems is prone to poor convergence and possibly divergence due
to oscillations induced by certain error modes. The standard remedy for
this issue is to introduce a damping parameter, ω, such that Algorithm 1
is replaced by the modified version given in Alg. 2. Optimal values for the
damping parameter are typically between 0.3 and 0.6 [4, 5, 6]. Note that it

6
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Algorithm 1 Picard Iteration (Gauss-Seidel)

Given T0
for m = 0, 1, . . . until converged do

Solve A(Tm)φ̂ = λB(Tm)φ̂ for φ̂, λ
Set φm+1 = P ∗

RSREB(Tm)φ̂
φ̂

Solve L(Tm+1)Tm+1 = REB(Tm)φm+1 for Tm+1

end for

Algorithm 2 Damped Picard Iteration

Given T0
for m = 0, 1, . . . until converged do

Solve A(Tm)φ̂ = λB(Tm)φ̂ for φ̂, λ
Set φm+1 = P ∗

RSREB(Tm)φ̂
φ̂

Solve L(T̂ )T̂ = REB(Tm)φm+1 for T̂

Update Tm+1 = ωT̂ + (1− ω)Tm

end for

is also possible to perform damping on the scalar flux (or power) instead of
temperature.

Because Eq. (12) does not represent a linear eigenvalue problem the way
that Eq. (9) does, solving the coupled system of equations using Picard it-
eration is slightly more complicated. One approach is to use a traditional
solution approach (e.g. power iteration) to solve the original eigenvalue prob-
lem, but modify the algorithm so that the boron concentration is updated
instead of the eigenvalue [7, 8]. This approach, however, presents two prob-
lems. First, subspace eigenvalue solvers (e.g. Arnoldi’s method or a gener-
alized Davidson method) that are commonly far more efficient than power
iteration can no longer be used. Second, every time the boron concentration
is modified the problem cross sections must be updated which can be a sig-
nificant computational expense if cross sections are being processed on-line.
A more common approach is to solve the boron search problem indirectly
by solving Eqs. (9)–(11), but periodically updating the boron concentration
such that the eigenvalue at convergence is unity, resulting in Alg. 3. In this
approach, an estimate for the derivative of the reactivity with respect to the
boron concentration, ∂ρ

∂C
, must be provided.
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Algorithm 3 Damped Picard Iteration with Boron Search

Given T 0, C0, ∂ρ
∂C

for m = 0, 1, . . . until converged do
Solve A(Tm, Cm)φ̂ = λB(Tm)φ̂ for φ̂, λ
Set φm+1 = P ∗

RSREB(Tm)φ̂
φ̂

Set Cm+1 = Cm − 1
∂ρ
∂C

(λtarget − λ)

Solve L(T̂ )T̂ = REB(Tm)φm+1 for T̂

Update Tm+1 = ωT̂ + (1− ω)Tm

end for

Algorithm 4 Newton’s Method

Given x0
for m = 0, 1, . . . until converged do

Solve (approximately) J(xm)δx = −f(xm) for δx
Set xm+1 = δx+ xm

end for

3.2. Jacobian-Free Newton-Krylov

One approach for improving on the behavior of Picard iteration for solv-
ing Eq. (13) is to use Newton’s method (Algorithm 4). Computation of the
Jacobian matrix, J, is generally not possible because the temperature de-
pendence of nuclear data is not available in closed form, but is rather the
result of solver numerous local transport problems as described in Section 2.1.
The availability of a nonlinear function but difficulty in formulating the cor-
responding Jacobian matrix suggests that the use of Jacobian-free Newton
Krylov (JFNK) methods might be appropriate [9, 2]. JFNK methods are
based on two primary ideas. First, if the Newton correction equation is
solved using a Krylov subspace method, then access to the full Jacobian ma-
trix is not necessary, only the action of the Jacobian applied to a vector is
required. The second idea is that the product of the Jacobian and a given
vector can be approximated using a finite difference approach, e.g.

