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Abstract. Anderson(m) is a method for acceleration of fixed point iteration which stores m + 1 prior
evaluations of the fixed point map and computes the new iteration as a linear combination of those evalu-
ations. Anderson(0) is fixed point iteration. In this paper we show that Anderson(m) is locally r-linearly
convergent if the fixed point map is a contraction and the coefficients in the linear combination remain
bounded. We prove q-linear convergence of the residuals for linear problems for Anderson(1) without the
assumption of boundedness of the coefficients. We observe that the optimization problem for the coefficients
can be formulated and solved in non-standard ways and report on numerical experiments which illustrate
the ideas.
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1. Introduction. Anderson acceleration (also known as Anderson mixing) [1], is essen-
tially the same as Pulay mixing (also known as Direct Inversion on the Iterative Subspace, or
DIIS) [22,28–30,32] and the nonlinear GMRES method [4,23,25,34]. The method has been
widely used to accelerate the SCF iteration in electronic structure computations. Recent
papers [27, 30, 31, 33] show that the method is related to multisecant quasi-Newton method
or, in the case of linear problems, GMRES. None of these results lead to a convergence proof,
even in the linear case, unless the available storage is large enough to allow GMRES to take
a number of iterations equal to the dimension of the problem. Anderson acceleration does
not require the computation or approximation of Jacobians or Jacobian-vector products, and
this can be an advantage over Newton-like methods.

Anderson acceleration is a method for solving fixed point problems

u = G(u),(1.1)

where u ∈ RN and G : RN → RN . In this paper we prove that Anderson iteration converges
when G is a contraction, which implies that the conventional fixed point iteration

uk+1 = G(uk)(1.2)

also converges. In the linear case we show that the convergence rate is no worse that fixed
point iteration. In the nonlinear case we we show that, in a certain sense, the convergence
speed can be made as close to the speed of fixed point iteration as one likes, provided the
initial iterate is sufficiently near a solution and the coefficients {αkj} (defined below) in the
iteration remain bounded.
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2 Toth, Kelley

The Anderson iteration maintains a history of residuals

F (u) = G(u)− u

of depth at most m + 1, where m is an algorithmic parameter. When m is important, we
will call the iteration Anderson(m). Anderson(0) is fixed point iteration by definition.

A formal algorithmic description is

anderson(u0, G,m)

u1 = G(u0); F0 = G(u0)− u0
for k = 1, . . . do
mk = min(m, k)
Fk = G(uk)− uk
Minimize ‖∑mk

j=0 α
k
jFk−mk+j‖ subject to∑mk

j=0 α
k
j = 1.

uk+1 = (1− βk)
∑mk
j=0 α

k
juk−mk+j + βk

∑mk
j=0 α

k
jG(uk−mk+j)

end for

One could use any norm in the minimization step, as we will see § 2. Typically one
uses the `2 norm, so the minimization problem can be formulated as a linear least squares
problem [33] and solved easily. In this approach we solve the unconstrained problem

min ‖F (uk)−
mk∑
j=1

αkj (F (uk−mk+j)− F (uk))‖2,(1.3)

for {αkj}kj=1. Then we recover αk0 by

αk0 = 1−
mk∑
j=1

αkj .

This formulation of the linear least squares problem is not optimal for implementation, a
point we discuss in more detail in § 3. Our analysis uses (1.3) because it explicitly displays
the coefficients {αkj}.

If one uses the `1 or `∞ norms, the optimization problem can be expressed as a linear
program [13], for which there are many efficient solvers.

The mixing parameters {βk} are generally determined heuristically. For this discussion
we will set βk ≡ 1. If G is linear, one can show that uk+1 is a linear combination of prior
residuals. This implies [33] that uk+1 = G(uGMRES

k ) for k ≤ m, if I − G is nonsingular,
as long as the linear residuals are strictly decreasing. In particular, if m > N , G is linear,
I −G is nonsingular, and the residuals strictly decrease, then the iteration will converge to
the solution. However, even in the linear case [27], the Anderson iterations can stagnate at
an incorrect result. In the nonlinear case [12, 30] one can show that, for m ≤ N , Anderson
iteration is a multisecant method, but there is no convergence theory for such methods.
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In most applications m is small. m = 1 or m = 2 is common for large electronic structure
computations [2]. In these cases (large N and small m) there are no convergence results even
in the linear case.

