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Abstract

In this paper we show new solver strategies for the multigroup SPN equa-
tions for nuclear reactor analysis. By forming the complete matrix over
space, moments, and energy, a robust set of solution strategies may be ap-
plied. Power iteration, shifted power iteration, Rayleigh quotient iteration,
Arnoldi’s method, and a generalized Davidson method, each using algebraic
and physics-based multigrid preconditioners, have been compared on the
C5G7 MOX test problem as well as an operational pressurized water reactor
model. Our results show that the most efficient approach is the general-
ized Davidson method, which is 30–40 times faster than traditional power
iteration and 6–10 times faster than Arnoldi’s method.

Keywords: radiation transport, nuclear criticality, eigenvalue solvers

1. Introduction

Determining the power distribution across an entire reactor core is a crit-
ical component of the design and analysis of nuclear reactors. The power
distribution can be determined by solving the Boltzmann neutron transport
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equation; however, solution of consistent angular discretizations (such as dis-
crete ordinates or spherical harmonics) for an entire reactor core in three
dimensions can require substantional computational resources unlikely to be
available to many analysts [1]. Thus, low-order approximations to the trans-
port equation that can be solved at a sigificantly reduced computational cost
are of great interest. Traditionally, this role has been filled by coarse mesh
diffusion equations; however, such methods may be inadequate for advanced
reactor designs [2]. The simplified PN (SPN) approximation offers the possi-
bility of improved accuracy relative to diffusion by capturing some transport
effects while still preserving many of the features that make diffusion solvers
attractive. The SPN approximation is a three-dimensional extension of the
plane-geometry PN equations. It was originally proposed by Gelbard [3], who
applied heuristic arguments to justify the approximation. Since that time,
both asymptotic [4–6] and variational [7] analyses have verified Gelbard’s
approach.

Because solvers for the SPN equations have generally been used as re-
placements for ordinary diffusion solvers, code is commonly already available
for the solution of diffusion equations. SPN solvers have commonly been cast
in such a way as to leverage existing diffusion machinery by iterating over
the SPN moment equations (each of which appears identical to a standard
diffusion equation). In this study we pursue an alternate strategy, treating
the SPN equations as a single monolithic problem by constructing the full
matrices involved. By explicitly storing these matrices, state of the art linear
algebraic methods can be applied.

The rest of this paper is organized as follows. In § 2, a heuristic derivation
of the SPN equations from the 1-D PN equations is presented. In § 3, a
complete description of a finite volume discretization is introduced for SPN
orders up to seven, including discussion of the treatment of both vacuum and
reflecting boundaries. In § 4, a brief overview of a wide range of eigenvalue
solvers that can potentially be used to solve the k-eigenvalue form of the SPN
equations is given. Numerical results for several different eigenvalue solver
and preconditioning approaches on two large test problems are presented in
§ 5, and some concluding remarks are given in § 6.

2. SPN Equations

As mentioned in § 1, the SPN method was originally based on heuristic
arguments; however, several studies have performed both asymptotic and
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variational analyses that have confirmed and justified the original ad hoc
approximations. In this paper, we shall apply the heuristic approximation.
The reader is directed towards Refs. [4–6] for more details on asymptotic
derivations of the equations and Ref. [7] for a variational analysis of the
SPN equations. In addition, an excellent survey of the various formulations
and derivations of the SPN and related equations can be found in Ref. [8].
We begin our formulation of the SPN equations by forming the planar, 1-D
Legendre (PN) equations in § 2.1. These equations will be used to motivate
the SPN equations that are given in § 2.2.

2.1. PN Equations

We start with the steady-state, one-dimensional, eigenvalue-form of the
linear Boltzmann transport equation,

µ
∂ψg(x, µ)

∂x
+ σg(x)ψg(x, µ) =

Ng∑
g′=1

∫
4π

σgg
′

s (x, Ω̂ · Ω̂′)ψg′(x,Ω′) dΩ′

+
1

k

Ng∑
g′=1

χg

4π

∫
4π

νσg
′

f (x)ψg
′
(x,Ω′) dΩ′ , (1)

on the domain x ∈ [x`, xh], with boundary conditions,

ψg(x, µin) = ψgb(x, µin) , x ∈ {x`, xh} (2)

where µin indicates the set of direction cosines that are incident on a given
boundary. In Eqs. (1) and (2), energy is discretized using the multigroup
approximation [9] where g = 1, . . . , Ng is the energy group index. The quan-
tities of interest are

ψg(x, µ) angular flux for group g in particles·cm−2·sr−1,
ψbb(x, µin) incident angular flux for group g on problem

boundary,
σg(x) total interaction cross section for group g in cm−1,

σgg
′

s (x, Ω̂ · Ω̂′) scattering cross section through angle µ0 = Ω̂ · Ω̂′
from group g′ → g,

χg the resulting fission spectrum in group g, and

νσg
′

f (x) the number of neutrons produced per fission mul-
tiplied by the fission cross section for group g′ in
cm−1 .
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The eigenvalue k is the ratio of neutron populations in subsequent fission
generations; a value of unity defines a self-sustaining nuclear reaction. The
work performed in this paper deals exclusively with the eigenvalue form of
the Boltzmann equation. However, many of the methods presented in this
paper can be applied equally well to the fixed-source SPN equations that
result from the linear Boltzmann equation with an external source defined
on the right-hand side. The interested reader is directed to Appendix A for
the SPN equations defined with an external source.

The derivation of the PN equations begins by expanding the angular flux
and scattering cross section in Legendre polynomials (this requires spherical
harmonics in two and three dimensions and non-Cartesian geometry):

ψ(µ) =
N∑
n=0

2n+ 1

4π
φnPn(µ) , (3)

σs(µ0) =
N∑
m=0

2m+ 1

4π
σsmPm(µ0) , (4)

where µ0 = Ω̂ · Ω̂′. The addition theorem of spherical harmonics, simplified
to 1-D planar geometry with azimuthal symmetry, is used in Eq. (4) to define
the Legendre moment,

Pl(Ω̂ · Ω̂′) = Pl(µ0) = Pl(µ)Pl(µ
′) . (5)

The PN equations are obtained by inserting the expansions in Eqs. (3) and
(4) into Eq. (1), multiplying by Pm(µ), and integrating over µ. The recursion
relation of Legendre polynomials is used to remove µPn from the derivative
term. Equation (5) is used in the scattering expansion to remove the µ0

dependence. Orthogonality is used to remove all the remaining Legendre
polynomials. The resulting system of equations is

∂

∂x

[ n

2n+ 1
φgn−1 +

n+ 1

2n+ 1
φgn+1

]
+

Ng∑
g′=1

(σgδgg′ − σgg
′

sn )φg
′

n

=
1

k

Ng∑
g′=1

χgνσg
′

f φ
g′

n δn0 , n = 0, 1, 2, . . . , N . (6)

Equation (6) defines a system of N + 1 moment-equations with N + 2
unknowns per energy group and spatial unknown; thus a closure relationship
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is required to achieve a well-posed system. For steady-state problems, the
common, and most straightforward, method for closing the equations is to set
the highest order moment to zero, φN+1 = 0. This closure can be problematic
in time-dependent applications of the PN equations, potentially resulting
in non-physical wave propagation speeds. In reactor applications, we are
generally concerned with either eigenvalue or quasi-static applications of this
model, and the simple closure is sufficient.