J(um)v ≈ f(um + εv)− f(um)

ε
. (15)

Note that second (or higher) order approximations are possible, but the form
in Eq. (15) is far more common because it requires only a single function
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evaluation per Jacobian-vector product because the value of f(um) can be
computed and stored once per Newton iteration so that each subsequent
Jacobian-vector product requires only the evaluation of f(um + εv). The
JFNK method therefore allows an approximate Newton method to be per-
formed using only evaluations of the nonlinear function. Discussions on the
selection of ε can be found in Refs. [2] and [10]. JFNK methods have been
used previously to solve the k-eigenvalue problem by itself [11, 12] as well as
time-dependent multiphysics problems involving radiation transport coupled
with thermal-hydraulics [13], though to date we are unaware of any stud-
ies considering steady-state coupling of radiation transport with thermal-
hydraulics capabilities.

3.2.1. JFNK Preconditioning

In order for JFNK to be competitive with other solution approaches, it
is necessary to efficiently solve the Newton correction equation. Because
a Krylov method is used to solve the linear system involving the Jacobian
matrix, the development of effective preconditioning strategies is vital. Al-
though the use of JFNK eliminates the need to explicitly form or store the
Jacobian matrix, some knowledge about the Jacobian is still beneficial in the
construction of a preconditioning. The true Jacobian corresponding to the
function defined by (13) can be written as

J

φ
λ
T

 =


A(T )− λB(T ) −B(T )φ

∂(A(T )φ− λB(T )φ)

∂T

RSREB(T ) 0
∂(RSREB(T )φ)

∂T

−REB(T ) 0
∂(L(T )T −REB(T )φ)

∂T


, (16)

where the entries in the last column of this block matrix are left as simply
partial derivatives with respect to temperature to indicate that these terms
are generally not available in closed form due to the dependence on mate-
rial properties. Similarly, the Jacobian matrix corresponding to (14) can be
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written as

J

φ
C
T

 =


A(T )− λtargetB(T )

∂ (A(T )φ)

∂C

∂(A(T )φ− λB(T )φ)

∂T

RSREB(T ) 0
∂(RSREB(T )φ)

∂T

−REB(T ) 0
∂(L(T )T −REB(T )φ)

∂T


,

(17)
A simple approach to preconditioning a linear system involving (16) or

(17) is a block diagonal approach in which preconditioners for each physics
are applied independently, i.e.

PD =

Â− λB̂ 0 0
0 1 0

0 0 L̂

 , (18)

where (̂·) indicates that some approximation of the operator is used in the pre-
conditioner. Possible choices for this approximation include incomplete fac-
torizations, algebraic multigrid methods, or physics-based approximations.
This preconditioner selection has the advantages of being relatively simple
to construct and inexpensive to apply (assuming the approximations to the
individual physics operators are inexpensive). Additionally, the block diago-
nal structure of this preconditioner means that the application of the different
physics components can be done independently and simultaneously, allowing
the possibility of treatment of the physics domains in parallel. Neglecting all
terms in the Jacobian that correspond to coupling between different physics
components may be lead to a reduction in the effectiveness of the precon-
ditioner. Therefore it may be beneficial to capture some of the off-diagonal
terms from the true Jacobian while maintaining enough structure to allow ef-
ficient application of the preconditioner. Possible approaches include a block
lower triangular preconditioner given by

PL =

Â− λB̂ 0 0
0 1 0

−REB 0 L̂

 , (19)

10

CASL-U-2014-0149-000-b



or a block upper triangular approach given by

PU =

Â− λB̂ −Bφ 0
0 1 0

0 0 L̂

 . (20)

Note that the upper triangular preconditioner of (20) applies only to the
Jacobian (16). Development of preconditioning strategies that account for
coupling behavior between physics components has the potential to signif-
icantly improve the convergence behavior of the JFNK approach and the
development of such techniques is an attractive area of research for future
investigations.