In this paper we prove three convergence results for Anderson acceleration when applied
to contractive mappings. We prove that the residuals converge q-linearly for linear problems
in § 2.1 and, in § 2.3, under certain conditions when m = 1. In the general nonlinear
case we prove local r-linear convergence in § 2.2 under the assumption that the coefficients
{αkj} remain bounded. All our results remain valid in an infinite-dimensional Banach space
setting, provided one can solve the optimization problem for the coefficients.

2. Convergence. In this section we prove three convergence theorems. In the linear
case the convergence of the residuals is q-linear. Recall that a sequence {wk} converges
q-linearly with q-factor c ∈ [0, 1) to w∗ if

‖wk+1 − w∗‖ ≤ c‖wk − w∗‖

for all k ≥ 0. In the nonlinear case the convergence of the residuals is r-linear. This means
that there is ĉ ∈ (0, 1) and M > 0 such that

‖wk − w∗‖ ≤Mĉk‖w0 − w∗‖.

In both cases, the convergence of uk to the solution is r-linear.
Finally, in Theorem 2.4 we prove q-linear convergence of the Anderson(1) residuals to

zero when the optimization is done in the `2 norm. Note that, [9,16], if the residuals, either
linear or nonlinear, converge to q-linearly to zero, then the errors converge q-linearly to zero
in the norm ‖ · ‖∗, which is defined by

‖w‖∗ = ‖F ′(u∗)w‖.

All of the proofs depend on the fact that if {αj}mkj=0 is the solution of the least squares
problem at iteration k, then by definition

‖
mk∑
j=0

αjF (uk−mk+j)‖ ≤ ‖F (uk)‖.(2.1)

2.1. Linear Problems. In this section M is a linear operator with ‖M‖ = c < 1. We
consider the linear fixed-point problem

u = G(u) ≡Mu+ b.

The residual in this case is

F (u) = G(u)− u = b− (I −M)u.

Theorem 2.1. If ‖M‖ = c < 1, then the Anderson iteration converges to u∗ =
(I −M)−1b and the residuals converge q-linearly to zero with q-factor c.
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Proof. Since
∑
αj = 1, the new residual is

F (uk+1) = b− (I −M)uk+1 =
∑mk
j=0 αj [b− (I −M)(b+Muk−mk+j)]

=
∑mk
j=0 αjM [b− (I −M)uk−mk+j] = M

∑mk
j=0 αjF (uk−mk+j)

Hence, by (2.1)

‖F (uk+1)‖ ≤ c‖F (uk)‖,

as asserted.
If we set e = u − u∗, then F (u) = −(I − M)e. So q-linear convergence of residuals

implies that

(1− c)‖ek‖ ≤ ‖F (uk)‖ ≤ ck‖F (u0)‖ ≤ ck(1 + c)‖e0‖

and hence

‖ek‖ ≤
(

1 + c

1− c

)
ck‖e0‖.

which is r-linear convergence with r-factor c.

2.2. Nonlinear Problems and Local r-linear Convergence. In this section we
prove a local r-linear convergence result. Our result applies to any iteration of the form

uk+1 =
mk∑
j=0

αkjG(uk−mk+j),(2.2)

for a fixed m and mk = min(m, k) if the coefficients αkj satisfy Assumption 2.1.
Assumption 2.1.
1. ‖∑mk

j=0 αjF (uk−mk+j)‖ ≤ ‖F (uk)‖ (which is (2.1)) holds,
2.
∑mk
j=0 αj = 1, and

3. There is Mα such that for all k ≥ 0
∑mk
j=1 |αj| ≤Mα.

The first two parts of Assumption 2.1 are trivially satisfied by Anderson acceleration.
The boundedness requirement in the third part would follow, for example, from uniform
well-conditioning of the `2 nonlinear least squares problem (1.3), which, as [33] observes, is
not guaranteed. In fact, as we show by example in § 3, the least squares problem can become
highly ill-conditioned while the coefficients still remain bounded. We have not seen a case in
our testing where the coefficients become large, but we are not able to prove that they remain
bounded, hence the assumption. A method to modify mk in response to ill-conditioning was
proposed in [33]. We propose to address the boundedness of the coefficients directly.

