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1 Introduction and Background to Lift
Forces in Bubbly Flows

In this report, we provide the necessary background to put this work in context and for
a more detailed background, the reader is referred to CASL 2013 report ([1]).

Central constraints on the design of LWRs are thermal-structural limits, e.g., maximum
fuel pin temperature and maximum allowable working pressure in a pressure vessel. In
both of these cases, the knowledge of the spatially and temporally varying two-phase
flow is required to make accurate predictions as the distribution of both the phases have
an impact on heat extraction as well as neutron moderation.

Engineered two-phase flow systems have complex geometry and often high Reynolds
numbers which increase the computational cost of an analysis, and generally make direct
numerical simulations of the flow field impossible even on the fastest computers today.
Consequently, a number of models which seek to reduce this computational cost have
been created over the years. One of these called the two-fluid model has become the
standard in three dimensional CFD (Computational Fluid Dynamics) codes and is also
referred to as CMFD (Computational Multiphase Fluid Dynamics).

The two-fluid model splits each conserved quantity into two fields, one for each phase
that is treated as interspersed continua. Splitting one field into two requires additional
interfacial closure relationships. In the two-fluid model, the momentum flux between the
phases is governed by a number of these closure relationships. Generally, the net force
on the dispersed phase is decomposed into inertial, added mass, buoyancy, drag, lift,
and wall forces. In addition, there is a time-dependent Basset force, as well as turbulent
dispersion effects. The general form of force on a bubble can be written as [2]

ρb(
4

3
πa3)

dub
dt

= FI + FA + FL + FD + FB (1.1)

where FI is the inertial force, FA is the added mass term, FL is the lift force, FD is the
drag force, and FB is the buoyancy force or in its full form

dub
dt

=
1 + CM
γ + CM

(
∂v

∂t
+ (v · ∇)v

)
+

CL
γ + CM

(v − ub)× ω

+
1

γ + CM

3CD
8a
|v − ub|(v − ub) +

γ − 1

γ + CM
g

(1.2)

Here, ub is the bubble velocity, v is the fluid velocity, CM is the added mass coefficient,
CL is the lift coefficient, CD is the drag coefficient, γ is the ratio of densities (ρb/ρ), g
denotes gravity, and ω stands for vorticity. In general, the coefficients are not constant,
although their functional dependence has not been explicitly stated. A few effects have
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been ignored, including those due to time history, density gradients, and temperature
gradients. Equation 1.2 is not based on a unified derivation of all these forces; rather,
it is a composite of the various forces that have been found to act on the bubbles. In
the current study, we will still use this superposition principle as an overall recast of the
closure relations is not a trivial task.

One of the lesser understood momentum closures is that due to the transverse forces.
These transverse forces are very critical for LWR applications as transverse motion of
bubbles in the narrow and long flow channels between the fuel rods impacts heat transfer
and neutron moderation. A lift force found to act on dispersed particles in tube-flow was
first quantitatively described by Segré and Silberberg [3]. In their 1962 paper, they find
that a solid sphere in Poiseuille flow experiences radial forces, and that there is a stable
equilibrium radial position at approximately 0.6r/R under certain flow conditions. The
radial equilibrium position for particles in this experiment shows that there are competing
forces in the transverse direction which are of similar magnitude. Their quantitative
findings have been superseded by newer, more finely grained experimental data; however,
they gave impetus to the following decades of theoretical and experimental work.

Transverse forces are perpendicular to the relative velocity of the bubble with respect
to the fluid and are commonly decomposed into lift and wall force contributions in the
CMFD community. The lift force term is motivated by the physics, while the wall force
term is added as a correction in order to ensure that there is no gas (bubble) accumulation
very close to the wall. In practice this creates stability issues for a CMFD code as both
effects are of similar magnitude as one approaches the wall, yet have very different
dependencies on the local properties. This compartmental view of the total transverse
force is an oversimplification which ignores the interplay between the two forces and
the variation of the lift force as a function of distance from the wall. Figure 1.1 shows
how the currently implemented lift and wall forces increase in magnitude significantly
near the wall. These large values for the lift force are unphysical, and in general the
coefficients of the wall force are tweaked in order to cancel the shear lift force at the
wall. The shear lift force itself is overpredicted as one moves toward the wall, because
the assumptions that were used in its derivation become invalid. More details about
these assumptions are detailed in Section 1.1, where the theoretical work on the shear
lift force, and its limits of applicability will be discussed. In Section 1.2, the literature
related to computational simulations and experiments of bubble motion are detailed, in
order to extend the closures to include more realistic scenarios. A brief review of the
various options for lift and wall forces currently available in popular CMFD codes is
provided in Section 1.3. In Section 1.4, we summarize the closure from last year and our
new findings. Chapter 2 covers, data extraction, processing, and visualization; as well
as introduces a new model of the lift force in the presence of walls. After the model’s
description, its behavior is tested and characterized using a turbulent pipe flow profile.
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Figure 1.1: Lift/Wall forces near the wall of a bubbly pipe flow [4]