3.2.2. Approximate Jacobian-Vector Products

As noted in Section 2, the cross section data appearing in Eq. (1) is depen-
dent on the material temperature, resulting in the temperature dependence of
the matrices A and B. Generating data suitable for use in a deterministic ra-
diation transport solver generally involves performing a large number of small
(1-D or 2-D) radiation transport calculations involving many energy groups.
The results of these calculations are then used to compute effective data in-
volving fewer energy groups and potentially averaged spatially. Because the
tabulated data used in these small calculations is temperature-dependent, a
new calculation must be performed for every region in the reactor for which
a distinct temperature is defined. Furthermore, every time the tempera-
ture of a given region is modified, a new calculation must be performed.
Although each individual calculation represents a relatively small computa-
tional burden, the large number of calculations that may be required in a
given simulation may result in a large portion of the overall computational
effort being spent in this cross section processing. Using the JFNK method,
evaluation of the function in Eq. (13) at a perturbed state point appears as

f̂


φ+ ∆φ

λ+ ∆λ

T + ∆T

 =


A(T + ∆T )(φ+ ∆φ)− (λ+ ∆λ)B(T + ∆T )(φ+ ∆φ)

RSREB(T + ∆T )(φ+ ∆φ)− P ∗

L(T + ∆T )(T + ∆T )−REB(T + ∆T )(φ+ ∆φ)

 ,

(21)
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and similarly evaluation of Eq. (14) results in

f̂


φ+ ∆φ

C + ∆C

T + ∆T

 =


A(T + ∆T,C + ∆C)(φ+ ∆φ)− λtargetB(T + ∆T )(φ+ ∆φ)

RSREB(T + ∆T )(φ+ ∆φ)− P ∗

L(T + ∆T )(T + ∆T )−REB(T + ∆T )(φ+ ∆φ)

 ,
(22)

where the appearance of A(T + ∆T ) and B(T + ∆T ) indicate the need
to recompute cross sections based on the perturbed temperature distribution
and boron concentration at every linear (Krylov) iteration. This is in contrast
to Picard iteration, where cross sections need only be updated once every
outer iteration. With the expectation that several Newton iterations will
be required to converge a given problem and potentially dozens of linear
iterations will be necessary for every Newton iteration, the time spent simply
updating cross sections is likely to be prohibitive with a straightforward
application of JFNK.

In order to circumvent this potential bottleneck, we propose using an
approximate Newton update equation,

Ĵ(um)δm = −f(um) , (23)

where Ĵ indicates that an approximation to the Jacobian is used. In contrast
to inexact Newton methods which involve solving the true Newton correc-
tion equation in an approximate manner [14], the current approach is more
accurately described as a preconditioned nonlinear Richardson iteration [15].
In the interest of maintaining the attractive matrix-free nature of JFNK, we
can determine a corresponding approximate function evaluation, f̂ , such that
a finite difference operation approximates a product with Ĵ rather than the
full Jacobian, i.e.

Ĵ(um)v ≈ f̂(um + εv)− f(um)

ε
, (24)

where f̂ is an approximation to Eq. (13) that does not require recalculation
of cross section data. This approach is consistent with strategies studied
in Ref. [16]. It should be noted that the full nonlinear function, including
processing of all cross sections, must still be evaluated once every nonlinear
iteration and is used to evaluate convergence of the nonlinear iterations.

One possibility for approximating the Jacobian is to simply neglect the
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temperature variation of cross sections during an approximate Jacobian-
vector product, corresponding to an approximate Jacobian of

Ĵ


φ

λ

T

 =


A(T )− λB(T ) −B(T )φ 0

RSREB(T ) 0 0

−REB(T ) 0
∂(L(T )T )

∂T

 , (25)

or equivalently an approximate function evaluation of

f̂


φ+ ∆φ

λ+ ∆λ

T + ∆T

 =


A(T )(φ+ ∆φ)− (λ+ ∆λ)B(T )(φ+ ∆φ)

RSREB(T )(φ+ ∆φ)− P ∗

L(T + ∆T )(T + ∆T )−REB(T )(φ+ ∆φ)

 . (26)

This selection, however, results in no updated temperature information being
communicated from the heat transfer solver to the neutronics domain during
a given nonlinear iteration. This lack of information is expected to have a
detrimental effect on the convergence behavior of the nonlinear solver.