In this work, we consider both vacuum and reflective boundaries. For
vacuum boundaries, we will employ the Marshak boundary conditions. The
Marshak conditions approximately satisfy Eq. (2) at the boundary and are
consistent with the PN approximation. The generalized Marshak boundary
condition is

2π

∫
µin

Pi(µ)ψ(µ) dµ = 0 , i = 1, 3, 5, . . . , N . (7)

Expanding ψ using Eq. (3) gives

2π

∫
µin

Pi(µ)
N∑
n=0

2n+ 1

4π
φnPn(µ) dµ = 0 , i = 1, 3, 5, . . . , N . (8)

This form of the Marshak boundary conditions assumes no incoming cur-
rent, which is appropriate for the eigenvalue problems we are studying here.
Equation (8) yields (N + 1)/2 fully coupled equations at each boundary and
therefore fully closes the N + 1 PN equations given in Eq. (6).

As an example, we consider the P3 equations. The Marshak conditions
on the low boundary, i.e. x = x`, are derived using

2π

∫ 1

0

P1(µ)
3∑

n=0

2n+ 1

4π
φnPn(µ) dµ = 0 ,

2π

∫ 1

0

P3(µ)
3∑

n=0

2n+ 1

4π
φnPn(µ) dµ = 0 .

(9)

Thus the P3 Marshak boundary conditions are

1

2
φ0 + φ1 +

5

8
φ2 = 0 ,

−1

8
φ0 +

5

8
φ2 + φ3 = 0 .

(10)
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As stated above, all of the moments are coupled in the boundary conditions.
Reflecting boundary conditions are more straightforward. The only con-

dition that preserves symmetry in this case is to set all the odd moments to
zero:

φi = 0 , i = 1, 3, 5, . . . , N . (11)

This treatment also yields (N + 1)/2 equations on each boundary and effec-
tively closes the system. We note that both of these boundary treatments
contain asymmetric components when N is even. Thus, we only consider
odd sets of PN (SPN) equations.

2.2. SPN Equations

We now turn our attention to the derivation of the SPN equations. As
mentioned previously, we will apply a heuristic approximation in this study;
Refs. [4–7] give details on asymptotic derivations and a variational analysis
of the equations.

In the notation that follows, we will employ the Einstein summation con-
vention in which identical indices are implicitly summed over the range of 1
to 3,

aibi =
3∑
i=1

aibi = a · b . (12)

To form the SPN equations, the following substitutions are made in Eq. (6):

• ∂
∂x
→ ∂

∂xi
,

• convert odd moments to φn,i, and

• use odd-order equations to remove odd moments from the even-order
equations.

For boundary conditions, a similar process holds except that ± ∂
∂x
→ ni

∂
∂xi

,
where n̂ = nii +njj +nkk is the outward normal at a boundary surface, and

µ → |Ω̂ · n̂|. Applying this procedure to Eq. (6), the following system of
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moment-equations is derived

∂

∂xi

[ n

2n+ 1
φgn−1,i +

n+ 1

2n+ 1
φgn+1,i

]
+

Ng∑
g′=1

(σgδgg′ − σgg
′

sn )φg
′

n =

1

k

Ng∑
g′=1

χgνσg
′

f φ
g′

n δn0 , n = 0, 2, 4, . . . , N , (13)

∂

∂xi

[ n

2n+ 1
φgn−1 +

n+ 1

2n+ 1
φgn+1

]
+

Ng∑
g′=1

(σgδgg′ − σgg
′

sn )φg
′

n,i = 0 ,

n = 1, 3, 5, . . . , N . (14)

Equations (13) and (14) are more easily expressed in operator notation
over groups by defining

Φn =
(
φ0
n φ1

n . . . φGn
)T

, (15)

Φn,i =
(
φ0
n,i φ1

n,i . . . φGn,i
)T

, (16)

and

Σn =



(σ0 − σ00
sn) −σ01

sn . . . −σ0G
sn

−σ10
sn (σ1 − σ11

sn) . . . −σ1G
sn

...
...

. . .
...

−σG0
sn −σG1

sn . . . (σG − σGGsn )


. (17)

Similarly, the fission matrix, F, is defined

F =



χ0νσ0
f χ0νσ1

f . . . χ0νσGf

χ1νσ0
f χ1νσ1

f . . . χ1νσGf

...
...

. . .
...

χGνσ0
f χGνσ1

f . . . χGνσGf


. (18)

Thus, at any given spatial location, Φn and Φn,i are length Ng vectors, and Σ
and F are (Ng ×Ng) matrices. Using Eq. (14) to solve for the odd moments
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gives

Φn,i = −Σ−1n
∂

∂xi

[ n

2n+ 1
Φn−1 +

n+ 1

2n+ 1
Φn+1

]
. (19)

Substituting Eq. (19) into Eq. (13) yields

− ∂

∂xi

[
n

2n+ 1
(Σ−1n−1)

∂

∂xi

( n− 1

2n− 1
Φn−2 +

n

2n− 1
Φn

)
+

n+ 1

2n+ 1
(Σ−1n+1)

∂

∂xi

( n+ 1

2n+ 3
Φn +

n+ 2

2n+ 3
Φn+2

)]
+

ΣnΦn =
1

k
FΦnδn0 , n = 0, 2, . . . , N . (20)

Equation (20) defines the (N + 1)/2 SPN equations. These are a series of
elliptic, second-order equations, each of which has a diffusion-like form.

Using Eq. (20), the four SP7 equations are

−∇ · 1

3
Σ−11 ∇(Φ0 + 2Φ2) + Σ0Φ0 =

1

k
FΦ0 ,

−∇ ·
[ 2

15
Σ−11 ∇(Φ0 + 2Φ2) +

3

35
Σ−13 ∇(3Φ2 + 4Φ4)

]
+ Σ2Φ2 = 0 ,

−∇ ·
[ 4

63
Σ−13 ∇(3Φ2 + 4Φ4) +

5

99
Σ−15 ∇(5Φ4 + 6Φ6)

]
+ Σ4Φ4 = 0 ,

−∇ ·
[ 6

143
Σ−15 ∇(5Φ4 + 6Φ6) +

7

195
Σ−17 ∇(7Φ6)

]
+ Σ6Φ6 = 0 .

