
Consortium for Advanced
Simulation of LWRs

CASL-U-2015-0108-000

A CASL Multiphysics Code
Coupling Primer: Software

Integration 101
(SAND2013-5908C)

Roger Pawlowski
Sandia National Laboratory

July 9, 2013

A CASL Multiphysics
Code Coupling Primer:

Software Integration 101

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National

Nuclear Security Administration under contract DE-AC04-94AL85000.

Roger Pawlowski
Sandia National Laboratories

Stuart Slattery and Paul Wilson

University of Wisconsin

Roscoe Bartlett
Oak Ridge National Laboratory

CASL 2013 Summer Student Workshop
Tuesday, July 8th, 2013

SAND2013-

CASL-U-2015-0108-000

Motivation: What makes
Multiphysics/Code Coupling Difficult?

• The most complex software engineering project I have been involved with
– Fortran, C, C++, Java, Python, Perl, …
– 21 git repositories
– VERA is composed of 350+ software engineering packages, 12 TPLs

• Multiscale physics: Thermal hydraulics (CFD, Subchannel), Neutron transport
(SN, MOC), materials models, crack propagation, multiphase boiling, …

• Multiple discretizations and solution algorithms
– Steady-state, transient (explicit, operator split, implicit), pseudo-transient,

continuation, eigensolvers, etc…
– CVFEM, FE, DGFEM, DAE network models, …
– Stability and Conservation can be critical

• Code use different units, coordinate systems, dimensions, pin axis alignment

• Software engineering quality of individual codes: app  library = disaster!

Code integrations require a strong combination of skills in physics
simulation, numerical algorithms and software engineering

CASL-U-2015-0108-000

Tools for Multiphysics Simulation
(Spanning Individual Applications and Coupled Systems)

• Motivating Example
• A Common Language: Domain Model
• Software Engineering Framework
• Code-to-code Data Transfer Utilities
• Abstraction Layer for Abstract Numerical

Algorithms
• Nonlinear Solution Algorithms
• Linear Algebra and Linear Solution Algorithms

This
talk

CASL-U-2015-0108-000

• CTF: Fluid flow and heat transfer around fuel pins
• Insilico: Neutronics (energy source generation in entire reactor

medium)
• Peregrine/MOOSE: Thermal conductivity accounting for crack

propagation in cycle

CASL Goal: Coupling “Established”
Codes to Produce A Novel Capability

Clad Surface Temperature

Coefficients for heat flux

MOOSE

Insilico

CTF

CASL-U-2015-0108-000

A Domain Model

• Input Arguments: state time derivative, state, parameters, time
• Output Arguments: Residual, Jacobian, response functions, etc…

A Theory Manual for
Multiphysics Code
Coupling in LIME,
R. Pawlowski, R.

Bartlett, R. Schmidt,
R. Hooper, and N.

Belcourt,
SAND2011-2195 State (DOF)

Set of parameters

Time Residual

Response Function

CASL-U-2015-0108-000

Extension to Multiphysics

Set of independent
parameters

Set of coupling
parameters

Transfer Function

Response Function

Split parameters into “coupling” and truly independent.

Require transfer functions:
• Can be complex nonlinear functions themselves

Response functions now dependent on z
• Can be used as coupling parameters (z) for other codes

CASL-U-2015-0108-000

An Assortment of Coupling Algorithms
• Picard-based (Black-Box)

– Block Nonlinear Jacobi
– Block Nonlinear Gauss-

Seidel
– Anderson Acceleration

• Newton Based (Block Implicit)
– Jacobian-free Newton-Krylov
– Newton-Krylov (Explicit

Jacobian)
– Nonlinear Elimination (Schur

complement formulation)

• Off-block diagonals may be hard to compute
• Can avoid computing Jacobian by using JFNK,
• BUT you still need to precondition ()

Example: Two
Component system

Picard Iteration: Nonlinear Block Gauss-Seidel

Newton-based

CASL-U-2015-0108-000

Picard Iteration for Solving a Nonlinear
Problem

• q-linear convergence
• Self consistency of each physics
• Not globally convergent
• Contraction mapping theorem used to show when a

Fixed Point Iteration will converge:
– Requires Lipschitz continuity of fixed point map

with a Lipschitz constant γ < 1

• Anderson Acceleration can sometimes recover stability
of the method (another tool in the box)