One can modify Anderson acceleration to enforce boundedness of the coefficients by, for
example,

• restarting the iteration when the coefficients exceed a threshold,
• imposing a bound constraint on the linear least squares problem and solving that

problem with the method of [6], or
• minimizing in `1 or `∞, adding the bound as a constraint, and formulating the result-

ing problem as a linear program.
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The first of these is by far the simpler and, based on our experience, is unlikely to change
the iteration at all.

The assumptions we make on the nonlinearity G and the solution u∗, Assumption 2.2
implies the usual standard assumptions [10,16,26] for local convergence of Newton’s method.
As is standard we will let F ′ denote the Jacobian of F and e = u− u∗.

Assumption 2.2.
• There is u∗ ∈ RN such that F (u∗) = G(u∗)− u∗ = 0.
• G is Lipschitz continuously differentiable in the ball B(ρ̂) = {u | ‖e‖ ≤ ρ̂} for some
ρ̂ > 0.
• There is c ∈ (0, 1) such that for all u, v ∈ B(ρ̂), ‖G(u)−G(v)‖ ≤ c‖u− v‖.
The last of these assumptions implies that ‖G′(u)‖ ≤ c < 1 for all u ∈ B(ρ̂), and hence

F ′(u∗) is nonsingular. We will let G∗ = G′(u∗). We will need a special case of a result
(Lemma 4.3.1) from [16]. We will denote the Lipschitz constant of F ′ in B(ρ) by γ.

Lemma 2.2. For ρ ≤ ρ̂ sufficiently small and all u ∈ B(ρ),

‖F (u)− F ′(u∗)e‖ ≤ γ

2
‖e‖2(2.3)

and
‖e‖(1− c) ≤ ‖F (u)‖ ≤ (1 + c)‖e‖.(2.4)

Theorem 2.3. Let Assumption 2.2 hold and let c < ĉ < 1. Then if u0 is sufficiently
close to u∗, the Anderson iteration converges to u∗ r-linearly with r-factor no greater than
ĉ. In fact

‖F (uk)‖ ≤ ĉk‖F (u0)‖(2.5)

and

‖ek‖ ≤
(1 + c)

1− c
ĉk‖e0‖.(2.6)

Proof. We let u0 ∈ B(ρ) and assume that ρ ≤ ρ̂, where ρ̂ is from the statement of
Lemma 2.2. We will prove (2.5). (2.6) will follow from (2.5) and Lemma 2.2.

Reduce ρ if needed so that ρ < 2(1− c)/γ and(
c
ĉ

+
(
Mαγρ
2(1−c)

)
ĉ−m−1

)
(
1− γρ

2(1−c)

) ≤ 1.(2.7)

Now reduce ‖e0‖ further so that(
Mα(c+ γρ/2)

1− c

)
ĉ−m‖F (u0)‖ ≤

(
Mα(1 + c)(c+ γρ/2)

1− c

)
ĉ−m‖e0‖ ≤ ρ.(2.8)

We will proceed by induction. Assume that for all 0 ≤ k ≤ K that

‖F (uk)‖ ≤ ĉk‖F (u0)‖,(2.9)
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which clearly holds for K = 0.
Equations (2.8) and (2.9) imply that ‖ek‖ ≤ ρ for 1 ≤ k ≤ K. Hence, by (2.3)

F (uk) = F ′(u∗)ek + ∆k

where,

‖∆k‖ ≤
γ

2
‖ek‖2.(2.10)

This implies that
G(uk) = u∗ +G∗ek + ∆k.(2.11)

By (2.11) and the fact that
∑
αKj = 1,

uK+1 = u∗ +
∑mK
j=0 α

K
j (G∗eK−mK+j + ∆K−mK+j)

= u∗ +
∑mK
j=0(α

K
j G

∗eK−mK+j) + ∆̄K

(2.12)

where

∆̄K =
mK∑
j=0

αKj ∆K−mK+j.