(21)

A quick view of these equations reveals that certain linear combinations of
moments appear together in the derivative terms. Performing the follow-
ing variable transformation allows the gradient-term to operate on a single
unknown in each moment equation,

U1 = Φ0 + 2Φ2 ,

U2 = 3Φ2 + 4Φ4 ,

U3 = 5Φ4 + 6Φ6 ,

U4 = 7Φ6 .

(22)
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The inverse of this system is

Φ0 = U1 −
2

3
U2 +

8

15
U3 −

16

35
U4 ,

Φ2 =
1

3
U2 −

4

15
U3 +

8

35
U4 ,

Φ4 =
1

5
U3 −

6

35
U4 ,

Φ6 =
1

7
U4 .

(23)

Substituting Eqs. (22) and (23) into Eq. (21) and successively removing the
lower order gradient terms from each equation results in the following concise
form

−∇ · Dn∇Un +
4∑

m=1

AnmUm =
1

k

4∑
m=1

FnmUm , n = 1, 2, 3, 4 . (24)

The effective diffusion coefficients in the multigroup problem are the (Ng ×
Ng) matrices defined by

D1 =
1

3
Σ−11 , D2 =

1

7
Σ−13 , D3 =

1

11
Σ−15 , D4 =

1

15
Σ−17 . (25)
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Defining the coefficient matrices

c(1) =


1 −2

3
8
15

−16
35

−2
3

4
9
−16

45
32
105

8
15
−16

45
64
225

−128
525

−16
35

32
105
−128

525
256
1225

 , (26)

c(2) =


0 0 0 0

0 5
9
−4

9
8
24

0 −4
9

16
45
− 32

105

0 32
105
− 32

105
64
245

 , (27)

c(3) =


0 0 0 0

0 0 0 0

0 0 9
25
− 54

175

0 0 − 45
175

324
1225

 , (28)

c(4) =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 13
49

 , (29)

we can write the blocks of the matrices A and F as

Anm =
4∑
i=1

c(i)
nmΣi , (30)

and
Fnm = c(1)

nmF . (31)

Equation (24) is the form of the SPN equations that we will use in the
remainder of this paper. Setting Φ2 = Φ4 = Φ6 = 0 gives the SP1 equation,

−∇ · 1

3
Σ−11 ∇Φ0 + Σ0Φ0 =

1

k
FΦ0 . (32)

This equation is identical in form to the standard multigroup diffusion equa-
tion; the only difference between the SP1 and multigroup diffusion equations
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is that the off-diagonal terms in Σ1 are retained in the SP1 equation. Equiv-
alently, the SP3 equations are obtained by setting Φ4 = Φ6 = 0, and the SP5

equations result from setting Φ6 = 0.
The P7 Marshak boundary conditions are obtained by carrying out the

integrations in Eq. (8) to produce

1

2
Φ0 + Φ1 +

5

8
Φ2 −

3

16
Φ4 +

13

128
Φ6 = 0 ,

−1

8
Φ0 +

5

8
Φ2 + Φ3 +

81

128
Φ4 −

13

64
Φ6 = 0 ,

1

16
Φ0 −

25

128
Φ2 +

81

128
Φ4 + Φ5 +

325

512
Φ6 = 0 ,

− 5

128
Φ0 +

7

64
Φ2 −

105

512
Φ4 +

325

512
Φ6 + Φ7 = 0 .

(33)

These equations are converted into SPN boundary conditions using the same
procedure that was used to form Eq. (24). Eq. (19) is used to remove the
odd moments ({Φ1,i,Φ3,i,Φ5,i,Φ7,i}) from Eq. (33), and the SPN boundary
approximation,

± ∂

∂x
→ n̂ · ∇ ,

is used for the gradient terms. Finally, Eqs. (22) and (23) are used to trans-
form the resulting system into {U1 . . .U4}. Application of these steps gives
the SPN Marshak boundary conditions,

−n̂ · Jn +
4∑

m=1

BnmUm = 0 . (34)

The moments are coupled on the boundary through the B matrix, each block
of which is an (Ng ×Ng) multiple of the identity matrix, i.e.,

Bnm = bnmINg , (35)

where bnm is the (n,m) entry in the coefficient matrix

b =


1
2
−1

8
1
16

− 5
128

−1
8

7
24
− 41

384
1
16

1
16
− 41

384
407
1920

− 233
2560

− 5
128

1
16
− 233

2560
3023
17920

 . (36)
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The current, Jn, is a length Ng vector; it is related to the flux by Fick’s Law,

Jn = −Dn∇Un . (37)

The PN boundary conditions for reflecting surfaces are given in Eq. (11).
Applying the SPN approximation to these boundary conditions yields

∇Un = 0 , n = 1, 2, 3, 4 . (38)

This implies that n̂ · J = 0 on the boundaries.
In summary, the SPN equations are given in Eq. (24) and yield (N + 1)/2

second-order equations. The SPN Marshak boundary conditions are given
in Eq. (34) for vacuum boundaries. Equation (38) gives reflecting boundary
conditions. Each boundary condition yields (N + 1)/2 first-order (Robin)
conditions that closes the system of SPN equations. Although not relevant
to the discussion of eigenvalue problems, a discussion of isotropic source
boundary conditions is provided in Appendix A.

We note that this is not the only formation of the SPN equations. Ref-
erences [4], [10], and [11] derive a canonical form of the SPN equations that
is based on the equivalence of the one-dimensional, planar PN and SN+1

(discrete ordinates) equations. Starting from the SN+1 equations and using
even-odd parity expansions of the angular flux, a system of SPN equations is
derived that is algebraically identical to the SPN equations presented here.
The principal advantage of such an approach is that the fluxes are uncoupled
at the boundary.

3. Discrete SPN Equations

Here we describe the formulation of the discrete SPN operator using finite-
volume discretization on regular, Cartesian grids. Because there is nothing
particularly novel about the finite-volume approach employed here, this ma-
terial is presented briefly with the goal of understanding the nature and
structure of the resulting discrete SPN operator that is required to describe
the solution methods in § 4.