1.1 Theoretical Models of Shear Lift

Shear lift forces in general arise due to asymmetry in the flow field. Most theoretical
work on shear lift force assumes a spherical body and then attempt to tease out a shear
lift force that is valid under a certain range of flow conditions. Figure 1.2 shows a simple
shear flow about a sphere; it is the base model used for most of the theoretical work on
shear lift force. Far upstream, the liquid velocity is given by v` = U` +Gy, where vr is
the relative velocity at the center of the sphere, and G is the magnitude of the upstream
vorticity. Due to complications in adding the effect of the wall, most of the theoretical
work starts essentially with what is pictured in figure 1.2 where the effects of the wall
are ignored.

Additionally, almost all of the theoretical predictions rely on perturbation methods,
so understanding the magnitudes of dimensionless coefficients is important. The dimen-
sionless parameters discussed in this section are shown in table 1.1. Reynolds numbers
whose characteristic length is the diameter of the sphere, d, appear often, as well as
dimensionless parameters describing the ratio of uniform to shear velocity. Note that
most authors define their Reynolds numbers using diameter, but those based on radius
also exist.

A number of papers which cover analytical work on particle lift force are shown in
table 1.2. For high Re and small Sr an analytical lift force has been calculated for a
sphere and a few bodies of revolution. The rest of the analytically-oriented papers are
for low particle Reynolds number, and are based on Saffman’s work, with the exception
of the paper by Vassuer & Cox.

On the theoretical front there are essentially two streams of work on evaluating shear
lift force: one looks at a low particle Reynolds number (Rep = vr2a

ν or simply Re) flow of
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Figure 1.2: Shear Flow Around Sphere

Table 1.1: Dimensionless Parameters for Shear Lift

Name Definition

Slip Re, Particle Re Re = dvr
ν

Shear Re ReG = d(Gd)
ν

Dimensionless Shear Sr = dG
vr

Ratio of Shear Re to Slip Re ε =
√
ReG
Re

Note that Sr = ε2

2 Re
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Table 1.2: Theory-based Lift Force Literature

Name Re Sr Wall Shape/Alignment

High Re and small Sr

Auton [5] High Low No Sphere
Naciri [6] High Low No Bodies of revolution

Low Re

Saffman [7] Low High No Sphere
McLaughlin [8] Low Low-High No Sphere
McLaughlin [9] Low Low-High Yes Sphere
Cherukat & McLaughlin [10] Low Yes Sphere
Asmolov [11] Low Low-High Yes Sphere
Vasseur & Cox [12] Low Zero Yes Sphere

a simple shear around a sphere, while the other considers the inviscid limit of weak simple
shear around a sphere. Below we elaborate the work on these two different streams.

1.1.1 Lift Forces at Low Reynolds Number

1.1.1.1 Shear Lift Force

The low Reynolds number regime was initially investigated by Saffman, who found that
in the viscous limit, a simple shear flow about a sphere yields a lift force given by [7]

FL = 81 · 2µvra2G1/2/ν1/2 (1.3)

where G is the magnitude of the shear and vr is the relative velocity of the sphere.
Although Saffman was able to come up with an analytical solution to the Oseen-like
problem in a free stream, the effect of a wall remained unconsidered. Most of the additional
theoretical work done since Saffman’s paper has been for small Rep. McLaughlin [9]
has expanded on Saffman’s work by including the effect of the wall, upstream vorticity
curvature, while Asmolov [11] has included the effects of higher (but still laminar) channel
Reynolds numbers.