Our next task is to estimate ∆̄K . (2.10) and (2.12) imply that

‖∆̄K‖ =
mK∑
j=0

|αKj |γ‖eK−mK+j‖2/2.(2.13)

Lemma 2.2, the induction hypothesis, and the fact that

K −mK + j = K −min(m,K) + j ≥ K −m,

imply that

‖eK−mK+j‖2 ≤ ‖eK−mK+j‖
(

1
1−c

)
‖F (uK−mK+j)‖ ≤

(
ρ

1−c

)
‖F (uK−mK+j)‖

≤
(

ρ
1−c

)
ĉ(K−mK+j)‖F (u0)‖ ≤

(
ρ

1−c

)
ĉK−m‖F (u0)‖.

(2.14)

So, since
∑ |αKj | ≤Mα, we have

‖∆̄K‖ ≤
(
Mαγρ

2(1− c)

)
ĉK−m‖F (u0)‖ ≤

(
Mαγρ

2(1− c)

)
ĉ−m‖F (u0)‖.(2.15)

Write (2.12) as

eK+1 =
mK∑
j=0

(αKj G
∗eK−mK+j) + ∆̄K .

The induction hypothesis implies that, for 0 ≤ j ≤ mk,

‖eK−mK+j‖ ≤
(

1
1−c

)
‖F (uK−mK+j)‖

≤
(

1
1−c

)
ĉK−mK+j‖F (u0)‖ ≤

(
1

1−c

)
ĉ−m‖F (u0)‖,
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and hence

‖
mK∑
j=0

(αKj G
∗eK−mK+j)‖ ≤

(
Mαc

1− c

)
ĉ−m‖F (u0)‖.(2.16)

Combining (2.11), (2.15), and (2.16) yields

‖eK+1‖ ≤ ‖F (u0)‖
(
Mα(c+ γρ/2)

1− c

)
ĉ−m ≤ ρ,

by (2.8).
Since ‖eK+1‖ ≤ ρ ≤ ρ̂, we may apply (2.11) with k = K + 1 to obtain,

F (uK+1) = (G∗ − I)eK+1 + ∆K+1

where, by Lemma 2.2,

‖∆K+1‖ ≤
γ

2
‖eK+1‖2.

So, since G∗ and G∗ − I commute,

F (uK+1) = G∗
∑mK
j=0(α

K
j (G∗ − I)eK−mK+j) + (G∗ − I)∆̄K + ∆K+1

= G∗
∑mK
j=0(α

K
j F (uK−mK+j)− αKj ∆K−mK+j) + (G∗ − I)∆̄K + ∆K+1

= G∗
∑mK
j=0(α

K
j F (uK−mK+j))− ∆̄K + ∆K+1.

(2.17)

Combine (2.17) with (2.4) to obtain,

‖∆K+1‖ ≤
(

γ

2(1− c)

)
ρ‖F (uK+1)‖(2.18)

The induction hypothesis, (2.1), (2.15), (2.17), and (2.18) imply that

‖F (uK+1)‖
(
1− γρ

2(1−c)

)
≤ ‖F (uK+1)‖ − ‖∆K+1‖

≤ c‖∑mK
j=0 α

K
j F (uK−mK+j)‖+ ‖∆̄K‖

≤ c‖F (uK)‖+ ‖∆̄K‖

=
(
c
ĉ

+
(
Mαγρ
2(1−c)

)
ĉ−m−1

)
ĉK+1‖F (u0)‖

(2.19)

Therefore

‖F (uK+1)‖ ≤

(
c
ĉ

+
(
Mαγρ
2(1−c)

)
ĉ−m−1

)
(
1− γρ

2(1−c)

) ĉK+1‖F (u0)‖ ≤ ĉK+1‖F (u0)‖

since (
c
ĉ

+
(
Mαγρ
2(1−c)

)
ĉ−m−1

)
(
1− γρ

2(1−c)

) ≤ 1,

by (2.7). This completes the proof.
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8 Toth, Kelley

2.3. Convergence for Anderson(1). In this section we prove convergence for Ander-
son(1) with the `2 norm. We will assume that Assumption 2.2 holds. We show directly that
the coefficients are bounded if c is sufficiently small and prove q-linear convergence of the
residuals in that case. The analysis here is quite different from the Anderson(m) case in
the previous section, depending heavily on both m = 1 and the fact that the optimization
problem for the coefficients is a linear least squares problem.