The general form for the SPN equations is given in Eq. (24); Marshak
boundary conditions are defined in Eq. (34); reflecting boundary conditions
are given by Eq. (38). Applying Fick’s Law [Eq. (37)] to Eq. (24) gives

∇ · Jn +
4∑

m=1

AnmUm = Qn , n = 1, 2, 3, 4 . (39)

12
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Because there is no spatial coupling in the fission source, we have represented
it in the term Qn. The finite-volume discretization is defined on a 3-D,
orthogonal Cartesian grid with logical dimensions 0 < i, j, k < Ni,j,k, where
Ni,j,k is the number of computational cells in i, j, or k, respectively. The
finite-volume form of the equations is derived by integrating Eq. (39) over a
cell volume and applying the divergence theorem. These operations give the
following balance equation in cell (i, j, k),

(Jn,i+1/2 − Jn,i−1/2)∆j∆k + (Jn,j+1/2 − Jn,j−1/2)∆i∆k+

(Jn,k+1/2 − Jn,k−1/2)∆i∆j +
4∑

m=1

Anm,ijkUm,ijkVijk = Qn,ijkVijk . (40)

Here, we have written the face-edge currents with suppressed subscripts as
follows:

Jn,i±1/2 jk → Jn,i±1/2 , Jn,i j±1/2 k → Jn,j±1/2 , Jn,ij k±1/2 → Jn,k±1/2 .

The same convention will be applied to all face-edge quantities.
Applying second-order differencing to Fick’s Law, Eq. (37), in each direc-

tion for the plus/minus faces of the computational cell gives

Jn,l+1/2 = − 1

∆l+1/2

Dn,l+1/2(Un,l+1 − Un,l) ,

Jn,l−1/2 = − 1

∆l−1/2
Dn,l−1/2(Un,l − Un,l−1) ,

(41)

for l = i, j, k, and ∆l±1/2 = 1
2
(∆l + ∆l±1). We note here that the true,

physical current is the first moment of the angular flux and is not equivalent
to Jn. Using Eq. (41), the balance equation (40) can be written in terms of the
unknowns U; however, the cell-edge diffusion coefficients must be defined. To
make the method consistent, the moments and their first derivatives must be
continuous at inter-cell boundaries. This condition implies that the effective
currents, J, are continuous across cell boundaries, i.e.,

J−n,l+1/2 = J+n,l+1/2 ,

−2Dn,l

Un,l+1/2 − Un,l

∆l

= −2Dn,l+1

Un,l+1 − Un,l+1/2

∆l+1

,
(42)
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and
J−n,l−1/2 = J+n,l−1/2 ,

−2Dn,l−1
Un,l−1/2 − Un,l−1

∆l−1
= −2Dn,l

Un,l − Un,l−1/2

∆l

.
(43)

Solving for the (Ng ×Ng) cell-edge unknowns, {Un,l±1/2}, substituting these
values back into J+n,l±1/2, and setting the resulting equation equal to Eq. (41)
gives the cell-edge diffusion coefficients that preserve continuity of current at
the cell interfaces,

Dn,l+1/2 = 2∆l+1/2Dn,l+1(∆lDn,l+1 + ∆l+1Dn,l)
−1Dn,l ,

Dn,l−1/2 = 2∆l−1/2Dn,l(∆lDn,l−1 + ∆l−1Dn,l)
−1Dn,l−1 .

(44)

Inserting Eq. (44) into Eq. (41) gives the internal cell-edge currents that can
be used in in Eq. (40). Grouping unknowns yields

− C+
n,iUn,i+1 jk − C−n,iUn,i−1 jk − C+

n,jUn,i j+1 k − C−n,jUn,i j−1 k−

C+
n,kUn,ij k+1 − C−n,kUn,ij k−1 +

4∑
m=1

[
Anm,ijk + (C+

m,i + C−m,i

+ C+
m,j + C−m,j + C+

m,k + C−m,k)δnm
]
Um,ijk = Qn,ijk ,

n = 1, 2, 3, 4 , (45)

where

C+
n,l =

2

∆l

Dn,l+1(∆lDn,l+1 + ∆l+1Dn,l)
−1Dn,l ,

C−n,l =
2

∆l

Dn,l(∆lDn,l−1 + ∆l−1Dn,l)
−1Dn,l−1 .

(46)

The fission source is

Qn,ijk =
1

k

4∑
m=1

Fnm,ijkUm,ijk . (47)

The Marshak boundary conditions given in Eq. (34) couple all of the mo-
ments at the problem boundaries. In finite-volume discretizations of standard
diffusion operators, these unknowns can be algebraically eliminated from the
system of equations. However, the moment coupling in SPN prevents this
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simplification and imposes the introduction of cell-edge unknowns. The cell-
edge currents that are inserted into Eq. (40) on low and high boundaries
are

Jn,1/2 = − 2

∆1

Dn,1(Un,1 − Un,1/2) , (48)

Jn,L+1/2 = − 2

∆L

Dn,L(Un,L+1/2 − Un,L) . (49)

In order to close the system of equations for the added unknowns {Un,1/2,Un,L},
we use Eq. (34) with cell-edge currents defined by Eqs. (48) and (49) on the
low and high boundaries, respectively. The resulting equations close the
system

4∑
m=1

(
Bnm +

2

∆1

Dn,1δnm

)
Um,1/2 −

2

∆1

Dn,1Un,1 = 0 , (50)

4∑
m=1

(
Bnm +

2

∆L

Dn,Lδnm

)
Um,L+1/2 −

2

∆L

Dn,LUn,L = 0 . (51)

Likewise, reflecting boundary conditions are imposed with

Jn,1/2 = 0 , (52)

Jn,L+1/2 = 0 , (53)

which get used in Eq. (40) at reflecting boundaries. No additional unknowns
are required at reflecting boundary faces.

To review, Eqs. (48) and (49) define the cell-edge currents that are in-
serted into the balance equation (40) on low and high boundary faces that
have vacuum boundaries. Equations (50) and (51) provide the additional
equations needed to close the system for the added unknowns on those faces.
On reflecting faces no additional equations are required and the cell-edge net
currents are zero.

Equation (45), with the appropriate boundary conditions defined by Eqs.
(48)–(51), can be written in operator form as a generalized eigenvalue prob-
lem,

Au =
1

k
Bu . (54)

Here, we explicitly form the matrices A and B. Forming the matrix once at
the beginning of a solve reduces the runtime because the (Ng × Ng) matrix
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inverses required to calculate the C±n need only be performed once per solve.
Furthermore, any branching logic needed at problem boundaries is codified
in the matrix. Explicit formulation of the matrix system also enables the
use of algebraic preconditioners, the benefits of which are shown in § 5.
Finally, adjoint calculations are easily defined by simply taking the transpose
of formulated matrices. These advantages are at least partially offset by the
increased memory requirements associated with storing the matrix.