Shear lift forces in general depend on where the relative velocity and shear are measured;
usually the values are taken to be far upstream along a streamline that stagnates at the
front of the body. In other words the relative velocity and shear rate are given by the
far-field condition far upstream of the particle. A dimensionless shear Reynolds number
used by Saffman, McLaughlin, and Asmolov is defined as ReG = 4Ga2

ν . Here G is the
magnitude of the upstream vorticity, a is a characteristic length of the particle, and
ν is the kinematic viscosity of the continuous phase. Saffman’s work has a number of

restrictive assumptions, including Rep � 1 and ReG � 1, but also Rep � Re
1/2
G . His

work assumes a large shear rate relative to the slip velocity.
McLaughlin [9] and Asmolov [11] built on Saffman’s work by calculating the lift force

on a particle in a linear shear flow in the presence of the wall. In McLaughlin’s paper
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from 1991 [8], he decomposes the migration velocity of the spherical particle into two
contributions, one coming from unbounded shear flow and the other one due to wall
effects, vum + vwm, and the unbounded migration velocity comes from Saffman’s lift force.

The wall migration velocity is calculated for large l∗ as vwm = −0.2855aU(A/ν)1/2l
5/3
∗ ,

where l∗ is a dimensionless distance from the wall (based on the Saffman length ((ν/A)1/2).
They also relaxed the high shear assumption that Saffman’s work assumes, and in the
process adding a term, J(ε), to Saffman’s lift force equation 1.3 in order to account for
changes in the relative magnitudes of slip and shear Reynolds numbers. Two asymptotic
expansions for J(ε) exist, but in general this term has to be evaluated numerically.

1.1.1.2 Wall Force - no shear

One low Re study that looks at the effect of the wall in isolation is by Vasseur &
Cox [12]. In their paper, they consider the lateral migration of a spherical particle in
a quiescent Newtonian fluid near a vertical wall. They find that the particle always
migrates away from the wall; i.e., there is a transverse force pointing away from the wall.
It is interesting to note that under similar conditions a sphere settling in a second order
fluid (an approximation of viscoelastic effects) will experience a force pulling it towards
the wall [13].

1.1.2 Lift Forces at High Reynolds Number

1.1.2.1 Shear Lift Force

For a clean bubble whose density is much less than that of the surrounding liquid, low
Re approximations are not as applicable. Under high Re and low shear conditions, a
lift force is generated by the deformation of oncoming vorticity around a body. It will
be shown later that in this case the velocity can be written as an asymptotic series
in dimensionless shear (Sr), and that the lift force arises from how the primary flow
deforms the upstream vorticity. Figure 1.3 shows how the inviscid lift force arises through
deformation of upstream vorticity. Note that under the inviscid assumptions Lighthill &
Auton use no vorticity is generated at the surface of the body.

A number of researchers’ work, primarily by Darwin [15] and Lighthill [16], over the
course of 30 years culminated with Auton calculating the lift force on a sphere due to
weak shear flow in an inviscid fluid [5] [17]. His analysis shows that the lift force in the
inviscid limit about a sphere in a free stream has the form

FL = ρVbCL(v` − ub)× (∇× v`) (1.4)

and that the lift coefficient for a sphere is CL = 1
2 , which happens to be equal to the

added mass coefficient for a sphere. Here, Vb is the volume of the sphere and v` = U`+Gy
is the undisturbed liquid velocity far upstream of the sphere. The form of the lift force
models by Auton and Saffman are similar, except that Auton’s expression does not
depend explicitly on viscosity and is proportional to G, while Saffman’s expression for
the lift force is proportional to

√
G. This raises the question about under what conditions
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Figure 1.3: Vortex deformation by flow around body [14]

each of these correlations are applicable. This can be answered by analyzing the various
assumptions in their derivation and also by comparing to the various experimental data
at conditions where the underlying assumptions used in these derivations are not valid.

In comparison to the theoretical work done which builds on Saffman’s model, there has
been little theory-based studies or extensions for the inviscid shear lift force. Naciri [6]
extended Auton’s work by calculating the lift coefficient of several bodies of revolution.
Interestingly enough, he finds that for the bodies considered CL is found to be equal to
the added mass coefficient (for a flow aligned with the axis of revolution of the body).
We have recently derived that this result holds true even for arbitrary shaped particles
and will document this result separately. Since there is little to no theory about how the
inviscid shear lift force behaves under high shear, near the wall, or for arbitrary body
shapes, many of these questions have been answered (at least in part) by a number of
experimental and computational studies that are described in the next section.