It is possible to include some information about the temperature feedback
effect on cross sections without performing a full cross section processing
step at each function evaluation. One such approach can be accomplished by
noting that the strongest temperature feedback effect is due to an increase in
absorption with increasing temperature (largely due to Doppler broading in
238U). As shown in Fig. 1, the temperature dependence of absorption cross
sections is approximately linear over a wide range of temperatures. This
suggests a modification to the Jacobian approximation of Eq. (25) which uses
a linear approximation to the temperature dependence of the absorption cross
section and neglects the temperature dependence of all other cross sections:

Ĵ


φ

λ

T

 =


A(T )− λB(T ) −B(T )φ

∂σa
∂T

φ

RSREB(T ) 0 0

−REB(T ) 0
∂(L(T )T )

∂T

 . (27)
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Figure 1: Temperature dependence of 23 group homogenized absorption cross sections for
a 3.1% enriched PWR fuel pin. Each curve represents the absorption cross section in a
different energy group relative to the group value at T = 600K.

The function evaluation corresponding to Eq. (27) is

f̂


φ+ ∆φ

λ+ ∆λ

T + ∆T

 =


A(T )(φ+ ∆φ)− (λ+ ∆λ)B(T )(φ+ ∆φ) +

∂σa
∂T

φ∆T

RSREB(T )(φ+ ∆φ)− P ∗

L(T + ∆T )(T + ∆T )−REB(T )(φ+ ∆φ)

 .

(28)

4. Results

For the numerical experiments in this paper, the radiation transport equa-
tion is approximated using the simplified PN (SPN) angular approximation
[17, 18, 19]. These equations are discretized spatially using a finite volume
approach as implemented in the Denovo package [20]. The simple nature
of the SPN equations offers significant advantages in the current study: the
operators A and B from Eq. (9) can be explicitly constructed as sparse matri-
ces and therefore algebraic preconditioners (algebraic multigrid, for instance)
can be easily applied. Aside from the development of appropriate precon-
ditioners, it is expected that similar behavior would be observed for other
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transport formulations (such as discrete ordinates). The cross sections used
by the SPN equations are generated by the XSProc module of the SCALE
package [21]. The heat transfer and subchannel equations are solved using
the Advanced Multiphysics (AMP) package [22]. The heat transfer equation
is discretized using standard trilinear continuous Galerkin finite elements and
the subchannel equations employ a finite difference approximation [23]. Val-
idation of the pin heat transfer models in AMP has been performed through
comparison to data from several experiments [24, 24]. Preliminary investiga-
tion into multiphysics coupling involving AMP and Denovo was performed
in Ref. [25].

To test the behavior of different nonlinear solvers on a realistic problem,
we consider the solution of CASL AMA Progression Problem 6 [26]. This
problem consists of a single 17 × 17 PWR fuel assembly with 264 fuel pins
containing 3.1% enriched UO2, 24 guide tubes and a single central instru-
mentation tube. Eight spacer grids are located along the axial length of the
assembly, as well as upper and lower assembly nozzles. A full description of
the problem, including detailed material and geometric details, is contained
in Ref. [26].