Example: Two
Component system

Picard Iteration: Nonlinear Block Gauss-Seidel

CASL-U-2015-0108-000

9 2nd Annual DOE Review of CASL, Oak Ridge National Laboratory, Aug 14-15, 2012
Official Use Only
Protected under CASL Multi-Party NDA No. 793IP

VERA: Virtual Environment for Reactor Analysis

DeCART Star-CCM+

Drekar

Common
Input

VERA

Hydra-TH

system front-end

COBRA-TF

MPACT

VIPRE-W

Baseline

ANC9

BOA

VABOC

LIME Trilinos DAKOTA MOOSE

Thermal-Hydraulics Neutronics Thermo-
Mechanics

Chemistry

Geometry

MAMBA PEREGRINE

XSProc

Denovo

RELAP5

MOAB DataTranferKit LIBMESH STK

CASL-U-2015-0108-000

Application Classification

Name Definition Required
Inputs

Required
Outputs

Optional
Outputs

Time
Integration

Control

Response Only
Model
(Coupling Elimination)

Internal

State Elimination
Model

Internal

Fully Implicit Time
Step Model

Internal

Transient
Explicitly Defined
ODE Model

External

Transient Fully
Implicit DAE
Model

External
or

Internal

Inputs and outputs are optionally supported by physics model 
restricts allowed solution procedures

CASL-U-2015-0108-000

Peregrine/Insilico/CTF Executable
(Only ONE of many executables in VERA)

• VRIPSS
• COBRA-TF
• Exnihilio (Insilico, Denovo, nemesis)
• Drekar
• MOOSE/Peregrine
• Qt
• SCALE (200+ libraries, 30+ years of NRC

codes)
• LIBMESH
• Data Transfer Kit
• LIME
• Trilinos (60+ libraries)
• PETSc
• HYPRE
• Netcdf
• HDF5
• Boost
• Many others…

We are pulling in
almost every
general HPC

library under one
executable and

dealing with
massive collisions!

• Library version requirements
• Ex: 4 Apps use petsc w/ different ver/flags

• Global variables/MACROS

CASL-U-2015-0108-000

The VERA Software Stack

• VERA is based on Trilinos/TriBITS build, integration and testing
environment
– Follows a TOOLKIT approach.
– Fundamental atomic unit is a package.
– Packages declare dependencies on other packages and TPLs
– VERA/TriBITS provides many standard SQA practices:

• Source code management (git).
• Code Integration and Build tools (TriBITS/CMake-based).
• Automated testing: Checkin, CI, Nightly, Weekly (CTest, python scripts).
• Dashboard results and email for failing tests (CDash)

• Each VERA physics code is expected to be integrated as a
“package”
– Must convert to TriBITS/CMake
– Can live in separate repositories (git preferred, can work with svn)

• A New package integrates existing packages

 CASL-U-2015-0108-000

Scale

Package Dependencies Minimize Testing, Speed Integration

Trilinos

VRIPSS

LIME

NOX

Drekar/Exnihilo

Drekar Model Evaluator

Drekar/Panzer

Exnihilo Model Evaluator

netcdf

HDF5

Exnihilo

ANASAZI

32 Trilinos packages…

XSProc

200+ packages
(30 years of codes)

Qt

CASL-U-2015-0108-000

Native TPL Builds In-line with TRIBITS
(Ext package support, Export makefiles refactored)

Traditional Approach New Requirements

PETSc

Hypre

VERA

Trilinos

DTK

TP
L

Tr
iB

IT
S

TriBITS is now truly a meta build
system!

libmesh

PETSc

Hypre

Trilinos

DTK

CASL MOOSE

MOOSE

Peregrine

Tr
iB

IT
S

A
ut

ot
oo

ls
/

m
ak

ef
ile

s
TP

L

The
introduction
of MOOSE

Created
circular

dependencies
on VERA

components

CASL-U-2015-0108-000

15

Testing
• Is the absolute single most important aspect of integration into

VERA!
• Benefits:

– Documents that a capability exists and does not regress
– Documents valid use cases
– Documents that completed milestones have not regressed
– Allows for nearly automatic releases

CASL-U-2015-0108-000

16

Testing Requirements
• Disciplined development teams

– Tests must pass 100% of the time
– Broken tests must be addressed immediately or disabled and

documented in backlog if a regression occurred.
• Meaningful tests!