1.2 Experimental & Computational Lift Force Literature

Most of the work presented here can be classified in two groups: the first one looks at
particle or bubble distribution in a pipe or channel, and may sometimes include coarse
trajectory information. This information is most useful for the validation of lift closure
models in two-fluid CMFD codes. However, if the data shows that there are radial
equilibrium points it can also be used as a guide to the relative magnitudes of the wall
and shear lift forces, since at these positions the effects of the wall and shear lift forces
should sum to zero. The other group focuses on calculating the lift force on a single
particle given a number of flow parameters. Section 1.2.1 will focus on the former.
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Most authors choose to represent their dimensionless lift force, CL, as the lift coefficient
that appears in Auton’s model (Eqn 1.4). Away from the wall the lift force will vary
from Auton’s model as a function of Re and Sr, as in the derivation he assumes high Re
and weak shear. This hints that the CL coefficient based on Auton’s work will require
the largest correction in areas of low Re or high Sr.

Legendre & Magnaudet [18] use numerical simulations to calculate the shear lift force
on a sphere over a wide range of Re and a few values of Sr. For Re > 5 and low to
moderate shear rates (Sr < 0.2) they present a correlation describing the lift coefficient
as purely a function of Re.

CL =
1 + 16Re−1

2(1 + 29Re−1)
(1.5)

In the limit as Re → ∞, their correlation recovers Auton’s result of CL = 1/2. In
the last few years Rastello, et al. [19] [20] have conducted experiments and calculated
bubble lift force in a solid body rotating flow. Their results line up well with those of
Legendre & Magnaudet, although they find that for smaller Re their data is not fit well
by Legendre & Magnaudet’s correlation. Rastello, et al., give a correlation for CL on a
roughly spherical bubble as

CL = 0.5 + 4

(
1− 6

5Re1/6

)
exp(−Re1/6) (1.6)

1.2.1 Effects of Shear Rate, and Deformation

A study by Tomiyama, et al. [21] found a significantly smaller value (∼0.3) for a lift
coefficient, even for roughly spherical bubbles. Their lower value for CL is most likely
attributable to proximity to the wall and higher shear rates; however, it is not accurate
far away from a wall or for lower shear values – the conditions under which the model was
derived. From this perspective, the study shows how an increased shear and proximity
to a wall will decrease the lift coefficient. Auton’s model (with a constant coefficient)
will overpredict the shear lift force as Sr becomes larger and the distance to the wall
becomes important. For large values of Sr there is no theoretical work in the inviscid
region; however, for small Re and high Sr Saffman finds that the shear lift force becomes
proportional to ω1/2, while Auton’s low Sr model is proportional to ω.

Large deformation has been found in some cases to even reverse the sign of the lift
force [19], although under other conditions it increases the lift relative to a sphere. It is
still not understood particularly well. Deformation changes the lift force in a few different
ways, most notably the fact that deformation leads to asymmetrical shape of the body
and the orientation to the flow becomes important. To understand how deformation
affects the lift force, both shape and orientation must be taken into consideration. One
application-driven concern of this phenomena is how a deformation based closure can be
implemented in a two-fluid CMFD code where an ideal closure will only depend on local
properties. Since the two-fluid model does not track phase boundaries, even if one can
calculate the deformation of bubbles accurately, the orientation of the bubble still needs
to be described in order to create a physical closure. Most likely there are one or more
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preferred or stable orientations for a given body based on local properties like Re and Sr.
If this is the case then the lift coefficient can be seen as a function of the deformation, χ,
and these local properties. Rastello, et al., created a correlation to include the effects of
deformation given by

CL = CsphericalL + 0.8(χ− 1)− 1.3
(χ− 1)3/2

1 + 0.004Re3/2
(1.7)

where χ is the bubble’s aspect ratio (1 ≤ χ ≤ 3). In these experiments with lower shear,
the lift force is actually found to increase with deformation.

1.2.2 Effects of the wall

If one looks at the effect of the wall in the absence of a primary flow, a few phenomena
give rise to a lift force away from the wall. Zeng, et al., created a number of numerical
simulations of a sphere moving in an otherwise quiescent fluid [22]. Figure 1.4 contains
plots of streamlines at high and low Re at two distances from the wall. In addition, a
recent CASL report [23] by Fang, et al., provides additional data on variation of the lift
force coefficient as a function of distance of wall in uniform shear field at Re approaching
PWR conditions. Parts (a) through (c) show a blockage type effect, where the flow is

Figure 1.4: Streamlines around sphere near wall [22]

accelerated close to the wall. In part (d) at L = 2 and high Re the blockage effect is not
as prevalent, but it is clear that the wake is asymmetric.