We will express the iteration as

uk+1 = (1− αk)G(uk) + αkG(uk−1),(2.20)

and note that

αk =
F (uk)

T (F (uk)− F (uk−1))

‖F (uk)− F (uk−1)‖2
(2.21)

Theorem 2.4. Assume that Assumption 2.2 holds, that u0 ∈ B(ρ̂), and that c is small
enough so that

ĉ ≡ 3c− c2

1− c
< 1.(2.22)

Then the Anderson(1) residuals with `2 optimization residuals converge q-linearly with q-
factor ĉ.

Proof. We induct on k. Assume that

‖F (uk)‖ ≤ ĉ‖F (uk−1)‖(2.23)

for all 0 ≤ k ≤ K. (2.23) is trivially true for K = 1, since Anderson(0) is successive
substitution and c < ĉ.

Now define
Ak = G(uk+1)−G((1− αk)uk + αkuk−1)

and
Bk = G((1− αk)uk + αkuk−1)− uk+1.

Clearly
F (uK+1) = G(uK+1)− uK+1 = AK +BK .(2.24)

We will obtain an estimate of F (uK+1) by estimating AK and BK separately.
By definition of the Anderson iteration (2.20) and contractivity of G

‖AK‖ = ‖G(uK+1)−G((1− αK)uK + αKuK−1)‖

≤ c‖uK+1 − (1− αK)uK − αKuK−1‖

= c‖(1− αK)(G(uK)− uK)− αK(G(uK−1)− uK−1)‖

= c‖(1− αK)F (uK)− αKF (uK−1)‖ ≤ c‖F (uK)‖,

(2.25)

where the last inequality follows from the optimality property of the coefficients.
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Now let
δK = uK−1 − uK .

To estimate BK we note that

BK = G((1− αK)uK + αKuK−1)− (1− αK)G(uK)− αKG(uK−1)

= G(uK + αKδK)−G(uK) + αK(G(uK)−G(uK−1))

=
∫ 1
0 G

′(uK + tαKδK)αKδK dt− αK
∫ 1
0 G

′(uK + tδK)δK dt

= αK
∫ 1
0

[
G′(uK + tαKδK)−G′(uK + tδK)

]
δK dt.

(2.26)

This leads to the estimate

‖BK‖ ≤ |αK |‖δK‖
∫ 1
0 ‖G′(uK + tαKδK)−G′(uK + tδK)‖ dt ≤ 2c|αK |‖δK‖(2.27)

The next step is to estimate αK . The difference in residuals is

F (uK)− F (uK−1) = G(uK)−G(uK−1) + δK = δK −
∫ 1
0 G

′(uK−1 − tδK)δK dt

= (I −
∫ 1
0 G

′(uK−1 − tδK) dt)δK

Since ‖G′(u)‖ ≤ c for all u ∈ B(ρ) we have

‖δK‖ ≤ ‖F (uK)− F (uK−1)‖/(1− c).(2.28)

Combine (2.28) and (2.21) to obtain

|αK |‖δK‖ ≤
‖F (uK)‖

‖F (uK)− F (uK−1)‖
‖δK‖ ≤

‖F (uK)‖
1− c

.(2.29)

Now, we combine (2.25), (2.27), and (2.29) to obtain

‖F (uK+1)‖
‖F (uK)‖

≤ c+
2c

1− c
= ĉ.(2.30)

Our assumption that ĉ < 1 completes the proof.
Note that q-linear convergence of the residuals implies that the coefficients are bounded

because

|αK | ≤ ‖F (uK)‖
‖F (uK)− F (uK−1)‖

≤ ĉ‖F (uK−1)‖
‖F (uK−1)‖(1− ĉ)

≤ ĉ

1− ĉ
.

For sufficiently good initial data, one can use the proof of Theorem 2.4 to prove q-linear
convergence for all c ∈ [0, 1).