The choice to construct the SPN equations as a monolithic system should
be contrasted with approaches generally taken in the literature, which in-
volve solving the SPN equations using a Gauss–Seidel approach over the
moment equations and possibly energy [7, 10, 12]. Indeed, it was observed in
Ref. [12] through both Fourier analysis and numerical experiments that the
monoenergetic form of the SPN equations considered in this study (denoted
the “composite” formulation by Zhang, Ragusa, and Morel) experience sig-
nificant degradation in iterative convergence as the SPN order is increased.
Despite this fact, this method was observed to be the favored approach for
problems with high scattering ratios and relatively low SPN orders. Con-
sidering that Gauss–Seidel over energy is known to exhibit poor iterative
performance for problems with significant upscattering [13, 14], use of a
Gauss–Seidel approach over both moments and energy is certain to result
in slow convergence. Thus, avoiding the use of Gauss–Seidel iterations alto-
gether in favor of solution approaches targeted at the entire matrix at once
is an attractive option.

The multigroup SPN equations have dimension Ng × Nm × Nc, where
Nm = (N + 1)/2 is the number of moment equations; Nc is the number
of spatial cells; and, as mentioned previously, Ng is the number of energy
groups. The solution vector u can be ordered in multiple ways; however,
the ordering that minimizes the bandwidth of the matrix is to order u in
groups-moments-cells,

u =
(
u0 u1 . . . um−1 um um+1 . . . uM

)T
, (55)

with
m = g +Ng(n+ cNm) , (56)

where g is the group, n is the moment equation, and c is the cell. Consider
an example SP3 matrix that results from a 2×2×4 grid with 4 groups. With
all reflecting boundary conditions, the total number of unknowns is 128. Al-
ternatively, vacuum boundary conditions must be coupled over all equations
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as indicated by Eq. (34); thus the size of the matrix will be augmented by
Nb ×Ng ×Nm unknowns, where Nb is the number of boundary cells over all
faces. The sparsity plot for a 2×2×4 grid with vacuum boundary conditions
on four faces is shown in Fig. 1.

One feature of the SPN equations is that, for many problems of interest,
scattering moments above P1 are not required to attain sufficient accuracy.
Thus, all Σn matrices with n > 1 will simply be diagonal matrices. Also,
there is relatively little coupling from low to high energy groups in most
physical regimes, which yields Σn matrices that are predominately lower-
triangular. A sparsity plot of a representative Σn matrix with 56 energy
groups is shown in Fig. 2. It should be noted that while the monoenergetic
SPN equations are symmetric, the multigroup equations are nonsymmetric
and therefore require the use of both eigensolvers and linear solvers intended
for use with nonsymmetric systems.

Because the SPN equations do not represent a consistent discretization of
the neutron transport equation in general (only in limited asymptotic regimes
is this true), it should be emphasized that SPN should not be used to resolve
the sharp material boundaries that would be present in a fully heterogeneous
model of a nuclear reactor core. Instead, typical use of the SPN equations
for reactor analysis involves first homogenizing portions of the reactor into
homogeneous subregions. This process is identical to the approach used for
core-wide diffusion calculations [15]. The basis for this homogenization may
be either full reactor assemblies [16] or individual fuel pins [2]. For the numer-
ical results presented in § 5, we use pin cells as the basis for homogenization.
Unlike the approach taken in Ref. [2], no discontinuity or homogenization
factors are used in the present study. Because the SPN equations in 2D and
3D do not limit to the solution of the Boltzmann equation, the maximum
accuracy is achieved for some finite value of N and beyond that point the
error will increase. It has been observed that the majority of the benefit of
using SPN rather than diffusion is achieved at low angular orders; therefore,
SPN solvers typically focus on SP3 or SP5 calculations [2, 7, 16].

4. Eigenvalue Solvers

Although we are currently considering the solution of the SPN k-eigenvalue
problem, the form of the eigenvalue problem given by Eq. (54) is the same
as for other transport discretizations, even if the linear operators themselves
are different. Therefore, much of the following discussion is equally applica-
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Figure 1: SP3 matrix sparsity pattern for a 2× 2× 4 spatial grid and 4 energy groups.
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Figure 2: Sparsity of 56 group Σn matrix.

ble to not only the SPN equations, but also other angular approximations
(e.g. discrete ordinates or diffusion). Several eigenvalue solvers have been
proposed in the literature for the k-eigenvalue problem. Many approaches
are based on converting the generalized eigenvalue problem of Eq. (54) to
the equivalent standard eigenvalue problem

A−1Bu = ku . (57)

Such a conversion is possible because the matrix A is guaranteed to be non-
singular [17]. In practice, factorizations of A will be too dense to store
explicitly, but the matrix-vector product y = A−1Bv can be computed by
first performing the product z = Bv, followed by solving the linear sys-
tem Ay = z. The simplest and perhaps most widely used approach is to
use power iteration (PI) applied to the operator A−1B. Convergence to the
dominant eigenvalue is guaranteed under very general conditions [18], but
rates of convergence (dictated by the dominance ratio ρ ≡ k2

k1
, where k1 and

k2 are the largest and second largest eigenvalues, respectively) may be pro-
hibitively slow for many problems of interest. The rate of convergence of PI
can be improved by first applying a shift to Eq. (54) before inverting, i.e.,

(A− µB)−1 Bu = k̄u , (58)

where µ is a fixed approximation to the inverse of the dominant eigenvalue
[19]. It can easily be shown that the eigenvalue of the shifted system, k̄, is
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related to the eigenvalue of the original system by

k =
k̄

1 + µk̄
, (59)

and that the dominance ratio is given by ρshift =
(
k2
k1

)(
k1−1/µ
k2−1/µ

)
, which can

be significantly smaller than the dominance ratio of the original problem
for µ ≈ 1

k1
. Shifted power iteration faces two primary difficulties. First,

improper selection of the shift will cause the method to converge to an incor-
rect eigenvalue. Second, solving linear systems involving the shifted matrix
(A− µB) may be significantly more difficult than linear systems involving
the unshifted matrix. This increased difficulty arises because of a clustering
of the spectrum of the shifted matrix around 0 when µ is close to a true
eigenvalue.

A natural extension of the shifted PI is to use the current eigenvalue
estimate as a shift rather than using a fixed value. This results in the Rayleigh
quotient iteration (RQI) algorithm:

u(m+1) =
(
A− λ(m)B

)−1
Bu(m) , (60)

λ(m+1) =
〈u(m+1),Au(m+1)〉
〈u(m+1),Bu(m+1)〉

, (61)

where m is the iteration index and 〈·, ·〉 indicates an inner product. The
primary advantage of RQI is that convergence is quadratic and thus very few
iterations will generally be required. The difficulties associated with shifted
PI, however, are made even worse. Convergence to the dominant eigenvalue is
not guaranteed, regardless of the choice of initial shift, and the linear systems
that must be solved are not only more difficult than the unshifted systems,
but increase in difficulty as the algorithm progresses because (A− λB) ap-
proaches a singular matrix as λ approaches the true eigenvalue. RQI has only
recently begun to attract attention for radiation transport problems [20–22].