10
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Now in the more interesting case where the continuous fluid is moving, the added
complication of shear arises. Since G becomes very large at the wall, the assumption in
Auton’s model that Sr � 1 becomes invalid in many cases. Additionally, in pressure
driven channel flow the curvature of upstream shear relative to the radius of the bubble,
a, can not always be approximated as linear. Consequently, if Auton’s model in its base
form is to be used near the wall the lift coefficient should have a dependency on Sr, the
dimensionless shear, or a similar measure.

1.3 Current Closure Implementation in CMFD Codes

Many widely used two-fluid CMFD codes, such as Ansys’ CFX & Fluent, Star-CCM+,
and NPHASE-CMFD, implement Auton’s shear lift and Antal’s wall force model as the
two base lift forces. All allow the user to tweak the coefficients in the models, although
by default the coefficients are constants.

Some codes also include a few correlations for the model coefficients by default. For
example, Fluent includes lift coefficient, CL, models by Legendre [18], Tomiyama [21],
Mei [24], and Moraga. Moraga and Mei’s models for CL both include dependency on the
shear Reynolds number, while Tomiyama’s model is the only one to include the effect of
deformation. In addition, the Fluent code includes models that modify Antal’s wall force
closure, developed by Frank, Hosokawa, and Tomiyama.

Table 1.3 presents a few shear lift force correlations. The models created by Mei &
Clausner, Legendre & Magnaudet, and Rastello et al., all approach CL = 1/2 as Re→∞.
However, their low Re behavior is somewhat different. Rastello’s low Re data come from
a number of experiments in a solid body rotation, while Legendre & Magnaudet’s data is
from DNS simulations of simple shear around a sphere, and Mei & Klausner’s low Re
behavior is linked to McLaughlin’s [8] findings.
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1.4 Closure developed during last year

In the previous year, we have developed the following closure assuming that the lift force
goes to zero as the bubble touches the wall as there was not sufficient data (except for
couple of points from [23]).

J(Sr,Re) =
2.255

(1 + 0.2Re/Sr)3/2
(1.8)

C lowL =
6J(Sr,Re)

π2
√
ReSr

(1.9)

ChighL =
1

2

(
1 + 310/Re− 242/Re2

1 + 176/Re+ 566/Re2

)
(1.10)

CnowallL =

√
C lowL

2
+ ChighL

2
(1.11)

CL = CnowallL log2

(
E

1− E
+ 2

)−2.3
(1.12)

During the beginning of this year, we have implemented this lift force in both Star-
CCM+ as well as OpenFOAM. We still noticed the oscillations similar to that found by
Fullmer (Figure 1.1). This forced us to re-evaluate the assumption of zero lift force at
one bubble radius from the wall. In order to do that we performed several OpenFOAM
simulations of a fixed sphere with varying distance from the wall and integrated the
pressure on the sphere to extract the lift force. This data along with some new data from
ITM-DNS from Bolotnov’s group guided us to development of a new integrated lift-wall
force closure described in the next section.
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2 New Lift Force Closure

In this chapter an integrated shear lift- and wall-force closure is developed and presented.
The form of the closure is based on theoretical work by Auton, Saffman, and others,
with empirical corrections from physical experiments and computational simulations of
resolved flow over spherical bubbles. The integrated lift closure is developed in three
parts:

1. a shear-lift force closure which does not include the effects of the wall,

2. a wall-force closure, and

3. their smooth combination through a switching function

After development, the closure is compared to other models from the literature.
Practical testing of the model is done in the following Chapter, where the closure is
implemented in the OpenFOAM solver twoPhaseEulerFoam and compared to results of
bubbly flow experiments taken from the literature.

The data on which the closure rests are broadly taken from two areas: theory and
single-bubble studies. Most of the theoretical work in deriving lift and wall forces
uses perturbation theory heavily. The perturbation parameters are usually the particle
Reynolds number, a dimensionless shear rate, or some dimensionless measure of distance
from the wall. As a consequence, the results from this theoretical work are only valid
for very small (or large) values of these parameters. This leaves a large hole in the
middle of the parametric space, which needs to be filled in with data from experiments or
computational studies of the forces on a single bubble. Single bubble studies quantitatively
describe the forces on a bubble or particle under a range of different flow conditions, e.g.,
by varying Reynolds number, dimensionless shear, distance to wall, or bubble deformation.
These studies are often physical experiments, where the flow properties and movement of
bubbles are tracked optically using high speed cameras. Other single-bubble studies are
computational in nature. Here the flow around a spherical bubble is calculated and the
resultant net force on the bubble is found.