For the base configuration, we model the assembly at 17.67 MW and 1300
ppm dissolved boron; the effect of power level and boron concentration on
solver convergence will be studied later in this section. The base configuration
uses a 56 energy group cross section library and uses the XSProc module of
the SCALE package to collapse these cross sections to 23 groups for Denovo
SPN calculations. Distinct cross sections are used for each fuel pin and for
each of 49 axial levels. An SP3 angular order (containing 2 angular moments)
is used for all calculations, along with P1 scattering. A 2 × 2 spatial mesh
per pin cell is used in the x–y plane, with a maximum axial mesh size of
2 cm, resulting in 290,156 mesh cells for the full assembly. The AMP heat
transfer problem contains 15,504 mesh cells per fuel pin (over both the fuel
and clad meshes), resulting in approximately 4.1 million total cells. A linear
continuous finite element discretization of the heat transfer problem is used.
All problems in this study are executed in parallel on 289 processing cores
on the OLCF EOS cluster, resulting in 1 fuel pin per core.

Five different solver approaches are considered. First is a damped Picard
iteration with the damping applied to the temperature component of the solu-
tion as described in Section 3. Except where otherwise noted, all calculations
use a damping factor of ω = 0.45 which appears to produce nearly optimal
convergence behavior for a wide range of problems. Within Picard iteration
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the k-eigenvalue problem is solved with a generalized Davidson eigensolver,
which has been shown to be highly efficient for solving the k-eigenvalue prob-
lem [27, 28], and the heat transfer and subchannel flow equations are solved
simultaneously using a JFNK approach. The next solver consists of a full
JFNK solver using the nonlinear function evaluation described by Eq. (13).
Recall that this selection requires performing full cross section processing at
every linear iteration. The final two solvers are modified JFNK approaches
based on the function evaluations in Section 3.2.2. The approach denoted
by MJFNK1 corresponds to the function evaluation of Eq. (26) in which
the temperature dependence of the cross sections is entirely neglected during
a nonlinear iteration. The approach denoted by MJFNK2 corresponds to
Eq. (28) in which a linear approximation to the temperature dependence of
the absorption cross section is used during each nonlinear iteration. This
linear approximation is determined by performing stand-alone XSProc cal-
culations at 600K and 1500K to compute pin-homogenized absorption cross
sections. In both modified JFNK approaches, only a single cross section
processing step is performed per nonlinear iteration.

A brief mention should be made of the memory usage of the various solu-
tion approaches. Picard iteration itself uses virtually no memory on its own
(only a single extra copy of the solution vector to determine convergence),
and therefore the memory usage is determined by the individual solvers. In
this study, the JFNK solver used by the heat transfer solver internally uses a
GMRES linear solver which required a subspace containing up to 20 vectors
containing the thermal solution. The generalized Davidson solver used in
the SPN calculations requires multiple subspaces, which combined required
the storage of up to 75 vectors of the length of the SPN solution vector.
Memory requirements for Anderson acceleration are equivalent to Picard ex-
cept that a small number of addition vectors (in this study, 2) are used by
the solver. For the JFNK-based methods, the primary memory requirement
is through the GMRES linear solver used. In this study, no restarting was
employed resulting in a subspace size of as many as 80 vectors, each having
the combined length of the thermal and SPN solutions. Note that all of the
GMRES linear solvers as well as the generalized Davidson offer the possi-
bility of using more aggressive restarting capabilities to limit the size of the
subspaces that are used, typically at a cost of performing a small number
of additional iterations to reach the same convergence criteria. In addition
to memory associated with solver subspaces, there is an additional memory
cost associated with forming the problem operators and corresponding pre-
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Figure 2: Nonlinear convergence behavior for Picard and JFNK methods.

conditioners. These costs, however, are consistent across every solver option
because consistent parameters and preconditioning options were used.

Figure 2 shows the convergence behavior for Picard iteration and each
of the JFNK variants. Picard iteration demonstrates the expected linear
convergence rate and convergence for the full JFNK is quadratic. The first
modified JFNK method follows the convergence behavior of the full JFNK for
the first few iterations before separating and ultimately converging linearly
with a rate similar to that of Picard iteration. The second modified JFNK
follows the convergence rate of full JFNK even more closely and although
it eventually deviates from quadratic convergence it does result in linear
convergence at a very rapid rate. It should be noted that the convergence
criteria used to generate this plot were several orders of magnitude tighter
than what is typically applied to such multiphysics problems. This was done
to emphasize the pertinent convergence features of each method.