Corollary 2.5. Assume that Assumption 2.2 holds and that ĉ ∈ (c, 1). Then if ‖e0‖
is sufficiently small, the Anderson(1) residuals with `2 optimization converge q-linearly with
q-factor no larger than ĉ. Moreover

lim sup
k→∞

‖F (uk+1)‖
‖F (uk)‖

≤ c.(2.31)
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10 Toth, Kelley

Proof. We use the standard assumptions, (2.21), and (2.26) to estimate BK . Note that
1 + γ is an upper bound for the Lipschitz constant of G′. Equations (2.21) and (2.26) imply
that

‖BK‖ ≤
(1 + γ)|αK ||1− αK |‖δK‖2

2
≤ (1 + γ)‖F (uK)‖‖F (uK−1)‖‖δK‖2

2‖F (uK)− F (uK−1)‖2
.

Equation (2.28) implies that

‖F (uK)− F (uK−1)‖
‖δK‖

≥ (1− c),

and hence

‖BK‖ ≤
(1 + γ)‖F (uK−1)‖‖F (uK)‖

2(1− c)2
.

Therefore, we can use (2.24) and (2.25) to obtain

‖F (uK+1)‖
‖F (uK)‖

≤ c+
(1 + γ)‖F (uK−1)‖

2(1− c)2
.(2.32)

The right side of (2.32) is ≤ ĉ for all K ≥ 1 if ‖e0‖ is sufficiently small. In that case, the
residuals converge to zero, and (2.31) follows.

3. Numerical Experiments. In this section we report on some simple numerical ex-
periments. We implement Anderson acceleration using the approach from [12,21,33], which
is equivalent to (1.3), but organizes the computation to make the coefficient matrix easy to
update by adding a single column and deleting another. This makes it possible to use fast
methods to update the QR factorization [14] to solve the sequence of linear least squares
problems if one does the optimization in the `2 norm. According to [33] and our own expe-
rience, this form has modestly better conditioning properties.

For the kth iteration we solve

min
θ∈Rmk

‖F (uk)−
mk−1∑
j=0

θj(F (uj+1)− F (uj))‖(3.1)

to obtain a vector θk ∈ Rmk . Then the next iteration is

uk+1 = G(uk)−
mk−1∑
j=0

θkj (G(uj+1)−G(uj)).(3.2)

In terms of (1.3),

α0 = θ0, αj = θj − θj−1 for 1 ≤ j ≤ mk − 1 and αmk = 1− θmk−1.

CASL-U-2014-0226-000
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3.1. Conditioning. Suppose G : R2 → R2,

G(u) =

(
g(u1, u2)
g(u1, u2)

)

and

u0 =

(
w
w

)
.

Then Anderson(2), using the `2 norm may fail because the linear least squares problem will
be rank-deficient. One could, of course, take the minimum norm solution with no ill effects.

Now consider a perturbation of such a problem. The linear least squares problem will
be ill-conditioned, but the size of the coefficients for Anderson(2) may remain bounded. We
illustrate this with a simple example.

Let

G(u) =

(
cos((u1 + u2)/2)
cos((u1 + u2)/2) + 10−8 sin(u21)

)

We applied Anderson acceleration to this problem with an initial iterate u = (1, 1)T . In
Table 3.1 we tabulate the residual norms, the condition number of the coefficient matrix
for the optimization problem for the coefficients, and the `1 norm of the coefficients. We
terminate the iteration when the residual norm falls below 10−10. As one can see, the
condition number becomes very large with little effect on the coefficient norm. We will see
a similar effect for the more interesting problem in § 3.2.

Table 3.1
Iteration statistics for Anderson(2)

k Residual norm Condition number Coefficient norm
0 6.501e-01
1 4.487e-01 1.000e+00 1.000e+00
2 2.615e-02 2.016e+10 4.617e+00
3 7.254e-02 1.378e+09 2.157e+00
4 1.531e-04 3.613e+10 1.184e+00
5 1.185e-05 2.549e+11 1.000e+00
6 1.825e-08 3.677e+10 1.002e+00
7 1.048e-13 1.574e+11 1.092e+00

3.2. Using the `1 and `∞ norms. In this section we compare the use of Anderson
acceleration with the `1, `2, and `∞ norms with a fixed point iteration (Anderson(0)) and
a Newton-Krylov iteration. We use the nsoli.m Matlab code from [16, 17] for the Newton-
Krylov code and solve the linear programs for the `1 and `∞ optimization problems for the
coefficients with the CVX Matlab software [7, 15]. We used the SeDuMi solver and set the
precision in cvx to high. The `1 and `∞ optimizations are significantly more costly than
the `2 optimization. While the iteration with the `1 optimization seems to perform well, one
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would need a special-purpose linear programming code tuned for this application to make
that approach practical.

