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Motivation:  What makes  
Multiphysics/Code Coupling Difficult? 

• The most complex software engineering project I have been involved with 
– Fortran, C, C++, Java, Python, Perl, … 
– 21 git repositories  
– VERA is composed of 350+ software engineering packages, 12 TPLs 

 

• Multiscale physics: Thermal hydraulics (CFD, Subchannel), Neutron transport 
(SN, MOC), materials models, crack propagation, multiphase boiling, … 
 

• Multiple discretizations and solution algorithms 
– Steady-state, transient (explicit, operator split, implicit), pseudo-transient, 

continuation, eigensolvers, etc… 
– CVFEM, FE, DGFEM, DAE network models, … 
– Stability and Conservation can be critical 

 

• Code use different units, coordinate systems, dimensions, pin axis alignment 
 

• Software engineering quality of individual codes: app  library = disaster! 

Code integrations require a strong combination of skills in physics 
simulation, numerical algorithms and software engineering 
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Tools for Multiphysics Simulation 
(Spanning Individual Applications and Coupled Systems) 

• Motivating Example 
• A Common Language: Domain Model 
• Software Engineering Framework 
• Code-to-code Data Transfer Utilities 
• Abstraction Layer for Abstract Numerical 

Algorithms 
• Nonlinear Solution Algorithms 
• Linear Algebra and Linear Solution Algorithms 

 

This 
talk 
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• CTF: Fluid flow and heat transfer around fuel pins 
• Insilico: Neutronics (energy source generation in entire reactor 

medium) 
• Peregrine/MOOSE: Thermal conductivity accounting for crack 

propagation in cycle 

CASL Goal: Coupling “Established”  
Codes to Produce A Novel Capability 

Clad Surface Temperature 

Coefficients for heat flux 

MOOSE 

Insilico 

CTF 
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A Domain Model 

• Input Arguments: state time derivative, state, parameters, time 
• Output Arguments: Residual, Jacobian, response functions, etc… 

A Theory Manual for 
Multiphysics Code 
Coupling in LIME, 
R. Pawlowski, R. 

Bartlett, R. Schmidt, 
R. Hooper, and N. 

Belcourt,  
SAND2011-2195  State (DOF) 

Set of parameters 

Time Residual 

Response Function 
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Extension to Multiphysics 

Set of independent 
parameters 

Set of coupling 
parameters 

Transfer Function 

Response Function 

Split parameters into “coupling” and truly independent. 

Require transfer functions: 
• Can be complex nonlinear functions themselves 

Response functions now dependent on z 
• Can be used as coupling parameters (z) for other codes 
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An Assortment of Coupling Algorithms 
• Picard-based (Black-Box) 

– Block Nonlinear Jacobi 
– Block Nonlinear Gauss-

Seidel 
– Anderson Acceleration   

• Newton Based (Block Implicit) 
– Jacobian-free Newton-Krylov 
– Newton-Krylov (Explicit 

Jacobian) 
– Nonlinear Elimination (Schur 

complement formulation) 

• Off-block diagonals may be hard to compute 
• Can avoid computing Jacobian by using JFNK, 
• BUT you still need to precondition (                  ) 

Example: Two  
Component system 

Picard Iteration: Nonlinear Block Gauss-Seidel 

Newton-based 
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Picard Iteration for Solving a Nonlinear 
Problem 

• q-linear convergence 
• Self consistency of each physics 
• Not globally convergent 
• Contraction mapping theorem used to show  when a 

Fixed Point Iteration will converge: 
–  Requires Lipschitz continuity of fixed point map 

with a Lipschitz constant γ < 1 
 

• Anderson Acceleration can sometimes recover stability 
of the method (another tool in the box) 

Example: Two  
Component system 

Picard Iteration: Nonlinear Block Gauss-Seidel 
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9 2nd Annual DOE Review of CASL, Oak Ridge National Laboratory, Aug 14-15, 2012 
Official Use Only 
Protected under CASL Multi-Party NDA No. 793IP 

VERA: Virtual Environment for Reactor Analysis 

DeCART Star-CCM+ 

Drekar 

Common 
Input 

VERA 

Hydra-TH 

system front-end 

COBRA-TF 

MPACT 

VIPRE-W 

Baseline 

ANC9 

BOA 

VABOC 

LIME Trilinos DAKOTA MOOSE 

Thermal-Hydraulics Neutronics Thermo-
Mechanics 

Chemistry 

Geometry 

MAMBA PEREGRINE 

XSProc 

Denovo 

RELAP5 

MOAB DataTranferKit LIBMESH STK 
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Application Classification 

Name Definition Required 
Inputs 

Required 
Outputs 

Optional 
Outputs 

Time 
Integration 

Control 

Response Only 
Model  
(Coupling Elimination) 