2.1 Experimental Data Sources and Processing

Single-bubble experiments and computational simulations have been taken from the
following papers.

• Numerical and experimental investigation of the lift force on single bubbles [25]
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Table 2.1: Dimensionless parameters

Name and definition Description

Re = dvr
ν Particle reynolds number

Sr = dG
vr

Dimensionless shear

E = d
2L Dimensionless distance from wall

CL = FL
ρπ

6
d3vrG

= FL
ρπ

6
ν2Re2Sr

Auton lift coefficient

CLD = FL
ρπ

8
d2v2r

= FL
ρπ

8
ν2Re2

Drag law type lift coefficient

• ITM/DNS database of drag, lift and wall effects, including the effects of void
fractions [23]

• Drag and lift forces on a spherical particle moving on a wall in a shear flow at finite
Re [26]

• The lift force on a spherical bubble in a viscous linear shear flow [18]

• Drag and lift forces on clean spherical and ellipsoidal bubbles in a solid-body
rotating flow [19]

• Drag and lift forces on bubbles in a rotating flow [27]

In addition, we have created our own single-bubble simulations using the OpenFOAM
solver simpleFoam.

This data has been read in through various python scripts which keep track of the
different dimensional and non-dimensional parameters used in each of the references.
We have also collected a lot of data from other references not listed here but were not
able to use it as they did not have all the necessary parameters to translate into a
standard set of non-dimensional parameters. The dimensional parameters that are used
in the work here are listed in table 2.1 and we have introduced a new parameter E that
makes the distance from the wall non-dimensional. We have chosen this form as it would
reach 1 as the bubble touches the wall and goes to 0 as the bubble is far away from
the wall. For our purposes (with no deformation, boiling or other considerations), the
four non-dimensional parameters that describe the lift force data are: Re, Sr,E, andCL.
The relevant dimensional parameters are described in figure 2.1. The python scripts
read the data from the above cited papers and transform them to be described in this
dimensionless group.
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Figure 2.1: Sketch of the system along with the various dimensional parameters for
relevance
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2.2 Data Visualization

We present the data extracted above in few different ways to understand the behavior
the lift force as a function of the these four different non-dimensional numbers.

In figure 2.2, we plot CL as a function of independent non-dimensional variables
E,Sr, andRe. The data in these plots does not follow any particular trend.
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Dijkhuizen et al [25]
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Lee and Balachandar [26]

Legendre and Magnaudet [18]

Rastello et al [19]

Van Nierop et al [27]

Zeng et al [22]

Figure 2.2: Plot of data points showing CL over the independent variables

Now that we have the data, we can also look at scatter plots by projecting the data
onto two variables. For e.g., E andSr are plotted in figure 2.3.

At a glance, the above data is very difficult to visualize and work with. We have
normalized the data in various ways and also looked at correlation between CL and
various combinations of the variables. This gave us some insight into how to collapse
this data and that procedure is described in the next section.
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Figure 2.3: Plot of data points showing distribution of Sr and E
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2.3 Constructing Correlations for Lift

As a starting point, we take the following closures that have good limiting behavior under
certain constraints:

• Drag and lift forces on clean spherical and ellipsoidal bubbles in a solid-body
rotating flow [19]

• The lift force on a spherical bubble in a viscous linear shear flow [18]

• Migration and deformation of bubbles rising in a wall-bounded shear flow at finite
Reynolds number[28]

• Shear lift force on spherical bubbles[24]

These closures along with the experimental data are plotted in figures 2.4 and 2.5. We
have divided this into two different Re regions as the variation in CL is quite dramatic
at low Re but asymptotically reaches 0.5 for large Re. In addition, we color the symbols
with E so that one can visualize the scatter due to different E. As you can see existing
closures do not capture the effect of all the different parameters and are good over certain
range. For example, Rastello’s model is good at moderate to large Re and away from
the wall but very poor at very low Re.
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Figure 2.4: Lift coefficient over Re > 10 with models
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With the above closures as the starting point, we wanted to capture all the corners
of the 4-dimensional map asymptotically. Based on existing closures, we could capture
the behavior of CL versus Sr and Re. So we went ahead and introduced a form that
captures the behavior of CL versus E by looking at the correlation of different functional
forms of E and picked several forms that give high correlation. Out of all the 8 different
versions we have tried, below we present the correlation that matches the data very well
in a least-square sense. The new DRP lift closure is also plotted in figures 2.4 and 2.5.
The terms in the correlation that do not include the distance to the wall are based on
Legendre & Magnaudet’s model, with the addition of two additional parameters in the
ChighL term. The closure for CnowallL , which does not include any dependence on the wall,
was described in more detail in the previous CASL report [1], and is found to match
experimental and theoretical results closely.