The convergence behavior of Picard iteration as a function of damping
parameter at several different power levels is shown in Figure 3. These curves
have the same general shape as the corresponding plot from Ref. [25] and
consistent with the behavior observed in Refs. [4, 5, 6], all of which reported
using damping factors between 0.3 and 0.6. An interesting feature of this
curve is that the convergence behavior depends on the power level, with high
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Figure 3: Picard convergence vs. damping parameter for different power levels.

power levels requiring smaller damping factors for optimal convergence.
Table 1 provides the time required to achieve a relative convergence tol-

erance of 10−4 for each solution strategy at four different power levels. The
time required for Picard iteration to converge is approximately constant for
most power levels, showing a slight upward trend at higher power levels in-
dicative of the stronger coupling present at high power. Despite the fact that
JFNK exhibits quadratic convergence behavior, the large cost per iteration
due to performing cross section processing at every linear iteration results in
large run times that are not competitive with other approaches. The first
modified JFNK method performs very well at low power levels, significantly
reducing runtimes relative to Picard iteration. At high power levels, how-
ever, the time required for convergence greatly increases, reaching over twice
the runtime of Picard at 120% power. This behavior is easily understood by
noting that the low heat generation rate at low power results in relatively
small changes in temperature and therefore the effect of neglecting the tem-
perature dependence of cross sections is not too large, but high power levels
produce large temperature variations and a corresponding degradation due
to not capturing the effects of changes in cross sections. The second modified
JFNK approach performs very well across all power levels, resulting in the
fastest time to solution for all cases and displaying very little variation with
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Power Level
Method 60% 80% 100% 120%

Picard 1296 1150 1353 1523
JFNK 6168 5958 8908 8844

MJFNK1 734 1035 1693 3164
MJFNK2 695 985 971 961

Table 1: Solver timing in seconds as function of power level.

Boron Concentration
Method 0 ppm 600 ppm 1300 ppm 2000 ppm

Picard 1370 1604 1353 1445
JFNK 8079 9200 8908 8391

MJFNK1 2743 3858 1693 1704
MJFNK2 1325 1008 971 1002

Table 2: Solver timing in seconds as function of boron concentration.

power level from 80–100%.
Table 2 shows the time to reach convergence for each solver approach at

several different boron concentrations. The convergence behavior does not
appear to be very strongly dependent on the boron concentration, the first
three solvers produced the longest runtime at 600 ppm boron while MFJNK2
had the longest runtime at 0 ppm. For MJFNK1, there is over a factor of
two difference in the time to solution at 600 ppm versus 2000 ppm; the other
solvers do not experience such strong dependence. It should be noted that
for MJFNK2 a single linear approximation to the absorption cross section is
used for all boron concentrations, indicating a high level of robustness of the
approach to this parameter.

Table 3 shows the overall timing results for three different combinations
of cross section processing and transport energy group structures, effectively
modifying the cost of cross section processing from relatively cheap to very
expensive. When eight group cross section processing is performed, the com-
putational time for most methods is dominated by the time spent in the
thermal (and subchannel) portions of the calculation. In this case the full
JFNK approach is still slower than Picard iteration, though it is easy to en-
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XSProc Groups/SPN Groups
Method 8/8 56/23 252/23

Picard 980 1353 3868
JFNK 1685 8908 51727

MJFNK1 1070 1693 3793
MJFNK2 636 971 2013

Table 3: Solver timing in seconds for different energy group structures.

vision that improvements in preconditioning could lead to such an approach
offering an advantage relative to Picard. However, this coarse energy group
structure does not produce results with appropriate accuracy and therefore
finer energy group stuctures are needed. As the number of energy groups is
increased, the time spent in cross section processing quickly dominates the
overall runtime. This is especially dramatic in the case of 252 group cross
section processing in which the time required for the full JFNK approach is
more than an order of magnitude greater than for Picard iteration. Thus, for
the large numbers of energy groups typically required for accurate reactor
physics calculations it is apparent that näıve application of JFNK will result
in far worse behavior than Picard iteration. By appealing to modified JFNK
approaches that avoid frequent cross section processing, however, significant
reduction in computational time relative to Picard is possible, with around a
factor of two reduction evident for MJFNK2 in the 252 group XSProc case.