– Not just a running executable
• Performance can degrade but still complete (e.g. more iterations in solvers)
• Answers can be wrong (e.g. intel compliers for ANC/Vipre/Boa)

– No eyeball norms!
• Automated interrogation of results to defined tolerances, no human

interaction!
– Output must be compared against gold standard metrics

• e.g. Solution values, quantities of interest, iteration counts, timings

CASL-U-2015-0108-000

17

TriBITS supports Multiple Test Categories

• Unit Tests (used for checkin and CI testing)
– Short turn around that users can run before making commits to any

repository.
– Very fast tests – total suite should run in a few minutes at most

• Nightly Tests
– Longer tests that show critical capabilities

• Weekly testing
– Tests that take a really long time to complete
– Usually milestones, valgrind style tests, or coverage testing

• Performance
– Tied to a specific platform
– Uses execution times

CASL-U-2015-0108-000

Repository Layout and Testing Workflow

Trilinos
(SNL)

VERA: PSSDrivers
(CASL-DEV)

Drekar/Panzer
(SNL)

LIME
(SNL)

Denovo
(ORNL)

Trilinos
(CASL-DEV)

Drekar/Panzer
(CASL-DEV)

LIME
(CASL-DEV)

Denovo
(CASL-DEV)

Trilinos
(CI)

Drekar/Panzer
(CI)

LIME
(CI)

Denovo
(CI)

Integration
CI Servers

VERA

VERA: PSSDrivers
(CI)

Need automated access to repository (ssh keys)!
CASL-U-2015-0108-000

Build Types
• Testing uses different combinations of compliers and build flags

– MPI and SERIAL builds
– DEBUG and RELEASE
– Compilers: GCC, Intel, Hybrid
– Explicit and Implicit Instantiation
– Checked STL
– Package defined ifdefs

• A combinatorial explosion – too much to test with our resources. CASL

checking test script defines 2 builds.
– MPI_DEBUG: MPI, DEBUG, Checked STL , Implicit Inst.
– SERIAL_RELEASE: SERIAL, RELEASE Explicit inst.

• Package classification: Primary Stable, Secondary Stable, Experimental

– Users can add extra builds for secondary stable and experimental packages

Testing requires multiple builds of the
same code!

CASL-U-2015-0108-000

Example of Integration Workflow:
Drekar/Denovo Coupling

PSSDrivers
(CASL-dev)

Drekar
(SSG)

ExNihilo
(CASL-dev)

DTK
(CASL-dev)

…

Branch for
new

Drekar/
Denovo
driver

Branch to
test

against
current

version of
ExNihilo

ExNihilo
(Angmar)

…

…

Branch for
Drekar/
Denovo
coupling

DTK
(Github)

New
mappings

Branch to
test

integration

Branch to fix
Denovo

 LIME driver for
Angmar

changes to
Denovo

CASL-U-2015-0108-000

Sample of Complex Integration Workflow:
Drekar/Denovo Coupling

PSSDrivers
(CASL-dev)

…

Drekar
(SSG)

ExNihilo
(CASL-dev)

…

ExNihilo
(Angmar)

DTK
(CASL-dev)

DTK
(Github)

…

No way to do
this

efficiently
without git
(Dist. VC)!

CASL-U-2015-0108-000

Modifying a code for integration
is difficult and time consuming

• Codes are no longer top of the food chain (main()):
– No global variables, using namespace declarations in headers
– “Solve” can be called multiple times
– Must be able to reset if any physics fails a “step”
– Can not control/manipulate the parse of input
– Can not redirect output streams, must allow ostreams to be set
– Can not assume MPI_COMM_WORLD anywhere in your code

(must accept an MPI communicator)
• Exposing input parameters and responses in parallel is the

most challenging aspect!
– Parallel distribution, data structures, …

• Memory management strategies are critical (RCPs)
• Robust error handling

CASL-U-2015-0108-000

The Details: Debugging Skills are Critical
(CTF/Insilico/Peregrine integration specific)

• Object collisions (not namespaced) can generate seg faults
– SCALE/MOOSE: Reporter (dtor calling wrong function)

• Multiply defined macros redefined in files
– MOOSE/Qt

• Inconsistent compiler defines/build flags
– Can result in mysterious seg faults from inconsistently built objects
– PETSc/SCALE: OpenMP compilation requirements
– Seg faults from c++11 flags injected in libmesh (no disable)

• Scoping and ownership
– std::cout vs generic std::ostream

• Redirecting ostreams
– grabbing rdbuff on std::cout and setting to null
– No override of ostream
– What about Fortran code output?