J(Sr,Re) =
2.255

(1 + 0.2Re/Sr)3/2
(2.1)

C lowL =
6J(Sr,Re)

π2
√
ReSr

(2.2)

ChighL =
1

2

(
1 + 310/Re− 242/Re2

1 + 176/Re+ 566/Re2

)
(2.3)

CnowallL =

√
C lowL

2
+ ChighL

2
(2.4)
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Figure 2.5: Lift coefficient over Re < 10 with models

2.4 Combining the shear-lift model with wall force

Now that a model for the shear induced lift force has been selected, the remaining
tasks in creating a unified transverse force are to first create a wall model, and finally
choose a smoothing function to switch between the shear- and wall-force contributions.
Mathematically, this can be written as

CCombiLD = ((1− α)CnowallL

4

3
Sr) + (αCWall

LD n) (2.5)

where Sr is the vector dimensionless shear rate, and n is the wall normal. The shear-lift
term contains the factors 4

3Sr which arise due to the conversion to the drag-law type
coefficient CLD. The function α = α(Sr,E) has a range between zero and one, and allows
for the smooth transition between shear lift and and wall effects.

The simplest model which achieved very low MSE was a parametric model of the form
CWall
LD = C0 and α(Sr,E) = EC1 , where Ci are constants. The calculated coefficients

are shown in table 2.2. The wall coefficient is calculated to be approximately 1/2 or
the added mass coefficient of a sphere. This result is also derived in Lamb’s book on
hydrodynamics [29]. However, the data used in this regression is sourced from cases with
high particle Reynolds numbers (Re > 100), and Lamb’s results are based on inviscid
theory. So this static wall coefficient is really only accurate for moderate to high Reynolds
number. A more complicated and comprehensive wall model could be sourced from Antal
[30] or Frank [31].
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Table 2.2: Model Coefficients

Name and definition Description

CWall
LD = C0 = 0.50± 0.01 Wall coefficient

C1 = 4.9± 0.1 Coefficient found in α(E)

α(E) = E4.9 Switching function

The form for the α function as EC1 was chosen, because it performed similarly or
better than more complicated models like EC2+C3Sr. Using this form for α and plugging
in the coefficients found in Table 2.2 the combined lift-wall coefficient can be written as

CCombiLD = ((1− E4.9)CnowallL

4

3
Sr) + (E4.9 1

2
n) (2.6)

The output from the CCombiLD model is plotted against its training data in Figure 2.6; it
displays uniformly acceptable error, although its performance is best when E < 0.8.
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Figure 2.6: Total Lift for Single-Bubble Computational Studies and Proposed Model
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The shear and wall lift forces are used in the code twoPhaseEulerFoam after being
cast in their drag forms. This is necessary for numerical stability for regions where Sr
approaches zero.

2.5 Applying the Lift Closure to Turbulent Pipe Flow

Now that we have a new closure for lift that captures the existing experimental and
computational DNS data quite well, we want to test it out for a turbulent pipe flow.
Before one can test it out in an actual CMFD model of two-phase turbulent flow, we
have chosen the standard approximation of the 1/7th formula for the velocity profile in a
turbulent pipe flow to get the qualitative behavior of the current closure in comparison
to a few existing closures.