Internal 

State Elimination 
Model 

Internal 

Fully Implicit Time 
Step Model 

Internal 

Transient 
Explicitly Defined 
ODE Model 

External 

Transient Fully 
Implicit DAE 
Model 

External 
or 

Internal 

Inputs and outputs are optionally supported by physics model  
restricts allowed solution procedures   
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Peregrine/Insilico/CTF Executable 
(Only ONE of many executables in VERA) 

• VRIPSS 
• COBRA-TF 
• Exnihilio (Insilico, Denovo, nemesis) 
• Drekar 
• MOOSE/Peregrine 
• Qt 
• SCALE (200+ libraries, 30+ years of NRC 

codes) 
• LIBMESH 
• Data Transfer Kit 
• LIME 
• Trilinos (60+ libraries) 
• PETSc 
• HYPRE 
• Netcdf  
• HDF5 
• Boost 
• Many others… 

We are pulling in 
almost every 
general HPC 

library under one 
executable and 

dealing with 
massive collisions! 

• Library version requirements 
• Ex: 4 Apps use petsc w/ different ver/flags 

• Global variables/MACROS 
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The VERA Software Stack 

• VERA is based on Trilinos/TriBITS build, integration and testing 
environment 
– Follows a TOOLKIT approach. 
– Fundamental atomic unit is a package. 
– Packages declare dependencies on other packages and TPLs 
– VERA/TriBITS provides many standard SQA practices: 

• Source code management (git). 
• Code Integration and Build tools (TriBITS/CMake-based). 
• Automated testing: Checkin, CI, Nightly, Weekly (CTest, python scripts). 
• Dashboard results and email for failing tests (CDash) 

• Each VERA physics code is expected to be integrated as a 
“package” 
– Must convert to TriBITS/CMake 
– Can live in separate repositories (git preferred, can work with svn) 

• A New package integrates existing packages 
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Scale 

Package Dependencies Minimize Testing, Speed Integration 

Trilinos 

VRIPSS 

LIME 

NOX 

Drekar/Exnihilo 

Drekar Model Evaluator 

Drekar/Panzer 

Exnihilo Model Evaluator 

netcdf 

HDF5 

Exnihilo 

ANASAZI 

32 Trilinos packages… 

XSProc 

200+ packages 
(30 years of codes) 

Qt 
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Native TPL Builds In-line with TRIBITS 
(Ext package support, Export makefiles refactored) 

Traditional Approach New Requirements 

PETSc 

Hypre 

VERA 

Trilinos 

DTK 

TP
L 

Tr
iB

IT
S 

TriBITS is now truly a meta build 
system! 

libmesh 

PETSc 

Hypre 

Trilinos 

DTK 

CASL MOOSE 

MOOSE 

Peregrine 

Tr
iB

IT
S 

A
ut

ot
oo

ls
/

m
ak

ef
ile

s 
TP

L 

The 
introduction 
of MOOSE 

Created 
circular 

dependencies 
on VERA 

components 
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Testing 
• Is the absolute single most important aspect of integration into 

VERA! 
• Benefits: 

– Documents that a capability exists and does not regress 
– Documents valid use cases 
– Documents that completed milestones have not regressed  
– Allows for nearly automatic releases 
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Testing Requirements 
• Disciplined development teams 

– Tests must pass 100% of the time 
– Broken tests must be addressed immediately or disabled and 

documented in backlog if a regression occurred. 
• Meaningful tests! 

– Not just a running executable 
• Performance can degrade but still complete (e.g. more iterations in solvers) 
• Answers can be wrong (e.g. intel compliers for ANC/Vipre/Boa) 

– No eyeball norms!   
• Automated interrogation of results to defined tolerances, no human 

interaction! 
– Output must be compared against gold standard metrics  

• e.g. Solution values, quantities of interest, iteration counts, timings 
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TriBITS supports Multiple Test Categories 

• Unit Tests (used for checkin and CI testing) 
– Short turn around that users can run before making commits to any 

repository. 
– Very fast tests – total suite should run in a few minutes at most 

• Nightly Tests 
– Longer tests that show critical capabilities 

• Weekly testing 
– Tests that take a really long time to complete 
– Usually milestones, valgrind style tests, or coverage testing 

• Performance 
– Tied to a specific platform 
– Uses execution times 
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Repository Layout and Testing Workflow 

Trilinos 
(SNL) 

VERA: PSSDrivers 
(CASL-DEV) 

Drekar/Panzer 
(SNL) 

LIME 
(SNL) 

Denovo 
(ORNL) 

Trilinos 
(CASL-DEV) 

Drekar/Panzer 
(CASL-DEV) 

LIME 
(CASL-DEV) 

Denovo 
(CASL-DEV) 

Trilinos 
(CI) 

Drekar/Panzer 
(CI) 