• Colliding parser/command line handling
– Incompatible structure “--mesh=2” vs “–mesh 2“
– Apps removing arguments from argc/argv during parse
– Parsers throwing exceptions for invalid arguments

Debugging skills are critical for VRI team!

CASL-U-2015-0108-000

Units/Coordinate Complexity
(You can’t make this stuff up!)

Clad surface Temperature

Coefficients for
heat flux

MOOSE

Insilico

CTF

K F

Watts / (m^2 K)
 K

BTU / (hr ft^2 F)
F

Watts / (cm^3)

Watts / (m^3)

K

K

F
Lb_m/ft^3

K
gm/cm^3

English units
Cartesian

Z-Axis aligned
No Fuel offset

Agn./MKS Units
Cylindrical/Cart.
Y-Axis aligned

Any offset

Agn./CGS/MKS
Cartesian

Z-Axis aligned
Fuel offset

Transfers: Must account for axis alignment,
active fuel offset height, and unit conversions!

Input file consistency is critical!

CASL-U-2015-0108-000

Data Transfer Kit
(Slattery, Wilson, Pawlowski)

• Collection of geometry-based data mapping
algorithms for shared domain problems

• Data maps allow for efficient movement of
data in parallel (e.g. between meshes of a
different parallel decomposition)

• � Ideally maps are generated at a desirable
time complexity (logarithmic)

• Does not provide a general interface for all
physics codes to couple to all other physics
codes

• �Does not provide discretization services
(e.g. basis functions)

• Open-source BSD 3-clause license
• https://github.com/CNERG/DataTransferKit

CASL-U-2015-0108-000

Rendezvous Algorithm
(Plimpton, Hendrickson, and Stewart, Journal of Parallel and

Distributed Computing, vol. 64, pp. 266-276, 2004)

• Initially developed by the Sandia SIERRA team in the mid-2000's for
parallel mesh-based data transfer

• Creates parallel topology map that can be used repeatedly for data transfer
• Map execution uses asynchronous strategy (posts and waits) with minimal

messages
• Effectively N log (N) time complexity for parallel topology map generation
• Relies on the generation of a secondary decomposition of the source and

target meshes with a geometric-based partitioning (RCB)

Ω_source Ω_target Ω_rendezvous
CASL-U-2015-0108-000

Aggregate
cell contrib.
to compute
average in
geometry

DTK Implements Mappings for Various Transfers
(Rendezvous used by all Mappings)

Shared Domain Map
Mesh Point

Integral Assembly Map
Mesh Geometry

Shared VolumeMap
Geometry  Point

Colors represent different
MPI processes

CASL-U-2015-0108-000

Example of a Data Transfer
(Shared Domain Map)

Give me memory to fill that
corresponds to points
declared in setup

Declare source geometric entities
owned by each process:
• Entity global id
• Coordinate

position/description

Declare target points
required by each
process
• Cartesian points

Setup:

Form rendezvous mesh and identify optimal data layouts for data
movement (contiguous blocks for export/import ops)

Transfer: Given list of global ids and
corresponding points, evaluate
value at that point

C
ol

or
s

re
pr

es
en

t d
iff

er
en

t
M

PI
 p

ro
ce

ss
es

0

1
2

4 6

5 3
7

CASL-U-2015-0108-000

Data Transfer Kit
Weak Scaling Study (16 to 16K cores)

• Worst case scenario study
(all-to-all) with 10K
random points per core

– Applications will have
significantly better data
locality

• Scaling study run on Titan
• Largest test problems so far

over 1.0E9 elements and
1.0E5 cores

Excellent performance to 116K cores!
CASL-U-2015-0108-000

Transfer and Conservation
(Conservation is across pin sections)

Clad surface Temperature
SourceVolumeTransfer

Coefficients for heat
flux

SourceVolumeTransfer

MOOSE

Insilico

CTF

K F

Watts / (m^2 K)
 K

BTU / (hr ft^2 F)
F

Watts / (cm^3)

Watts / (m^3)

K

K

F
Lb_m/ft^3

K
gm/cm^3

CASL-U-2015-0108-000

Conservation
• DTK does not enforce conservation!