Figure 2.7 shows the relative forces of five different lift-force closures with particle
Reynolds number set to 100, a channel diameter of 5.715 cm, and a bubble diameter of 3
mm. From the center of the channel (r/R = 0) to r/R = 0.5 all yield a force within a
few percent of each other. It is not until r/R = 0.7 (see Fig. 2.8) that the differences
become noticeable, and until r/R > 0.9 when the wall correction changes the sign of the
lift-wall combination models. Since the wall correction is a function of E, the absolute
distance to the wall where the combined model becomes zero is dependent on bubble
diameter; smaller bubbles will cross zero force nearer to the wall than larger bubbles.
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Figure 2.7: Lift force comparison between different closures in a turbulent pipe flow
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2.6 Model Implementation in OpenFOAM

The CFD code OpenFOAM contains a transient solver of the two-fluid model equations
called twoPhaseEulerFoam. The combined lift-wall force model given by Equation 2.6
has been implemented as optional interfacial forces in the solver. Using this code a
number of cases have been run and analyzed using various lift and turbulence models.
The boundary conditions are based on the bubbly flow experiments by Wang et al.[32].
As twoPhaseEulerFoam is a transient solver, all of the results have been averaged over a
sufficiently long period of time.

Figure 2.9 shows the void fraction at a specific height above inlet for cases with different
lift and turbulence models. With the exception of these models the cases are identical.
The models used in each case are given in Table 2.3. Similar to the results found by
plugging the models into a simple turbulent profile, the void fraction is found to be
similar for all models near the center of the channel, while results diverge close to the
wall.

A better view of void fraction in the near-wall region can be seen in Figure 2.6. The
cases with no lift yield a flat profile across the channel, while the cases using Legendre &
Magnaudet’s shear lift cause bubbles to accumulate on the wall. Using the combined
lift-wall model yields a void-fraction peak in same radial location as the corresponding
experiment by Wang et al, although the heavy shear in the turbulent case causes the lift
component to be larger, and as a consequence the peak is more sharply defined. This
new formulation is found to more closely predict the physics found in actual bubbly flow
experiments, while simultaneously removing instabilities due to the mismatch of lift and
wall forces.

Table 2.3: Case List

Case Name Lift Model Wall Model Turbulence Model

legendre antal Legendre Antal Laminar

dprCombi turb DPR - Combi. None (built-in to lift) k − ε

nolift None None None

dprCombi DPR - Combi. None (built-in to lift) Laminar

nolift turb None None k − ε
legendre Legendre None None
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Figure 2.9: Various Lift Models - Void Fraction over Radial Distance in Concurrent
Upflow

26

CASL-U-2014-0170-000



0.70 0.75 0.80 0.85 0.90 0.95 1.00

r/R

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

V
oi

d
F

ra
ct

io
n

Casename, Y

legendre antal, 0.8398

dprCombi turb, 0.8398

nolift, 0.8398

dprCombi, 0.8398

nolift turb, 0.8398

legendre, 0.8398

Figure 2.10: Various Lift Models - Void Fraction over Radial Distance in Concurrent
Upflow, Near-Wall Region

27

CASL-U-2014-0170-000



2.7 Conclusions

The shear lift coefficient developed previously and given in this paper by CnowallL , has
been extended and worked into a new model which includes wall effects. This new model
CCombiLD smoothly switches between shear-lift and wall force components, in doing so it
reduces instabilities produced by competing lift and wall forces.

The combined lift-wall model’s implementation in OpenFOAM also underscores the
importance of the drag and turbulence model on the overall results of void fraction
distribution. This is because the shear lift force model depends essentially linearly on the
dimensionless shear rate Sr and relative velocity vr, while the wall model is proportional
to the square of the relative velocity. In order to get accurate predictions these models
must also be correct.

The proposed model shows good results for small, roughly spherical bubbles. However,
for different shapes and orientations it needs to be modified. There are a few correlations
by Tomiyama [21] and Rastello [19] that include some dependency on deformation of the
bubble, but they’re not sufficient for all flow conditions. There is also little theoretical
work that evaluates the lift coefficients for different shapes and orientations.

2.8 Future Work

The correlation developed here is only the initial formulation and additional work is
needed to put this on a strong theoretical footing and also include additional effects
encountered in a PWR. Additional work in validating this model, and in testing other
similar formulations against experiments is still necessary. These next steps include a
closer look at drag and turbulence models, as these models strongly influence the resultant
flow properties, particularly when lift models are included. Their dependence on void
fraction and bubble swarming needs to be more closely understood.

Another development path for a combined lift- and wall-force closure is to start with
a more fully developed wall force model, as the one proposed in this paper is based on
high Re experiemnts. This model could then be combined with the shear lift force using
a function similar to α(E) which switches between the shear and wall model. Bubble
deformation has a strong effect on shear lift, and can even switch the sign of the force.
As such deformation is another important avenue to explore in creating a integrated
lift-wall closure which is robust and leads to physically accurate predictions.
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