LIME 
(CI) 

Denovo 
(CI) 

Integration 
CI Servers 

VERA 

VERA: PSSDrivers 
(CI) 

Need automated access to repository (ssh keys)!  
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Build Types 
• Testing uses different combinations of compliers and build flags 

– MPI and SERIAL builds 
– DEBUG and RELEASE 
– Compilers: GCC, Intel, Hybrid 
– Explicit and Implicit Instantiation 
– Checked STL 
– Package defined ifdefs 

 
• A combinatorial explosion – too much to test with our resources.  CASL 

checking test script defines 2 builds. 
– MPI_DEBUG: MPI, DEBUG, Checked STL , Implicit Inst.  
– SERIAL_RELEASE: SERIAL, RELEASE Explicit inst.  

 
• Package classification: Primary Stable, Secondary Stable, Experimental 

– Users can add extra builds for secondary stable and experimental packages  
 

Testing requires multiple builds of the 
same code! 
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Example of Integration Workflow:  
Drekar/Denovo Coupling 

PSSDrivers 
(CASL-dev) 

Drekar 
(SSG) 

ExNihilo 
(CASL-dev) 

DTK 
(CASL-dev) 

… 

Branch for 
new 

Drekar/ 
Denovo 
driver 

Branch to 
test 

against 
current 

version of 
ExNihilo 

ExNihilo 
(Angmar) 

… 

… 

Branch for 
Drekar/ 
Denovo 
coupling 

DTK 
(Github) 

New 
mappings 

Branch to 
test 

integration 

Branch to fix 
Denovo 

 LIME driver for 
Angmar 

changes to 
Denovo 
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Sample of Complex Integration Workflow:  
Drekar/Denovo Coupling 

PSSDrivers 
(CASL-dev) 

… 

Drekar 
(SSG) 

ExNihilo 
(CASL-dev) 

… 

ExNihilo 
(Angmar) 

DTK 
(CASL-dev) 

DTK 
(Github) 

… 

No way to do 
this 

efficiently 
without git 
(Dist. VC)! 
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Modifying a code for integration  
is difficult and time consuming 

• Codes are no longer top of the food chain (main()): 
– No global variables, using namespace declarations in headers 
– “Solve” can be called multiple times 
– Must be able to reset if any physics fails a “step” 
– Can not control/manipulate the parse of input 
– Can not redirect output streams, must allow ostreams to be set 
– Can not assume MPI_COMM_WORLD anywhere in your code 

(must accept an MPI communicator) 
• Exposing input parameters and responses in parallel is the 

most challenging aspect! 
– Parallel distribution, data structures, … 

• Memory management strategies are critical (RCPs) 
• Robust error handling 
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The Details: Debugging Skills are Critical 
(CTF/Insilico/Peregrine integration specific) 

• Object collisions (not namespaced) can generate seg faults 
– SCALE/MOOSE: Reporter (dtor calling wrong function) 

• Multiply defined macros redefined in files 
– MOOSE/Qt 

• Inconsistent compiler defines/build flags 
– Can result in mysterious seg faults from inconsistently built objects 
– PETSc/SCALE: OpenMP compilation requirements 
– Seg faults from c++11 flags injected in libmesh (no disable) 

• Scoping and ownership 
– std::cout vs generic std::ostream 

• Redirecting ostreams  
– grabbing rdbuff on std::cout and setting to null 
– No override of ostream 
– What about Fortran code output? 

• Colliding parser/command line handling  
– Incompatible structure “--mesh=2”  vs “–mesh 2“ 
– Apps removing arguments from argc/argv during parse 
– Parsers throwing exceptions for invalid arguments 

 

Debugging skills are critical for VRI team! 
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Units/Coordinate Complexity 
(You can’t make this stuff up!) 

Clad surface Temperature 

Coefficients for  
heat flux 

MOOSE 

Insilico 

CTF 

K F 

Watts / (m^2 K) 
 K 

BTU / (hr ft^2 F) 
F 

Watts / (cm^3) 

Watts / (m^3) 

K 

K 

F 
Lb_m/ft^3 

K 
gm/cm^3 

English units 
Cartesian 

Z-Axis aligned 
No Fuel offset 

Agn./MKS Units 
Cylindrical/Cart. 
Y-Axis aligned 

Any offset 

Agn./CGS/MKS 
Cartesian 

Z-Axis aligned 
Fuel offset 

Transfers: Must account for axis alignment, 
active fuel offset height, and unit conversions! 