As an example we take the composite midpoint rule discretization of the Chandrasekhar
H-equation [3, 5]

H(µ) = G(H) ≡
(

1− ω

2

∫ 1

0

µ

µ+ ν
H(ν) dν.

)−1
(3.3)

In (3.3) ω ∈ [0, 1] is a parameter and one seeks a solution H∗ ∈ C[0, 1]. The solution
H∗(µ) ≥ 1 satisfies

‖H∗‖∞ ≤ min

(
3,

1√
1− ω

)
,

and is an increasing function of µ and ω. This fact and a monoticity argument can be used
to show that if ε > 0 is sufficiently small and u and v are in B(ε)

‖G(u)−G(v)‖ ≤ (1 + ε)2‖H∗‖2∞ω
2

‖u− v‖,

for any Lp norm. This inequality also carries over to the discrete problems. In particular, G
is a local contraction for ω = .5, which is one of our test cases.

It is known [18,24], both for the continuous problem and its midpoint rule discretization,
that, if ω < 1,

ρ(G′(H∗)) ≤ 1−
√

1− ω < 1,

where ρ denotes spectral radius. Hence the local convergence theory in § 2.2 and 2.3 applies
for some choice of norm. It is also known that if the initial iterate is nonnegative and
component-wise smaller than H, then fixed point iteration will converge with a q-factor no
larger than ω. For ω = 1 the nonlinear equation is singular, but both fixed point iteration
and Newton-GMRES will converge from our choice of initial iterate [18–20].

For integral equations problems such as this one, where preconditioning is not necessary,
Newton-GMRES will be faster than a conventional approach in which one constructs, stores,
and factors a Jacobian matrix. Newton-GMRES will converge to truncation error at a cost
proportional to the square of the size of the spatial grid, whereas the cost of even one
factorization will be cubic. However, for this problem G′ is a compact operator, which
implies that the coefficient matrix for the optimization problem for the coefficients could
become ill-conditioned as the iteration converges, as we see in the tables below.

We report on computational results with an N = 500 point composite midpoint rule
discretization. We compare Anderson(m) for m = 0, . . . , 6 and the `1, `2, and `∞ norms
with a Newton-GMRES iteration. The Newton-GMRES iteration used a reduction factor
of .1 for the linear residual with each Newton step. Other approaches to the linear solver,
such as the one from [11] performed similarly. We terminate the nonlinear iterations when
‖F (uk)‖2/‖F (u0)‖2 ≤ 10−8.

We consider values of ω = .5, .99, 1.0, with the last value being one for which F ′ is
singular at the solution and ρ(G(H∗)) = 1. When ω = 1,Newton’s method will be linearly
convergent [8, 20]. One can see this in Table 3.2 by the increase in the number of function
calls for ω = 1. The initial iteration was (1, 1, . . . , 1)T for all cases. This is a good initial
iterate for ω = .5 and a marginal one for the other two cases.
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In the tables we use function calls as a measure of cost. This is an imperfect metric and
the comparisons should be viewed as qualitative. The cost of the `1 and `∞ optimizations are
more than solving the `2 least squares problem, and we have ignored the orthogonalization
cost within Newton-GMRES. For large problems where the evaluation of G is costly, the
cost of the linear program solve should be relatively low, especially for small value of m.

We begin with the base cases of Newton-GMRES and fixed point iteration. In Table 3.2
we tabulate, for each value of ω, the number of calls to the function needed for termination.
Note that each Newton-GMRES iteration needs one call for the residual evaluation and one
for each of the finite-difference Jacobian-vector products.