– It identifies parallel mappings and transfers data
• How to implement conservation is usually discretization

dependent
• For conservation DTK would need discretization

information: mesh, topology, geometry, basis,…
– CASL supports codes with completely different discretizations:

CVFEM, CFEM, DGFEM, FD, FV, Geometric Control volume
– Not feasible to support/duplicate discretization information for

every kind of coupling.
• Conservation should be enforced by each application

independently based on the code’s particular discretization
– DTK can still transfer information/values to enforce

conservation, but the code should do the enforcement since it
knows the exact discretization scheme!

CASL-U-2015-0108-000

A Multiphysics Distributor
(Four levels of MPI Communicators)

0 1 2 3 4 5 6 7 8 9 10 11 12

CTF Insilico MOOSE Multiapp (Peregrine)

DTK:CTFInsilico

DTK: InsilicoMOOSE Multiapp

DTK: CTF MOOSE Multiapp CTF

Global Comm (usually MPI_COMM_WORLD)

DTKMultiapp

DTKMultiapp

DTK: InsilicoMultiapp

DTK: Insilico

DTK: Insilico

1

3

1

1

1

(2)N

CASL-U-2015-0108-000

• Successfully integrated MOOSE/Peregrine into VERA
• Successfully coupled MOOSE/Peregrine with Insilico
• Designed new multiphysics driver (Tiamat)
• Developed new data transfer mechanisms for specific applications

Significant Advances in Capability

Clad surface Temperature

Coefficients for heat flux

MOOSE

Insilico

CTF

CASL-U-2015-0108-000

Virtual Reactor Integration
• We are successfully tackling significant software

integration challenges
• This work requires a special combination of

– Software design
– PDE Solution techniques
– Debugging skills (when Totalview, GDB, and Valgrind fail)
– Build system and compiler knowledge

CASL-U-2015-0108-000

	Pawlowski.pdf
	A CASL Multiphysics �Code Coupling Primer:�Software Integration 101
	Motivation: What makes �Multiphysics/Code Coupling Difficult?
	Tools for Multiphysics Simulation�(Spanning Individual Applications and Coupled Systems)
	CASL Goal: Coupling “Established” �Codes to Produce A Novel Capability
	A Domain Model
	Extension to Multiphysics
	An Assortment of Coupling Algorithms
	Picard Iteration for Solving a Nonlinear Problem
	VERA: Virtual Environment for Reactor Analysis
	Application Classification
	Peregrine/Insilico/CTF Executable�(Only ONE of many executables in VERA)
	The VERA Software Stack
	Package Dependencies Minimize Testing, Speed Integration
	Native TPL Builds In-line with TRIBITS�(Ext package support, Export makefiles refactored)
	Testing
	Testing Requirements
	TriBITS supports Multiple Test Categories
	Repository Layout and Testing Workflow
	Build Types
	Example of Integration Workflow: �Drekar/Denovo Coupling
	Sample of Complex Integration Workflow: �Drekar/Denovo Coupling
	Modifying a code for integration �is difficult and time consuming
	The Details: Debugging Skills are Critical�(CTF/Insilico/Peregrine integration specific)
	Units/Coordinate Complexity�(You can’t make this stuff up!)
	Data Transfer Kit�(Slattery, Wilson, Pawlowski)
	Rendezvous Algorithm�(Plimpton, Hendrickson, and Stewart, Journal of Parallel and�Distributed Computing, vol. 64, pp. 266-276, 2004)
	DTK Implements Mappings for Various Transfers�(Rendezvous used by all Mappings)
	Example of a Data Transfer�(Shared Domain Map)
	Data Transfer Kit�Weak Scaling Study (16 to 16K cores)
	Transfer and Conservation�(Conservation is across pin sections)
	Conservation
	A Multiphysics Distributor�(Four levels of MPI Communicators)
	Significant Advances in Capability
	Virtual Reactor Integration