Input file consistency is critical! 
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Data Transfer Kit 
(Slattery, Wilson, Pawlowski) 

• Collection of geometry-based data mapping 
algorithms for shared domain problems 

• Data maps allow for efficient movement of 
data in parallel (e.g. between meshes of a 
different parallel decomposition) 

• � Ideally maps are generated at a desirable 
time complexity (logarithmic) 

• Does not provide a general interface for all 
physics codes to couple to all other physics 
codes 

• �Does not provide discretization services 
(e.g. basis functions)  

• Open-source BSD 3-clause license 
• https://github.com/CNERG/DataTransferKit 
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Rendezvous Algorithm 
(Plimpton, Hendrickson, and Stewart, Journal of Parallel and 

Distributed Computing, vol. 64, pp. 266-276, 2004) 

• Initially developed by the Sandia SIERRA team in the mid-2000's for 
parallel mesh-based data transfer 

• Creates parallel topology map that can be used repeatedly for data transfer 
• Map execution uses asynchronous strategy (posts and waits) with minimal 

messages 
• Effectively N  log (N) time complexity for parallel topology map generation 
• Relies on the generation of a secondary decomposition of the source and 

target meshes with a geometric-based partitioning (RCB) 

Ω_source Ω_target Ω_rendezvous 
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Aggregate 
cell contrib. 
to compute 
average in 
geometry 

DTK Implements Mappings for Various Transfers 
(Rendezvous used by all Mappings) 

Shared Domain Map 
Mesh Point 

Integral Assembly Map 
Mesh Geometry 

Shared VolumeMap 
Geometry  Point 

Colors represent different 
MPI processes 
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Example of a Data Transfer 
(Shared Domain Map) 

Give me memory to fill that 
corresponds to points 
declared in setup 

Declare source geometric entities 
owned by each process: 
• Entity global id 
• Coordinate 

position/description 

Declare target points 
required by each 
process 
• Cartesian points 

Setup: 

Form rendezvous mesh and identify optimal data layouts for data 
movement (contiguous blocks for export/import ops) 

Transfer: Given list of global ids and 
corresponding points, evaluate 
value at that point 

C
ol

or
s 

re
pr

es
en

t d
iff

er
en

t 
M

PI
 p

ro
ce

ss
es

 

0 

1 
2 

4 6 

5 3 
7 
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Data Transfer Kit 
Weak Scaling Study (16 to 16K cores) 

• Worst case scenario study 
(all-to-all) with 10K 
random points per core 

– Applications will have 
significantly better data 
locality 

• Scaling study run on Titan 
• Largest test problems so far 

over 1.0E9 elements and 
1.0E5 cores 

 
 

Excellent performance to 116K cores! 
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Transfer and Conservation 
(Conservation is across pin sections) 

Clad surface Temperature 
SourceVolumeTransfer 

Coefficients for heat 
flux 

SourceVolumeTransfer 

MOOSE 

Insilico 

CTF 

K F 

Watts / (m^2 K) 
 K 

BTU / (hr ft^2 F) 
F 

Watts / (cm^3) 

Watts / (m^3) 

K 

K 

F 
Lb_m/ft^3 

K 
gm/cm^3 
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Conservation 
• DTK does not enforce conservation!  

– It identifies parallel mappings and transfers data 
• How to implement conservation is usually discretization 

dependent 
• For conservation DTK would need discretization 

information: mesh, topology, geometry, basis,… 
– CASL supports codes with completely different discretizations: 

CVFEM, CFEM, DGFEM, FD, FV, Geometric Control volume 
– Not feasible to support/duplicate discretization information for 

every kind of coupling. 
• Conservation should be enforced by each application 

independently based on the code’s particular discretization 
– DTK can still transfer information/values to enforce 

conservation, but the code should do the enforcement since it 
knows the exact discretization scheme! 
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A Multiphysics Distributor 
(Four levels of MPI Communicators) 

0 1 2 3 4 5 6 7 8 9 10 11 12 

CTF Insilico MOOSE Multiapp (Peregrine) 

DTK:CTFInsilico 

DTK: InsilicoMOOSE Multiapp 

DTK: CTF MOOSE Multiapp CTF 

Global Comm (usually MPI_COMM_WORLD) 

DTKMultiapp 

DTKMultiapp 

DTK: InsilicoMultiapp 

DTK: Insilico 

DTK: Insilico 

1 

3 

1 

1 

1 

(2)N 
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• Successfully integrated MOOSE/Peregrine into VERA 
• Successfully coupled MOOSE/Peregrine with Insilico 
• Designed new multiphysics driver (Tiamat) 
• Developed new data transfer mechanisms for specific applications 

Significant Advances in Capability 

Clad surface Temperature 

Coefficients for heat flux 

MOOSE 

Insilico 

CTF 
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Virtual Reactor Integration 
• We are successfully tackling significant software 

integration challenges 
• This work requires a special combination of 

– Software design 
– PDE Solution techniques 
– Debugging skills (when Totalview, GDB, and Valgrind fail) 
– Build system and compiler knowledge 
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