In order to more thoroughly assess the merits of the different solvers, we
now examine the amount of time spent in each physics component as well as
the number of times each physics component was applied. Tables 4, 5, and
6 provide this detailed information for the same three different energy group
structures; Note that solver setup, mesh transfer, and related operations are
not included in any component and therefore the sum of the time spent in
the various physics components will sum to less than the total time.

Comparing the individual columns of these tables, we can discern exactly
where the computational gains of the modified JFNK approach are realized.
In all cases, the amount of time spent in the thermal operator and cross sec-
tion processing are greatly reduced relative to Picard but the time spent in
the SPN operator is reduced only very little or possibly increased. The rea-
son for this is that Picard iteration is able to utilize a generalized Davidson
eigensolver that has been demonstrated to be highly efficient for stand-alone
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Method Total SPN Thermal XSProc

Picard 980 (11) 32 (161) 851 (302) 65 (11)
JFNK 1685 (5) 34 (203) 444 (203) 1075 (203)

MJFNK1 1070 (8) 61 (371) 763 (371) 40 (8)
MJFNK2 636 (5) 34 (208) 427 (208) 30 (5)

Table 4: Timing in seconds (operator applies) by component for 8 group XSProc, 8 group
SPN .

Method Total SPN Thermal XSProc

Picard 1353 (11) 178 (273) 832 (298) 312 (11)
JFNK 8908 (5) 160 (258) 649 (258) 7912 (258)

MJFNK1 1693 (8) 259 (434) 898 (434) 257 (7)
MJFNK2 971 (5) 137 (228) 470 (228) 171 (5)

Table 5: Timing in seconds (operator applies) by component for 56 group XSProc, 23
group SPN .

k-eigenvalue calculations. Multiphysics coupling involving radiation trans-
port solvers that do not have optimized eigensolvers or using discretizations
that do not easily lend themselves to a generalized Davidson approach would
be expected to experience more significant timing reduction in the transport
portion of the calculation.

5. Conclusions

In this study we have provided an assessment of several different non-
linear solvers for use in problems involving coupled neutronics and thermal

Method Total SPN Thermal XSProc

Picard 3868 (13) 157 (244) 939 (332) 2739 (13)
JFNK 51727 (5) 139 (228) 591 (228) 50817 (228)

MJFNK1 3793 (10) 313 (523) 1103 (523) 2049 (10)
MJFNK2 2013 (5) 133 (223) 466 (223) 1221 (5)

Table 6: Timing in seconds (operator applies) by component for 252 group XSProc, 23
group SPN .
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hydraulics. In particular, comparisons of damped Picard iteration, Ander-
son acceleration, and Jacobian-free Newton-Krylov have been performed.
Because a näıve implementation of JFNK results in performing a very large
number of cross section processing steps, two modified variants of JFNK
have been introduced which only require processing cross sections at each
nonlinear iteration. Numerical results on CASL AMA Problem 6 indicate
that:

• if on-line generation of cross sections represents a large portion of the
runtime of a calculation then a direct JFNK implementation results in
a prohibitively large number of cross section processing steps,

• approximations to the nonlinear operator that avoid cross section pro-
cessing can largely preserve the fast convergence rate of JFNK without
the overhead,

• computational savings of 1.4-2 relative to Picard iteration with Newton-
like methods are possible, and

• Newton-like methods offer robust convergence behavior that does not
depend on the selection and optimization of a damping parameter.
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