The methods discussed so far are all fixed-point methods, i.e., the next
estimate of the solution depends only on the estimate immediately preceding
it. An alternative to fixed-point iterations is subspace eigenvalue solvers in
which information from several previous vectors is used to generate the next
approximate solution. The vast majority of subspace solvers are built on two
basic principles: extracting an approximate solution from a given subspace
and adding an additional vector (or vectors) to the current subspace. In the

20

CASL-U-2014-0352-000



solution extraction phase, an estimate of the desired eigenvector is obtained
as a linear combination of the subspace basis vectors. The process is almost
invariably achieved through a Rayleigh–Ritz procedure, solving the projected
eigenvalue problem

VTAVy = λVTBVy , (62)

or for a standard eigenvalue problem [i.e., for solving Eq. (57)]

VTA−1BVy = ky , (63)

where V contains a set of (typically orthogonal) basis vectors for the current
subspace. For an appropriate selection of V, the eigenvalues of the projected
problem will closely approximate the eigenvalues of the original system, and
the vectors Vy will approximate the corresponding eigenvectors. The approx-
imate eigenvalues and eigenvectors obtained from the Rayleigh–Ritz proce-
dure are generally referred to as Ritz values and Ritz vectors, respectively.
In the case of symmetric matrices, it can be shown that the Ritz values and
vectors satisfy certain optimality conditions. In the nonsymmetric case, no
such optimality conditions apply, although the Rayleigh–Ritz procedure is
still the basis for many eigensolvers [23].

The method of subspace expansion is what distinguishes the majority of
subspace eigensolvers. In the Arnoldi method [24], the subspace is taken to
be the Krylov subspace corresponding to the operator A−1B. Thus, each it-
eration requires the operator action y = A−1Bx, just as with PI. Unlike PI,
however, convergence of Arnoldi’s method is not dictated by the dominance
ratio, and so the number of iterations required to converge is likely to be
significantly smaller. The Arnoldi method has gained attention in the trans-
port literature in recent years and has become the staple of some production
codes [25, 26].

Another subspace eigensolver is the Davidson method [27]. The central
idea behind subspace expansion in the Davidson method is that at iteration
m, given an approximate eigenvalue, λ(m), and corresponding eigenvector,
u(m), one should seek a correction, t(m), such that the eigenvalue correction
equation given by

A(u(m) + t(m)) = λ(m)B(u(m) + t(m)) , (64)

is satisfied. Rearranging this equation yields

(A− λ(m)B)t(m) = −(A− λ(m)B)u(m) ≡ −r(m) , (65)
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where r(m) is the residual of the eigenvalue problem. This equation implies
that a linear system involving the matrix (A − λ(m)B) must be solved at
each iteration. This is likely to incur a significant computational expense,
suggesting the use of a preconditioner, M, that approximates (A − λ(m)B),
leading to the Davidson correction equation

Mt(m) = −r(m) . (66)

Although the original Davidson method was targeted at the symmetric stan-
dard eigenvalue problem, later work extended the idea to the generalized
eigenvalue problem [28] and to nonsymmetric matrices [29]. The Davidson
method has one extremely appealing feature for the k-eigenvalue problem:
because it solves the generalized eigenvalue problem directly, it is not nec-
essary to solve any linear system involving the full problem operator; only
a preconditioner approximating the solution of a linear system is required.
Despite this attractive feature, use of the Davidson method for transport
problems has only very recently appeared in the literature [21, 30, 31].

Although it will not be considered further in this study, another subspace
solver that has garnered much attention in the mathematics community in
recent years is the Jacobi-Davidson method [32]. The Jacobi–Davidson cor-
rection equation is given by(

I− uuT
) (

A− λ(m)B
) (

I− uuT
)
t(m) = −r(m) , (67)

where the projection operator
(
I− uuT

)
forces the update to be orthogonal

to the current solution estimate and prevents stagnation of the method.
A classification of the eigenvalue solvers discussed here is given in Table 1

based on the linear system that each method is required to solve. This list
is not intended to be exhaustive, as several other subspace eigenvalue solvers
appear in the mathematics literature. Additionally, eigensolvers based on
optimization strategies or general nonlinear solvers exist (the latter case was
studied in Refs. [33, 34] for the k-eigenvalue problem).

The idea of preconditioning for eigensolvers involving a conversion to a
standard eigenvalue problem is straightforward: a preconditioner is applied
to accelerate the convergence of the solution of the relevant linear system
of equations only and therefore does not directly influence the rate of con-
vergence of the eigensolver (though clearly it influences the efficiency of the
overall approach). Preconditioning for eigenvalue solvers operating directly
on a generalized eigenvalue problem (e.g., Davidson-style methods) is not
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Table 1: Classification of eigensolvers by linear system solution required

Solver Type

Linear System Matrix Fixed Point Subspace

M – Davidson
A Power Iteration Arnoldi

A− µB Shifted Power Iteration Shift-and-Invert Arnoldi
A− λ(m)B Rayleigh Quotient It. Jacobi-Davidson*

*The Jacobi-Davidson correction equation includes additional projection operators.

understood as well. Preconditioning in these cases has a direct impact on
the rate of convergence of the eigensolver. Davidson’s original method fo-
cused solely on the use of diagonal preconditioning (a natural choice be-
cause the matrices under consideration were strongly diagonally dominant),
though subsequent studies considered more general preconditioners [35, 36].
Generally speaking, the preconditioner, M, should approximate the matrix
(A − λ(m)B). Care must be taken, however, because stagnation can occur
if M too closely approximates (A − λ(m)B). The reason for this can easily
be seen from Eq. (65), which admits t(m) = u(m) as a solution. Thus, the
vector proposed for addition to the current subspace is already contained in
the subspace, and no further progress toward a solution can be made. One
possible remedy for this stagnation, proposed by Olsen [37], is to force the
subspace expansion to be orthogonal to the current iterate. The downside to
this approach is that two applications of the preconditioner are required at
each iteration, rather than only a single application in the standard Davidson
method.

One preconditioning approach that obviates the stagnation issue is to
have M approximate (A−µB) for a fixed value of µ. In fact, if the smallest
magnitude eigenvalue is being sought, it may be sufficient to have M approx-
imate A. In the limiting case where M = A, the subspace constructed by the
Davidson method is the Krylov subspace corresponding to A−1B and is thus
equivalent (in exact arithmetic) to the Arnoldi method. Using the Arnoldi
method in this case, however, requires A−1 to be applied to high accuracy
to maintain the structure of the subspace. For problems where direct fac-
torization of A is not practical, this can impose a significant computational
burden. The Davidson method, on the other hand, explicitly computes the
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residual at each iteration and thus is not constrained by the accuracy to
which the linear solves are performed. In this respect, the Davidson method
with M ≈ A can be viewed as an inexact Arnoldi approach. There is a cost
associated with the freedom to perform inexact solves: storage of additional
basis vectors and additional orthogonalization work must be done because
the subspace has no structure for the subspace for the Davidson solver to
exploit.