Table 3.2
Function Evaluations for Newton-GMRES and Fixed Point Iteration

Newton-GMRES Fixed Point
ω .5 .99 1.0 .5 .99 1.0
F s 12 18 49 11 75 23970

In Table 3.3 we tabulate ρ(G′(H∗)) and the `p norms of G′(H∗) as functions of ω and p.
These are the computed values using the output of the Newton-GMRES iteration. Because
of the singularity of F ′(H∗), the iteration for ω = 1 has roughly four figures of accuracy [8],
which accounts for the difference in the spectral radius for ω = 1 from the true value of 1.0.

Table 3.3
Norms and Spectral Radius of Jacobians

ω ‖G′(H∗)‖1 ‖G′(H∗)‖2 ‖G′(H∗)‖∞ ρ(G′(H∗))
0.5 3.422e-01 1.994e-01 2.712e-01 1.528e-01
0.99 1.714e+00 1.182e+00 2.095e+00 7.959e-01
1.00 2.137e+00 1.541e+00 2.926e+00 9.999e-01

In Table 3.4, we tabulate ω, m, the cost in function evaluations for convergence, the
maximum (over the entire iteration) κmax of the condition number of the matrix in the
optimization problem, and Smax, the maximum of the sum of the absolute values of the
coefficients {αkj}. In all cases Anderson iteration is competitive with Newton-GMRES, and
is significantly better for all values of m when the optimization uses the `1 and `2 norms.
Note that κmax becomes very large as m increases, but that the performance of the algorithm
does not degrade in a significant way with increasing m. In fact, for this problem m = 3 (`1)
and m = 4 (`2) have the fewest calls to the fixed point map, even though κmax is quite large.

4. Conclusions. We prove local r-linear convergence of Anderson iteration when ap-
plied to contractive mappings under the assumption that the coefficients are bounded. We
prove q-linear convergence of the residuals for linear problems. For the special case of An-
derson(1), we prove q-linear convergence of the residuals. Numerical results illustrate the
ideas.
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Table 3.4
Anderson Iteration for H-equation

`1 Optimization `2 Optimization `∞ Optimization
ω m F s κmax Smax F s κmax Smax F s κmax Smax
0.50 1 7 1.00e+00 1.4 7 1.00e+00 1.4 7 1.00e+00 1.5
0.99 1 11 1.00e+00 3.5 11 1.00e+00 4.0 10 1.00e+00 10.1
1.00 1 21 1.00e+00 3.0 21 1.00e+00 3.0 19 1.00e+00 4.8
0.50 2 6 1.36e+03 1.4 6 2.90e+03 1.4 6 2.24e+04 1.4
0.99 2 10 1.19e+04 5.2 10 9.81e+03 5.4 10 4.34e+02 5.9
1.00 2 18 1.02e+05 43.0 16 2.90e+03 14.3 34 5.90e+05 70.0
0.50 3 6 7.86e+05 1.4 6 6.19e+05 1.4 6 5.91e+05 1.4
0.99 3 10 6.51e+05 5.2 10 2.17e+06 5.4 11 1.69e+06 5.9
1.00 3 22 1.10e+08 18.4 17 2.99e+06 23.4 51 9.55e+07 66.7
0.50 4 7 2.64e+09 1.5 6 9.63e+08 1.4 6 9.61e+08 1.4
0.99 4 11 1.85e+09 5.2 11 6.39e+08 5.4 11 1.61e+09 5.9
1.00 4 23 2.32e+08 12.7 21 6.25e+08 6.6 35 1.38e+09 49.0
0.50 5 7 1.80e+13 1.4 6 2.46e+10 1.4 6 2.48e+10 1.4
0.99 5 11 3.07e+10 5.2 12 1.64e+11 5.4 13 3.27e+11 5.9
1.00 5 21 2.56e+09 21.8 27 1.06e+10 14.8 32 4.30e+09 190.8
0.50 6 7 2.65e+14 1.4 6 2.46e+10 1.4 6 2.48e+10 1.4
0.99 6 12 4.63e+11 5.2 12 1.49e+12 5.4 12 2.27e+11 5.9
1.00 6 31 2.61e+10 45.8 35 1.44e+11 180.5 29 3.51e+10 225.7
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