5. Computational Results

To test the relative merits of the various solvers described in the previous
section, each solver is tested on two different test problems: a modified ver-
sion of the 3-D C5G7 MOX benchmark and a model of the initial criticality
at Unit 1 of the Watts Bar Nuclear Plant (WBN1). The discretization of the
SPN equations described in § 3 has been implemented in the Denovo radia-
tion transport code [38]. The solvers under consideration are PI, shifted PI,
RQI, the Arnoldi method, and the Davidson method.

For each eigensolver, three different preconditioners are considered. First
is a thresholded incomplete LU factorization (ILUT) with a drop tolerance of
10−2 provided by the IFPACK package [39]. No domain overlap is included,
so in parallel calculations each processor only performs a factorization of
the portion of the matrix local to that processor. The second precondi-
tioner is an algebraic multigrid (AMG) preconditioner provided by the ML
package [40]. Default settings for a “DD” problem type are used (see ref-
erence for full description of these settings). The final preconditioner is a
multigrid in energy (MGE) approach, similar to the strategies developed in
Refs. [41] and [21]. The smoother for all MGE cases consists of three iter-
ations of ILU-preconditioned BiCGStab. The linear solver for all cases is
right-preconditioned GMRES as provided by Belos [42]. In the case of MGE,
a flexible GMRES implementation is used [43]. The eigensolver implementa-
tions for the Arnoldi and Davidson approaches are provided by the Anasazi
package of Trilinos [44]. An important point to note is that all of the solvers
except for Davidson use a preconditioner to accelerate the solution of a linear
system; the Davidson solver uses the preconditioner directly for expansion of
the subspace and does not make use of a linear solver.
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5.1. C5G7 MOX Benchmark
The first problem under consideration is a slight modification of the 3-D

C5G7 MOX benchmark problem. We base our model on the original bench-
mark specification described in Ref. [45] rather than the more commonly
modeled variant described in Ref. [46]. The only difference in the problem
specifications is the height of the fuel assemblies (the original problem used
a fuel height of 385.56 cm while the more recent specification reduced this
height to 42.84 cm). We choose the original specification because it more
closely resembles a typical PWR geometry and is more challenging from a
solver convergence perspective. The problem geometry consists of a 4 × 4
checkerboard array of fuel assemblies, each containing a 17 × 17 square ar-
ray of pins (264 fuel pins, 25 guide tubes) with a pitch of 1.26 cm. Half
of the assemblies contain 4.0% enriched UO2 fuel, and the remaining half
contain several different enrichments of MOX fuel. The height of the fuel
is 385.56 cm, and a 21.42 cm reflector surrounds the assembly radially and
axially. Symmetry reduces the problem to only a single octant of the full
problem. For each pin cell, the benchmark specifies two materials: a homog-
enized fuel material and a moderator. In this study, we choose to instead use
the heterogeneous pin specifications given in Ref. [47] and use the XSDRN
module of the SCALE package [48] to generate pin-homogenized 23-group
cross sections for the SPN solver. This process preserves the pertinent fea-
tures of the benchmark problem while closely following a typical reactor
physics workflow. The problem is solved using an SP3 angular expansion, a
2×2 mesh per pin cell radially and a 2.5 cm mesh height axially. The problem
was run in parallel on 81 processing cores with a 9× 9 spatial decomposition
in the x-y plane. The computed dominant eigenvalue was between 1.161599
and 1.161600 for all solvers, values that were consistent with the specified
stopping criteria of 10−6 in the L2 norm of the residual. The dominance ratio
was estimated to be approximately 0.978

Table 2 shows the convergence behavior and run time performance for
each eigensolver/preconditioner combination on the C5G7 problem. The first
significant trend to notice is the behavior of different preconditioners for the
same eigensolver. With PI, the fastest time to solution is achieved with the
ILUT preconditioner despite the fact that it results in far more total linear
iterations than the other preconditioners; this is because the time required
to apply the ILUT preconditioner is far less than the cost of applying either
the AMG or MGE preconditioners. For shifted PI (for this problem a shift
of µ = 0.8 is used) and RQI, the situation is entirely different: the MGE
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preconditioner results in the smallest computational time. The reason for
this difference is that the linear systems that must be solved in shifted PI
and RQI are much more difficult than the linear systems encountered by PI;
the stronger preconditioning offered by the multigrid preconditioners results
in less degradation of the iterative performance of the linear solver when
moving to the shifted linear systems and therefore a faster time to solution.
Arnoldi shows a similar trend to PI with respect to preconditioning, which
is not a surprising result considering the same linear system is solved in
both methods. Finally, the Davidson method displays very similar time
to solution for all three preconditioning approaches despite widely varying
iteration counts. This robustness with respect to preconditioner selection is
a very attractive feature of the Davidson approach.

The second significant feature to note in this study is the relative solve
times between the different eigensolvers. Shifted PI results in significantly
fewer eigenvalue iterations compared to PI, although the run time is only
slightly less than PI (or even greater than PI, depending on the preconditioner
selection) because of the increased difficulty of the linear system that must
be solved. RQI results in a very small number of eigenvalue iterations due to
the quadratic convergence of the solver and shows a significant reduction in
runtime relative to PI or shifted PI. Arnoldi’s method produces an iteration
count virtually equivalent to shifted PI, however the total iteration count and
time to solution are much lower than with shifted PI. Arnoldi’s method and
RQI result in very similar linear iteration counts and solution times. Finally,
the generalized Davidson method produces a much lower time to solution
than any of the other solvers, solving the problem approximately five times
faster than the next best approach. The reason for this small time to solution
is that the eigenvalue iteration counts are not dramatically larger than those
using the other solvers, but each iteration is much less expensive because no
system of linear equations must be solved.

5.2. Watts Bar Nuclear 1

The second test problem is a model of the initial criticality at WBN1.
The reactor core consists of 193 fuel assemblies containing three different
enrichments of fresh UO2 fuel. Each assembly consists of a 17× 17 array of
pins with 264 fuel pins, 24 guide tubes, and a central instrumentation tube.
The pins are located on a 1.26 cm square pitch array, and a 0.08 cm gap is
present between each assembly. The active height of the fuel is 365.76 cm,
with a 16 cm helium-filled plenum above the fuel. Eight spacer grids, top
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Table 2: Convergence behavior for the C5G7 MOX problem

Eigensolver Prec.
Eigenvalue Total Linear Setup Solve
Iterations Iterations (min) (min)

ILUT 418 14366 3.4 137.9
PI AMG 415 5551 0.8 199.7

MGE 418 2347 0.8 289.3

ILUT 24 5615 3.5 288.5
Shifted PI AMG 24 2258 1.0 107.3

MGE 24 666 0.8 83.7

ILUT 4 1744 3.2 89.9
RQI AMG 4 526 0.8 28.7

MGE 4 156 0.9 21.2

ILUT 23 1786 3.4 27.6
Arnoldi AMG 23 728 0.8 27.1

MGE 23 304 0.9 51.1

ILUT 263 – 3.4 5.1
Davidson AMG 96 – 0.8 4.2

MGE 29 – 0.9 4.4
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and bottom assembly nozzles, and top and bottom core plates are included in
the model. Hot zero power conditions at a uniform temperature of 565K are
modeled. Reactivity control is achieved through a combination of 1285 ppm
soluble boron, pyrex rods inserted into select guide tube locations, and one
partially inserted control rod bank. Further material and geometric details
of the problem can be found in Ref. [49]. The problem is solved using 256
processing cores.

For this problem, the same five eigensolvers are used, but only the AMG
and MGE preconditioners are used. The use of an ILUT preconditioner
resulted in excessively large iteration counts and run times; therefore, this
approach was excluded from this comparison. The failure of an ILU-style
preconditioner on this number of processors is not particularly surprising, as
such preconditioners are well known to exhibit poor parallel scaling perfor-
mance [50]. Variants of incomplete factorizations aimed at improving parallel
performance exist, but investigation into such approaches is well outside the
scope of this work. All solvers computed a dominant eigenvalue between
1.000759 and 1.000761, consistent with the stopping criteria of 10−6 and
quite close to the measured critical state of the reactor. The dominance
ratio of the system was estimated to be approximately 0.987.

Table 3 shows the convergence behavior and timings for the various solvers
on the WBN1 problem. The general trends for the different solvers are very
similar to those for the C5G7 problem. PI, as expected, displays the worst
performance in both iteration count and run time. The use of shifted PI
(with a shift of µ = 0.95) offers a moderate reduction in run time, and RQI
improves performance even further. The Arnoldi method outperforms any of
the fixed-point solvers, although its performance is not dramatically different
from RQI. The Davidson solver once again appears as the clear-cut winner,
outperforming all of the other solvers by around an order of magnitude in
run time. In terms of preconditioning, the AMG approach seems to offer
the most favorable performance in terms of time to solution for most solvers.
Only in the case of RQI does the MGE preconditioner offer an advantage.

6. Conclusions

The SPN equations offer an attractive alternative to standard diffusion
approximations to the neutron transport equation. Because the equations
account for transport effects that cannot be captured by diffusion alone, SPN
is more appropriate for analysis of advanced reactor designs. At the same
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Table 3: Convergence behavior for the WBN1 problem

Eigensolver Prec.
Eigenvalue Total Linear Setup Solve
Iterations Iterations (min) (min)

PI
AMG 523 10572 0.7 353.1
MGE 523 4919 0.7 851.5

Shifted PI
AMG 16 2647 0.7 161.5
MGE 16 1319 0.7 224.7

RQI
AMG 3 765 0.7 125.6
MGE 3 435 0.8 103.1

Arnoldi
AMG 43 2118 0.7 85.4
MGE 43 901 0.7 109.0

Davidson
AMG 201 – 0.8 8.5
MGE 76 – 0.7 10.1

time, the SPN equations retain a diffusion-like structure that is appealing
from the standpoint of numerical solvers, avoiding the high computational
cost associated with solving fully consistent discretizations of the transport
equation.

An in-depth discussion of the derivation, discretization, and solution of
the k-eigenvalue form of the SPN equations has been presented in this pa-
per. The solution strategies presented in this work are unique in that they
focus on the full construction of problem matrices, in constrast with typical
approaches that solve sequentially over the moment equations to facilitate
the use of existing diffusion solver capabilities. The use of various eigen-
solvers on light water reactor problems has been investigated. In particular,
it has been shown that the use of a generalized Davidson eigenvalue solver
offers a particularly efficient solution approach. This efficiency is because of
the fact that the generalized Davidson solver directly solves the generalized
eigenvalue problem rather than first converting it to a standard eigenvalue
problem, eliminating the need to solve linear systems of equations involving
the full problem matrix at each iteration.
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Appendix A. Fixed-Source SPN Equations

In § 2 we derived the eigenvalue form of the SPN equations. However,
many applications require solutions to problems that contain a fixed source.
Because the fixed-source form of the SPN equations has the same left-hand
side as the eigenvalue form, many of the solution strategies discussed in
§ 4 can be applied to fixed-source problems. Therefore, we present a brief
derivation of the SPN equations for fixed-source problems.

The steady-state, one-dimensional linear Boltzmann equation for prob-
lems with an external source is

µ
∂ψg(x, µ)

∂x
+ σg(x)ψg(x, µ) =

Ng∑
g′=1

∫
4π

σgg
′

s (x, Ω̂ · Ω̂′)ψg′(x,Ω′) dΩ′ + qg(x, µ)

2π
. (A.1)

For simplicity, we only consider isotropic sources; thus,

qg(x, µ)

2π
→ qg(x)

4π
. (A.2)

The only difference between the fixed-source form and Eq. (1) is that the
right-hand side now contains an external source, q, instead of a fission source
and eigenvalue.

Following the identical procedure on Eq. (A.1) as that performed in § 2
on Eq. (1), the fixed-source SPN equations are defined,

−∇ · Dn∇Un +
4∑

m=1

AnmUm = Qextn , n = 1, 2, 3, 4 . (A.3)
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The right-hand side source is

Qextn = c
(1)
1nq , (A.4)

where c(1) is defined in Eq. (26), and

q =
(
q0 q1 . . . qG

)T
. (A.5)

The reflecting and vacuum boundary conditions for this system of equa-
tions are given in Eqs. (34) and (38). For fixed-source problems, we must
also consider the case of boundary fluxes. The generalized Marshak boundary
condition for a boundary flux, ψb, is

2π

∫
µin

Pi(µ)ψ(µ) dµ = 2π

∫
µin

Pi(µ)ψb(µ) dµ , i = 1, 3, 5, . . . , N . (A.6)

Assuming an isotropic flux on the boundary,

ψb(µ) =
φb

4π
, (A.7)

and performing the SPN approximation gives the following equation on the
problem boundary,

−n̂ · Jn +
4∑

m=1

BnmUm = Sn . (A.8)

This equation is identical to Eq. (34) with the exception of the presence of a
boundary source on the right-hand side. The boundary source is defined,

Sn = b1ns , (A.9)

where b1n is given in Eq. (36), and

s =
(
φ0
b φ1

b . . . φGb
)T

. (A.10)
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